1
|
Seabaugh JA, Anderson DM. Pathogenicity and virulence of Yersinia. Virulence 2024; 15:2316439. [PMID: 38389313 PMCID: PMC10896167 DOI: 10.1080/21505594.2024.2316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
The genus Yersinia includes human, animal, insect, and plant pathogens as well as many symbionts and harmless bacteria. Within this genus are Yersinia enterocolitica and the Yersinia pseudotuberculosis complex, with four human pathogenic species that are highly related at the genomic level including the causative agent of plague, Yersinia pestis. Extensive laboratory, field work, and clinical research have been conducted to understand the underlying pathogenesis and zoonotic transmission of these pathogens. There are presently more than 500 whole genome sequences from which an evolutionary footprint can be developed that details shared and unique virulence properties. Whereas the virulence of Y. pestis now seems in apparent homoeostasis within its flea transmission cycle, substantial evolutionary changes that affect transmission and disease severity continue to ndergo apparent selective pressure within the other Yersiniae that cause intestinal diseases. In this review, we will summarize the present understanding of the virulence and pathogenesis of Yersinia, highlighting shared mechanisms of virulence and the differences that determine the infection niche and disease severity.
Collapse
Affiliation(s)
- Jarett A. Seabaugh
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| | - Deborah M. Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, USA
| |
Collapse
|
2
|
Pauling CD, Beerntsen BT, Song Q, Anderson DM. Transovarial transmission of Yersinia pestis in its flea vector Xenopsylla cheopis. Nat Commun 2024; 15:7266. [PMID: 39179552 PMCID: PMC11343890 DOI: 10.1038/s41467-024-51668-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
Yersinia pestis, the causative agent of plague, is endemic in certain regions due to a stable transmission cycle between rodents and their associated fleas. In addition, fleas are believed to serve as reservoirs that can occasionally cause enzootic plague cycles and explosive epizootic outbreaks that increase human exposure. However, transmission by fleas is inefficient and associated with a shortened lifespan of the flea and rodent hosts, indicating that there remain significant gaps in our understanding of the vector-animal cycle of Y. pestis. Here, we show that laboratory-reared, infected fleas (Xenopsylla cheopis) can transmit viable Y. pestis from adults to eggs, and the bacteria can be passed through all subsequent life stages of the flea. Thus, our data raise the possibility that transovarial transmission in fleas might contribute to the persistence of Y. pestis in the environment without detectable plague activity in mammals.
Collapse
Affiliation(s)
- Cassandra D Pauling
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
- Department of Biological and Clinical Sciences, University of Central Missouri, Warrensburg, MO, USA
| | - Brenda T Beerntsen
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Qisheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Deborah M Anderson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
3
|
Wu G, Zhou Y, Cao S, Wu Y, Wang T, Zhang Y, Wang X, Song Y, Yang R, Du Z. Unveiling the dance of evolution: Pla-mediated cleavage of Ymt modulates the virulence dynamics of Yersinia pestis. mBio 2024; 15:e0107524. [PMID: 38958447 PMCID: PMC11323527 DOI: 10.1128/mbio.01075-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Yersinia pestis has recently evolved into a highly lethal flea-borne pathogen through the pseudogenization of extensive genes and the acquisition of exogenous plasmids. Particularly noteworthy are the newly acquired pPCP1 and pMT1 plasmids, which encode the virulence determinants Pla and Yersinia murine toxin (Ymt), crucial for subcutaneous infection and survival within flea vector of Y. pestis, respectively. This study reveals that Pla can cleave Ymt at K299 both in vivo and in vitro. Y. pestis expressing YmtK299A displays enhanced in vitro biofilm formation and increased blood survival, indicating significant roles of Pla-mediated Ymt cleavage in these phenotypes. Intriguingly, although both the ancestral form of Pla and the prevalent Pla-I259T variant in modern Y. pestis strains are capable of cleaving Ymt at K299, the cleavage efficiency of Pla-I259T is only half that of the ancestral variant. In subcutaneous infection, mice infected with Δymt::ymt-K299A show significantly prolonged survival compared to those infected with Δymt::ymt. Similarly, infection with Δpla::pla-I259T also results in extended survival compared to Δpla::pla infection. These data demonstrate that the I259T substitution of Pla mitigates the enhanced virulence of Y. pestis in mice caused by Pla-mediated Ymt cleavage, thereby prolonging the survival period of infected animals and potentially conferring advantages on the transmission of Y. pestis to the next host. These findings deepen our understanding of the intricate interplay between two newly acquired plasmids and shed light on the positive selection of the Pla-I259T mutation, providing new insights into the virulence dynamics and transmission mechanisms of Y. pestis. IMPORTANCE The emergence of Y. pestis as a highly lethal pathogen is driven by extensive gene pseudogenization and acquisition of exogenous plasmids pPCP1 and pMT1. However, the interplay between these two plasmids during evolution remains largely unexplored. Our study reveals intricate interactions between Ymt and Pla, two crucial virulence determinants encoded on these plasmids. Pla-mediated cleavage of Ymt significantly decreases Y. pestis survival in mouse blood and enhances its virulence in mice. The prevalent Pla-I259T variant in modern strains displays reduced Ymt cleavage, thereby extending the survival of infected animals and potentially increasing strain transmissibility. Our findings shed light on the nuanced evolution of Y. pestis, wherein reduced cleavage efficiency is a positive selection force, shaping the pathogen's natural trajectory.
