1
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2024.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2025.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Eid S, Lee S, Verkuyl CE, Almanza D, Hanna J, Shenouda S, Belotserkovsky A, Zhao W, Watts JC. The importance of prion research. Biochem Cell Biol 2024; 102:448-471. [PMID: 38996387 DOI: 10.1139/bcb-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the "prion-like" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important "unsolved mysteries" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.
Collapse
Affiliation(s)
- Shehab Eid
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Seojin Lee
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Claire E Verkuyl
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dustin Almanza
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph Hanna
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Sandra Shenouda
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ari Belotserkovsky
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Wenda Zhao
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
5
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Adkin A, Andreoletti O, Griffin J, Lanfranchi B, Ortiz‐Pelaez A, Ordonez AA. BSE risk posed by ruminant collagen and gelatine derived from bones. EFSA J 2024; 22:e8883. [PMID: 39015303 PMCID: PMC11249823 DOI: 10.2903/j.efsa.2024.8883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.
Collapse
|
6
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
7
|
Tao J, Zeng Y, Dai B, Liu Y, Pan X, Wang LQ, Chen J, Zhou Y, Lu Z, Xie L, Liang Y. Excess PrP C inhibits muscle cell differentiation via miRNA-enhanced liquid-liquid phase separation implicated in myopathy. Nat Commun 2023; 14:8131. [PMID: 38065962 PMCID: PMC10709375 DOI: 10.1038/s41467-023-43826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.
Collapse
Affiliation(s)
- Jing Tao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanping Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bin Dai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yin Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohan Pan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuneng Lu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liwei Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
8
|
Naskar S, Gour N. Realization of Amyloid-like Aggregation as a Common Cause for Pathogenesis in Diseases. Life (Basel) 2023; 13:1523. [PMID: 37511898 PMCID: PMC10381831 DOI: 10.3390/life13071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Amyloids were conventionally referred to as extracellular and intracellular accumulation of Aβ42 peptide, which causes the formation of plaques and neurofibrillary tangles inside the brain leading to the pathogenesis in Alzheimer's disease. Subsequently, amyloid-like deposition was found in the etiology of prion diseases, Parkinson's disease, type II diabetes, and cancer, which was attributed to the aggregation of prion protein, α-Synuclein, islet amyloid polypeptide protein, and p53 protein, respectively. Hence, traditionally amyloids were considered aggregates formed exclusively by proteins or peptides. However, since the last decade, it has been discovered that other metabolites, like single amino acids, nucleobases, lipids, glucose derivatives, etc., have a propensity to form amyloid-like toxic assemblies. Several studies suggest direct implications of these metabolite assemblies in the patho-physiology of various inborn errors of metabolisms like phenylketonuria, tyrosinemia, cystinuria, and Gaucher's disease, to name a few. In this review, we present a comprehensive literature overview that suggests amyloid-like structure formation as a common phenomenon for disease progression and pathogenesis in multiple syndromes. The review is devoted to providing readers with a broad knowledge of the structure, mode of formation, propagation, and transmission of different extracellular amyloids and their implications in the pathogenesis of diseases. We strongly believe a review on this topic is urgently required to create awareness about the understanding of the fundamental molecular mechanism behind the origin of diseases from an amyloid perspective and possibly look for a common therapeutic strategy for the treatment of these maladies by designing generic amyloid inhibitors.
Collapse
Affiliation(s)
- Soumick Naskar
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana 382740, Gujarat, India
| |
Collapse
|
9
|
Otaki H, Taguchi Y, Nishida N. Conformation-Dependent Influences of Hydrophobic Amino Acids in Two In-Register Parallel β-Sheet Amyloids, an α-Synuclein Amyloid and a Local Structural Model of PrP Sc. ACS OMEGA 2022; 7:31271-31288. [PMID: 36092583 PMCID: PMC9453792 DOI: 10.1021/acsomega.2c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Prions are unconventional pathogens that encode the pathogenic information in conformations of the constituent abnormal isoform of prion protein (PrPSc), independently of the nucleotide genome. Therefore, conformational diversity of PrPSc underlies the existence of many prion strains and species barriers of prions, although the conformational information is extremely limited. Interestingly, differences between polymorphic or species-specific residues responsible for the species/strain barriers are often caused by conservative replacements between hydrophobic amino acids. This implies that subtle differences among hydrophobic amino acids are significant for PrPSc structures. Here we analyzed the influence of different hydrophobic residues on the structures of an in-register parallel β-sheet amyloid of α-synuclein (αSyn) using molecular dynamics (MD) simulation and applied the knowledge from the αSyn amyloid to modeling a local structure of human PrPSc encompassing residues 107-143. We found that mutations equivalent to polymorphisms that cause transmission barriers substantially affect the stabilities of the local structures; for example, the G127V mutation, which makes the host resistant to various human prion diseases, greatly destabilized the local structure of the model amyloid. Our study indicates that subtle differences among hydrophobic side chains can considerably affect the interaction network, including hydrogen bonds, and demonstrates specifically how and in what structures hydrophobic residues can exert unique effects on in-register parallel β-sheet amyloids.
Collapse
Affiliation(s)
- Hiroki Otaki
- Center
for Bioinformatics and Molecular Medicine, Graduate School of Biomedical
Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yuzuru Taguchi
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriyuki Nishida
- Department
of Molecular Microbiology and Immunology, Graduate School of Biomedical
Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF. 2.7 Å cryo-EM structure of ex vivo RML prion fibrils. Nat Commun 2022; 13:4004. [PMID: 35831275 PMCID: PMC9279362 DOI: 10.1038/s41467-022-30457-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Mammalian prions propagate as distinct strains and are composed of multichain assemblies of misfolded host-encoded prion protein (PrP). Here, we present a near-atomic resolution cryo-EM structure of PrP fibrils present in highly infectious prion rod preparations isolated from the brains of RML prion-infected mice. We found that prion rods comprise single-protofilament helical amyloid fibrils that coexist with twisted pairs of the same protofilaments. Each rung of the protofilament is formed by a single PrP monomer with the ordered core comprising PrP residues 94-225, which folds to create two asymmetric lobes with the N-linked glycans and the glycosylphosphatidylinositol anchor projecting from the C-terminal lobe. The overall architecture is comparable to that of recently reported PrP fibrils isolated from the brain of hamsters infected with the 263K prion strain. However, there are marked conformational variations that could result from differences in PrP sequence and/or represent distinguishing features of the distinct prion strains.
Collapse
Affiliation(s)
- Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Wenjuan Zhang
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Adam Wenborn
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jemma Betts
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK.
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
11
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
12
|
High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 2021; 81:4540-4551.e6. [PMID: 34433091 DOI: 10.1016/j.molcel.2021.08.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/29/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular β sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.
Collapse
|