1
|
Leclerc S. [Mitochondria play a critical role in the replication of Herpes simplex virus of type 1]. Med Sci (Paris) 2024; 40:716-718. [PMID: 39450954 DOI: 10.1051/medsci/2024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Affiliation(s)
- Simon Leclerc
- Department of biological and environmental science and nanoscience center, Université de Jyväskylä Jyväskylä Finlande
| |
Collapse
|
2
|
Lyu CA, Shen Y, Zhang P. Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods. Viruses 2024; 16:1504. [PMID: 39339980 PMCID: PMC11437419 DOI: 10.3390/v16091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats.
Collapse
Affiliation(s)
- Cheng-An Lyu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
3
|
Erozan A, Lösel PD, Heuveline V, Weinhardt V. Automated 3D cytoplasm segmentation in soft X-ray tomography. iScience 2024; 27:109856. [PMID: 38784019 PMCID: PMC11112332 DOI: 10.1016/j.isci.2024.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Cells' structure is key to understanding cellular function, diagnostics, and therapy development. Soft X-ray tomography (SXT) is a unique tool to image cellular structure without fixation or labeling at high spatial resolution and throughput. Fast acquisition times increase demand for accelerated image analysis, like segmentation. Currently, segmenting cellular structures is done manually and is a major bottleneck in the SXT data analysis. This paper introduces ACSeg, an automated 3D cytoplasm segmentation model. ACSeg is generated using semi-automated labels and 3D U-Net and is trained on 43 SXT tomograms of immune T cells, rapidly converging to high-accuracy segmentation, therefore reducing time and labor. Furthermore, adding only 6 SXT tomograms of other cell types diversifies the model, showing potential for optimal experimental design. ACSeg successfully segmented unseen tomograms and is published on Biomedisa, enabling high-throughput analysis of cell volume and structure of cytoplasm in diverse cell types.
Collapse
Affiliation(s)
- Ayse Erozan
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Engineering Mathematics and Computing Lab, Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Philipp D. Lösel
- Engineering Mathematics and Computing Lab, Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Department of Materials Physics Research School of Physics, The Australian National University, Acton ACT, Australia
| | - Vincent Heuveline
- Engineering Mathematics and Computing Lab, Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany
- Data Mining and Uncertainty Quantification, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Venera Weinhardt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
4
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
5
|
Fahy K, Kapishnikov S, Donnellan M, McEnroe T, O'Reilly F, Fyans W, Sheridan P. Laboratory based correlative cryo-soft X-ray tomography and cryo-fluorescence microscopy. Methods Cell Biol 2024; 187:293-320. [PMID: 38705628 DOI: 10.1016/bs.mcb.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cryo-soft X-ray tomography is the unique technology that can image whole intact cells in 3D under normal and pathological conditions without labelling or fixation, at high throughput and spatial resolution. The sample preparation is relatively straightforward; requiring just fast freezing of the specimen before transfer to the microscope for imaging. It is also possible to image chemically fixed samples where necessary. The technique can be correlated with cryo fluorescence microscopy to localize fluorescent proteins to organelles within the whole cell volume. Cryo-correlated light and soft X-ray tomography is particularly useful for the study of gross morphological changes brought about by disease or drugs. For example, viral fluorescent tags can be co-localized to sites of viral replication in the soft X-ray volume. In general this approach is extremely useful in the study of complex 3D organelle structure, nanoparticle uptake or in the detection of rare events in the context of whole cell structure. The main challenge of soft X-ray tomography is that the soft X-ray illumination required for imaging has heretofore only been available at a small number of synchrotron labs worldwide. Recently, a compact device with a footprint small enough to fit in a standard laboratory setting has been deployed ("the SXT-100") and is routinely imaging cryo prepared samples addressing a variety of disease and drug research applications. The SXT-100 facilitates greater access to this powerful technique and greatly increases the scope and throughput of potential research projects. Furthermore, the availability of cryo-soft X-ray tomography in the laboratory will accelerate the development of novel correlative and multimodal workflows by integration with light and electron microscope based approaches. It also allows for co-location of this powerful imaging modality at BSL3 labs or other facilities where safety or intellectual property considerations are paramount. Here we describe the compact SXT-100 microscope along with its novel integrated cryo-fluorescence imaging capability.
Collapse
Affiliation(s)
- Kenneth Fahy
- SiriusXT Ltd., Stillorgan Industrial Park, Dublin, Ireland.
| | | | | | - Tony McEnroe
- SiriusXT Ltd., Stillorgan Industrial Park, Dublin, Ireland
| | - Fergal O'Reilly
- SiriusXT Ltd., Stillorgan Industrial Park, Dublin, Ireland; University College Dublin, School of Physics, Dublin, Ireland; University College Dublin, School of Biology and Environmental Sciences, Dublin, Ireland
| | - William Fyans
- SiriusXT Ltd., Stillorgan Industrial Park, Dublin, Ireland
| | - Paul Sheridan
- SiriusXT Ltd., Stillorgan Industrial Park, Dublin, Ireland
| |
Collapse
|
6
|
Arsana KGY, Saladino GM, Brodin B, Toprak MS, Hertz HM. Laboratory Liquid-Jet X-ray Microscopy and X-ray Fluorescence Imaging for Biomedical Applications. Int J Mol Sci 2024; 25:920. [PMID: 38255992 PMCID: PMC10815599 DOI: 10.3390/ijms25020920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Diffraction-limited resolution and low penetration depth are fundamental constraints in optical microscopy and in vivo imaging. Recently, liquid-jet X-ray technology has enabled the generation of X-rays with high-power intensities in laboratory settings. By allowing the observation of cellular processes in their natural state, liquid-jet soft X-ray microscopy (SXM) can provide morphological information on living cells without staining. Furthermore, X-ray fluorescence imaging (XFI) permits the tracking of contrast agents in vivo with high elemental specificity, going beyond attenuation contrast. In this study, we established a methodology to investigate nanoparticle (NP) interactions in vitro and in vivo, solely based on X-ray imaging. We employed soft (0.5 keV) and hard (24 keV) X-rays for cellular studies and preclinical evaluations, respectively. Our results demonstrated the possibility of localizing NPs in the intracellular environment via SXM and evaluating their biodistribution with in vivo multiplexed XFI. We envisage that laboratory liquid-jet X-ray technology will significantly contribute to advancing our understanding of biological systems in the field of nanomedical research.