Collapse
Affiliation(s)
- Gengshan Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shiyang Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
4
|
Jarrett CO, Leung JM, Motoshi S, Sturdevant DE, Zhang Y, Hoyt FH, Hinnebusch BJ. Role of the Yersinia pestis phospholipase D (Ymt) in the initial aggregation step of biofilm formation in the flea. mBio 2024; 15:e0012424. [PMID: 38722159 PMCID: PMC11237439 DOI: 10.1128/mbio.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
Transmission of Yersinia pestis by fleas depends on the formation of condensed bacterial aggregates embedded within a gel-like matrix that localizes to the proventricular valve in the flea foregut and interferes with normal blood feeding. This is essentially a bacterial biofilm phenomenon, which at its end stage requires the production of a Y. pestis exopolysaccharide that bridges the bacteria together in a cohesive, dense biofilm that completely blocks the proventriculus. However, bacterial aggregates are evident within an hour after a flea ingests Y. pestis, and the bacterial exopolysaccharide is not required for this process. In this study, we characterized the biochemical composition of the initial aggregates and demonstrated that the yersinia murine toxin (Ymt), a Y. pestis phospholipase D, greatly enhances rapid aggregation following infected mouse blood meals. The matrix of the bacterial aggregates is complex, containing large amounts of protein and lipid (particularly cholesterol) derived from the flea's blood meal. A similar incidence of proventricular aggregation occurred after fleas ingested whole blood or serum containing Y. pestis, and intact, viable bacteria were not required. The initial aggregation of Y. pestis in the flea gut is likely due to a spontaneous physical process termed depletion aggregation that occurs commonly in environments with high concentrations of polymers or other macromolecules and particles such as bacteria. The initial aggregation sets up subsequent binding aggregation mediated by the bacterially produced exopolysaccharide and mature biofilm that results in proventricular blockage and efficient flea-borne transmission. IMPORTANCE Yersinia pestis, the bacterial agent of plague, is maintained in nature in mammal-flea-mammal transmission cycles. After a flea feeds on a mammal with septicemic plague, the bacteria rapidly coalesce in the flea's digestive tract to form dense aggregates enveloped in a viscous matrix that often localizes to the foregut. This represents the initial stage of biofilm development that potentiates transmission of Y. pestis when the flea later bites a new host. The rapid aggregation likely occurs via a depletion-aggregation mechanism, a non-canonical first step of bacterial biofilm development. We found that the biofilm matrix is largely composed of host blood proteins and lipids, particularly cholesterol, and that the enzymatic activity of a Y. pestis phospholipase D (Ymt) enhances the initial aggregation. Y. pestis transmitted by flea bite is likely associated with this host-derived matrix, which may initially shield the bacteria from recognition by the host's intradermal innate immune response.
Collapse
Affiliation(s)
- Clayton O. Jarrett
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jacqueline M. Leung
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Suzuki Motoshi
- Protein Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Daniel E. Sturdevant
- Genomics Research Section, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Yixiang Zhang
- Protein Chemistry Section, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Forrest H. Hoyt
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
5
|
Bland DM, Long D, Rosenke R, Hinnebusch BJ. Yersinia pestis can infect the Pawlowsky glands of human body lice and be transmitted by louse bite. PLoS Biol 2024; 22:e3002625. [PMID: 38771885 PMCID: PMC11108126 DOI: 10.1371/journal.pbio.3002625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Yersinia pestis, the causative agent of plague, is a highly lethal vector-borne pathogen responsible for killing large portions of Europe's population during the Black Death of the Middle Ages. In the wild, Y. pestis cycles between fleas and rodents; occasionally spilling over into humans bitten by infectious fleas. For this reason, fleas and the rats harboring them have been considered the main epidemiological drivers of previous plague pandemics. Human ectoparasites, such as the body louse (Pediculus humanus humanus), have largely been discounted due to their reputation as inefficient vectors of plague bacilli. Using a membrane-feeder adapted strain of body lice, we show that the digestive tract of some body lice become chronically infected with Y. pestis at bacteremia as low as 1 × 105 CFU/ml, and these lice routinely defecate Y. pestis. At higher bacteremia (≥1 × 107 CFU/ml), a subset of the lice develop an infection within the Pawlowsky glands (PGs), a pair of putative accessory salivary glands in the louse head. Lice that developed PG infection transmitted Y. pestis more consistently than those with bacteria only in the digestive tract. These glands are thought to secrete lubricant onto the mouthparts, and we hypothesize that when infected, their secretions contaminate the mouthparts prior to feeding, resulting in bite-based transmission of Y. pestis. The body louse's high level of susceptibility to infection by gram-negative bacteria and their potential to transmit plague bacilli by multiple mechanisms supports the hypothesis that they may have played a role in previous human plague pandemics and local outbreaks.
Collapse
Affiliation(s)
- David M. Bland
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, United States of America
| |
Collapse
|
6
|
Bennasar-Figueras A. The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights. Microorganisms 2024; 12:146. [PMID: 38257973 PMCID: PMC10818976 DOI: 10.3390/microorganisms12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The human pathogen Yersinia pestis is responsible for bubonic, septicemic, and pneumonic plague. A deeply comprehensive overview of its historical context, bacteriological characteristics, genomic analysis based on ancient DNA (aDNA) and modern strains, and its impact on historical and actual human populations, is explored. The results from multiple studies have been synthesized to investigate the origins of plague, its transmission, and effects on different populations. Additionally, molecular interactions of Y. pestis, from its evolutionary origins to its adaptation to flea-born transmission, and its impact on human and wild populations are considered. The characteristic combinations of aDNA patterns, which plays a decisive role in the reconstruction and analysis of ancient genomes, are reviewed. Bioinformatics is fundamental in identifying specific Y. pestis lineages, and automated pipelines are among the valuable tools in implementing such studies. Plague, which remains among human history's most lethal infectious diseases, but also other zoonotic diseases, requires the continuous investigation of plague topics. This can be achieved by improving molecular and genetic screening of animal populations, identifying ecological and social determinants of outbreaks, increasing interdisciplinary collaborations among scientists and public healthcare providers, and continued research into the characterization, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Antoni Bennasar-Figueras
- Microbiologia—Departament de Biologia, Universitat de les Illes Balears (UIB), Campus UIB, Carretera de Valldemossa, Km 7.5, 07122 Palma de Mallorca, Spain; ; Tel.: +34-971172778
- Facultat de Medicina, Hospital Universitari Son Espases (HUSE), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, 79, 07122 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Pitta JLDLP, Bezerra MF, Fernandes DLRDS, de Block T, Novaes ADS, de Almeida AMP, Rezende AM. Genomic Analysis of Yersinia pestis Strains from Brazil: Search for Virulence Factors and Association with Epidemiological Data. Pathogens 2023; 12:991. [PMID: 37623951 PMCID: PMC10459997 DOI: 10.3390/pathogens12080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Yersinia pestis, the etiological agent of the plague, is considered a genetically homogeneous species. Brazil is currently in a period of epidemiological silence but plague antibodies are still detected in sentinel animals, suggesting disease activity in the sylvatic cycle. The present study deployed an in silico approach to analyze virulence factors among 407 Brazilian genomes of Y. pestis belonging to the Fiocruz Collection (1966-1997). The pangenome analysis associated several known virulence factors of Y. pestis in clades according to the presence or absence of genes. Four main strain clades (C, E, G, and H) exhibited the absence of various virulence genes. Notably, clade G displayed the highest number of absent genes, while clade E showed a significant absence of genes related to the T6SS secretion system and clade H predominantly demonstrated the absence of plasmid-related genes. These results suggest attenuation of virulence in these strains over time. The cgMLST analysis associated genomic and epidemiological data highlighting evolutionary patterns related to the isolation years and outbreaks of Y. pestis in Brazil. Thus, the results contribute to the understanding of the genetic diversity and virulence within Y. pestis and the potential for utilizing genomic data in epidemiological investigations.
Collapse
Affiliation(s)
- João Luiz de Lemos Padilha Pitta
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| | - Matheus Filgueira Bezerra
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | | | - Tessa de Block
- Department of Clinical Sciences—Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Ane de Souza Novaes
- Department of Biological Sciences—Federal University of Vale do São Francisco—UNIVASF, Petrolina 56300-000, PE, Brazil;
| | - Alzira Maria Paiva de Almeida
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
| | - Antonio Mauro Rezende
- Microbiology Department of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil; (M.F.B.); (D.L.R.d.S.F.); (A.M.P.d.A.)
- Bioinformatics Platform of Aggeu Magalhães Institute—FIOCRUZ PE, Recife 50740-465, PE, Brazil
| |
Collapse
|
8
|
Swali P, Schulting R, Gilardet A, Kelly M, Anastasiadou K, Glocke I, McCabe J, Williams M, Audsley T, Loe L, Fernández-Crespo T, Ordoño J, Walker D, Clare T, Cook G, Hodkinson I, Simpson M, Read S, Davy T, Silva M, Hajdinjak M, Bergström A, Booth T, Skoglund P. Yersinia pestis genomes reveal plague in Britain 4000 years ago. Nat Commun 2023; 14:2930. [PMID: 37253742 DOI: 10.1038/s41467-023-38393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Extinct lineages of Yersinia pestis, the causative agent of the plague, have been identified in several individuals from Eurasia between 5000 and 2500 years before present (BP). One of these, termed the 'LNBA lineage' (Late Neolithic and Bronze Age), has been suggested to have spread into Europe with human groups expanding from the Eurasian steppe. Here, we show that the LNBA plague was spread to Europe's northwestern periphery by sequencing three Yersinia pestis genomes from Britain, all dating to ~4000 cal BP. Two individuals were from an unusual mass burial context in Charterhouse Warren, Somerset, and one individual was from a single burial under a ring cairn monument in Levens, Cumbria. To our knowledge, this represents the earliest evidence of LNBA plague in Britain documented to date. All three British Yersinia pestis genomes belong to a sublineage previously observed in Bronze Age individuals from Central Europe that had lost the putative virulence factor yapC. This sublineage is later found in Eastern Asia ~3200 cal BP. While the severity of the disease is currently unclear, the wide geographic distribution within a few centuries suggests substantial transmissibility.
Collapse
Affiliation(s)
- Pooja Swali
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | | | | | - Monica Kelly
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Isabelle Glocke
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Jesse McCabe
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mia Williams
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | | | - Louise Loe
- Oxford Archaeology, Osney Mead, Oxford, UK
| | - Teresa Fernández-Crespo
- School of Archaeology, University of Oxford, Oxford, UK
- Laboratoire Méditerranéen de Préhistoire Europe Afrique-UMR 7269, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
- Departamento de Prehistoria, Arqueología, Antropología Social y Ciencias y Técnicas Historiográficas, Universidad de Valladolid, Valladolid, Spain
| | - Javier Ordoño
- Department of Archaeology and New Technologies, Arkikus, Spain
| | | | - Tom Clare
- Levens Local History Group, Levens, Cumbria, UK
| | - Geoff Cook
- Levens Local History Group, Levens, Cumbria, UK
| | - Ian Hodkinson
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | - Tom Davy
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Marina Silva
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- Department of Evolutionary Genetics and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Thomas Booth
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
9
|
Guo XP, Yan HQ, Yang W, Yin Z, Vadyvaloo V, Zhou D, Sun YC. A frameshift in Yersinia pestis rcsD alters canonical Rcs signalling to preserve flea-mammal plague transmission cycles. eLife 2023; 12:e83946. [PMID: 37010269 PMCID: PMC10191623 DOI: 10.7554/elife.83946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/02/2023] [Indexed: 04/04/2023] Open
Abstract
Multiple genetic changes in the enteric pathogen Yersinia pseudotuberculosis have driven the emergence of Yesinia pestis, the arthropod-borne, etiological agent of plague. These include developing the capacity for biofilm-dependent blockage of the flea foregut to enable transmission by flea bite. Previously, we showed that pseudogenization of rcsA, encoding a component of the Rcs signalling pathway, is an important evolutionary step facilitating Y. pestis flea-borne transmission. Additionally, rcsD, another important gene in the Rcs system, harbours a frameshift mutation. Here, we demonstrated that this rcsD mutation resulted in production of a small protein composing the C-terminal RcsD histidine-phosphotransferase domain (designated RcsD-Hpt) and full-length RcsD. Genetic analysis revealed that the rcsD frameshift mutation followed the emergence of rcsA pseudogenization. It further altered the canonical Rcs phosphorylation signal cascade, fine-tuning biofilm production to be conducive with retention of the pgm locus in modern lineages of Y. pestis. Taken together, our findings suggest that a frameshift mutation in rcsD is an important evolutionary step that fine-tuned biofilm production to ensure perpetuation of flea-mammal plague transmission cycles.
Collapse
Affiliation(s)
- Xiao-Peng Guo
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hai-Qin Yan
- Department of Basic Medical Sciences, Anhui Key Laboratory of Infection and Immunity, Bengbu Medical CollegeBengbuChina
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State UniversityPullmanUnited States
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yi-Cheng Sun
- NHC key laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Abstract
This perspective draws on the record of ancient pathogen genomes and microbiomes illuminating patterns of infectious disease over the course of the Holocene in order to address the following question. How did major changes in living circumstances involving the transition to and intensification of farming alter pathogens and their distributions? Answers to this question via ancient DNA research provide a rapidly expanding picture of pathogen evolution and in concert with archaeological and historical data, give a temporal and behavioral context for heath in the past that is relevant for challenges facing the world today, including the rise of novel pathogens.
Collapse
|
11
|
Yang R, Atkinson S, Chen Z, Cui Y, Du Z, Han Y, Sebbane F, Slavin P, Song Y, Yan Y, Wu Y, Xu L, Zhang C, Zhang Y, Hinnebusch BJ, Stenseth NC, Motin VL. Yersinia pestis and Plague: some knowns and unknowns. ZOONOSES (BURLINGTON, MASS.) 2023; 3:5. [PMID: 37602146 PMCID: PMC10438918 DOI: 10.15212/zoonoses-2022-0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Since its first identification in 1894 during the third pandemic in Hong Kong, there has been significant progress of understanding the lifestyle of Yersinia pestis, the pathogen that is responsible for plague. Although we now have some understanding of the pathogen's physiology, genetics, genomics, evolution, gene regulation, pathogenesis and immunity, there are many unknown aspects of the pathogen and its disease development. Here, we focus on some of the knowns and unknowns relating to Y. pestis and plague. We notably focus on some key Y. pestis physiological and virulence traits that are important for its mammal-flea-mammal life cycle but also its emergence from the enteropathogen Yersinia pseudotuberculosis. Some aspects of the genetic diversity of Y. pestis, the distribution and ecology of plague as well as the medical countermeasures to protect our population are also provided. Lastly, we present some biosafety and biosecurity information related to Y. pestis and plague.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Steve Atkinson
- School of Life Sciences, Centre for Biomolecular Science, University of Nottingham, Nottingham, United Kingdom
| | - Ziqi Chen
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yujun Cui
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zongmin Du
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanping Han
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Florent Sebbane
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Philip Slavin
- Division of History and Politics, University of Stirling, Stirling FK9 4LJ, UK
| | - Yajun Song
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yanfeng Yan
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yarong Wu
- Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Xu
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yun Zhang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, Montana, USA
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Vladimir L. Motin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
12
|
Emergence and spread of ancestral Yersinia pestis in Late-Neolithic and Bronze-Age Eurasia, ca. 5,000 to 1,500 y B.P. Proc Natl Acad Sci U S A 2022; 119:e2204044119. [PMID: 35580179 PMCID: PMC9172127 DOI: 10.1073/pnas.2204044119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague. Proc Natl Acad Sci U S A 2022; 119:e2116722119. [PMID: 35412864 PMCID: PMC9169917 DOI: 10.1073/pnas.2116722119] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The bacterium Yersinia pestis has caused numerous historically documented outbreaks of plague and research using ancient DNA could demonstrate that it already affected human populations during the Neolithic. However, the pathogen’s genetic diversity, geographic spread, and transmission dynamics during this early period of Y. pestis evolution are largely unexplored. Here, we describe a set of ancient plague genomes up to 5,000 y old from across Eurasia. Our data demonstrate that two genetically distinct forms of Y. pestis evolved in parallel and were both distributed across vast geographic distances, potentially occupying different ecological niches. Interpreted within the archeological context, our results suggest that the spread of plague during this period was linked to increased human mobility and intensification of animal husbandry. The bacterial pathogen Yersinia pestis gave rise to devastating outbreaks throughout human history, and ancient DNA evidence has shown it afflicted human populations as far back as the Neolithic. Y. pestis genomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to its emergence from a Yersinia pseudotuberculosis-like progenitor; however, the number of reconstructed LNBA genomes are too few to explore its diversity during this critical period of development. Here, we present 17 Y. pestis genomes dating to 5,000 to 2,500 y BP from a wide geographic expanse across Eurasia. This increased dataset enabled us to explore correlations between temporal, geographical, and genetic distance. Our results suggest a nonflea-adapted and potentially extinct single lineage that persisted over millennia without significant parallel diversification, accompanied by rapid dispersal across continents throughout this period, a trend not observed in other pathogens for which ancient genomes are available. A stepwise pattern of gene loss provides further clues on its early evolution and potential adaptation. We also discover the presence of the flea-adapted form of Y. pestis in Bronze Age Iberia, previously only identified in in the Caucasus and the Volga regions, suggesting a much wider geographic spread of this form of Y. pestis. Together, these data reveal the dynamic nature of plague’s formative years in terms of its early evolution and ecology.
Collapse
|
14
|
Eads DA, Biggins DE, Wimsatt J, Eisen RJ, Hinnebusch BJ, Matchett MR, Goldberg AR, Livieri TM, Hacker GM, Novak MG, Buttke DE, Grassel SM, Hughes JP, Atiku LA. Exploring and Mitigating Plague for One Health Purposes. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:169-184. [PMID: 39210935 PMCID: PMC11358858 DOI: 10.1007/s40475-022-00265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 10/14/2022]
Abstract
Purpose of Review In 2020, the Appropriations Committee for the U.S. House of Representatives directed the CDC to develop a national One Health framework to combat zoonotic diseases, including sylvatic plague, which is caused by the flea-borne bacterium Yersinia pestis. This review builds upon that multisectoral objective. We aim to increase awareness of Y. pestis and to highlight examples of plague mitigation for One Health purposes (i.e., to achieve optimal health outcomes for people, animals, plants, and their shared environment). We draw primarily upon examples from the USA, but also discuss research from Madagascar and Uganda where relevant, as Y. pestis has emerged as a zoonotic threat in those foci. Recent Findings Historically, the bulk of plague research has been directed at the disease in humans. This is not surprising, given that Y. pestis is a scourge of human history. Nevertheless, the ecology of Y. pestis is inextricably linked to other mammals and fleas under natural conditions. Accumulating evidence demonstrates Y. pestis is an unrelenting threat to multiple ecosystems, where the bacterium is capable of significantly reducing native species abundance and diversity while altering competitive and trophic relationships, food web connections, and nutrient cycles. In doing so, Y. pestis transforms ecosystems, causing "shifting baselines syndrome" in humans, where there is a gradual shift in the accepted norms for the condition of the natural environment. Eradication of Y. pestis in nature is difficult to impossible, but effective mitigation is achievable; we discuss flea vector control and One Health implications in this context. Summary There is an acute need to rapidly expand research on Y. pestis, across multiple host and flea species and varied ecosystems of the Western US and abroad, for human and environmental health purposes. The fate of many wildlife species hangs in the balance, and the implications for humans are profound in some regions. Collaborative multisectoral research is needed to define the scope of the problem in each epidemiological context and to identify, refine, and implement appropriate and effective mitigation practices.
Collapse
Affiliation(s)
- David A. Eads
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort Collins, CO 80526, USA
| | - Dean E. Biggins
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue Building C, Fort Collins, CO 80526, USA
| | - Jeffrey Wimsatt
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - B. Joseph Hinnebusch
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Marc R. Matchett
- U.S. Fish and Wildlife Service, Charles M. Russell National Wildlife Refuge, Lewistown, MT, USA
| | | | | | - Gregory M. Hacker
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Mark G. Novak
- Vector-Borne Disease Section, California Department of Public Health, Sacramento, CA, USA
| | - Danielle E. Buttke
- National Park Service Biological Resources Division and Office of Public Health, Fort Collins, CO, USA
| | | | - John P. Hughes
- U.S. Fish and Wildlife Service, National Black-Footed Ferret Conservation Center, Carr, CO, USA
| | - Linda A. Atiku
- Plague Unit, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|