Collapse
Affiliation(s)
| | | | | | | | - Hans M. Hertz
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden (G.M.S.)
| |
Collapse
|
7
|
Castro V, Pérez-Berna AJ, Calvo G, Pereiro E, Gastaminza P. Three-Dimensional Remodeling of SARS-CoV2-Infected Cells Revealed by Cryogenic Soft X-ray Tomography. ACS NANO 2023; 17:22708-22721. [PMID: 37939169 PMCID: PMC10690842 DOI: 10.1021/acsnano.3c07265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Plus-strand RNA viruses are proficient at remodeling host cell membranes for optimal viral genome replication and the production of infectious progeny. These ultrastructural alterations result in the formation of viral membranous organelles and may be observed by different imaging techniques, providing nanometric resolution. Guided by confocal and electron microscopy, this study describes the generation of wide-field volumes using cryogenic soft-X-ray tomography (cryo-SXT) on SARS-CoV-2-infected human lung adenocarcinoma cells. Confocal microscopy showed accumulation of double-stranded RNA (dsRNA) and nucleocapsid (N) protein in compact perinuclear structures, preferentially found around centrosomes at late stages of the infection. Transmission electron microscopy (TEM) showed accumulation of membranous structures in the vicinity of the infected cell nucleus, forming a viral replication organelle containing characteristic double-membrane vesicles and virus-like particles within larger vesicular structures. Cryo-SXT revealed viral replication organelles very similar to those observed by TEM but indicated that the vesicular organelle observed in TEM sections is indeed a vesiculo-tubular network that is enlarged and elongated at late stages of the infection. Overall, our data provide additional insight into the molecular architecture of the SARS-CoV-2 replication organelle.
Collapse
Affiliation(s)
- Victoria Castro
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | | | - Gema Calvo
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| | - Eva Pereiro
- ALBA
Synchrotron Light Source, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain
| | - Pablo Gastaminza
- Centro
Nacional de Biotecnología. Calle Darwin, 3, 28049 Madrid, Spain
| |
Collapse
|
8
|
Leclerc S, Kunnas K, Ekman A, Pereiro E, Fahy K, Larabell C, Aho V, Weinhardt V, Vihinen-Ranta M. Mitochondrial Reorganization in Herpesvirus-Infected Cells. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1153-1154. [PMID: 37613604 DOI: 10.1093/micmic/ozad067.589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- S Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - K Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - A Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - E Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | - K Fahy
- SiriusXT Limited, Dublin, Ireland
| | - C Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - V Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - V Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - M Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
9
|
Gutnik D, Evseev P, Miroshnikov K, Shneider M. Using AlphaFold Predictions in Viral Research. Curr Issues Mol Biol 2023; 45:3705-3732. [PMID: 37185764 PMCID: PMC10136805 DOI: 10.3390/cimb45040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Elucidation of the tertiary structure of proteins is an important task for biological and medical studies. AlphaFold, a modern deep-learning algorithm, enables the prediction of protein structure to a high level of accuracy. It has been applied in numerous studies in various areas of biology and medicine. Viruses are biological entities infecting eukaryotic and procaryotic organisms. They can pose a danger for humans and economically significant animals and plants, but they can also be useful for biological control, suppressing populations of pests and pathogens. AlphaFold can be used for studies of molecular mechanisms of viral infection to facilitate several activities, including drug design. Computational prediction and analysis of the structure of bacteriophage receptor-binding proteins can contribute to more efficient phage therapy. In addition, AlphaFold predictions can be used for the discovery of enzymes of bacteriophage origin that are able to degrade the cell wall of bacterial pathogens. The use of AlphaFold can assist fundamental viral research, including evolutionary studies. The ongoing development and improvement of AlphaFold can ensure that its contribution to the study of viral proteins will be significant in the future.
Collapse
Affiliation(s)
- Daria Gutnik
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Str., 664033 Irkutsk, Russia
| | - Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., GSP-7, 117997 Moscow, Russia
| |
Collapse
|
10
|
Vijayakrishnan S. In Situ Imaging of Virus-Infected Cells by Cryo-Electron Tomography: An Overview. Subcell Biochem 2023; 106:3-36. [PMID: 38159222 DOI: 10.1007/978-3-031-40086-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cryo-electron tomography (cryo-ET) has emerged as a powerful tool in structural biology to study viruses and is undergoing a resolution revolution. Enveloped viruses comprise several RNA and DNA pleomorphic viruses that are pathogens of clinical importance to humans and animals. Considerable efforts in cryogenic correlative light and electron microscopy (cryo-CLEM), cryogenic focused ion beam milling (cryo-FIB), and integrative structural techniques are helping to identify virus structures within cells leading to a rise of in situ discoveries shedding light on how viruses interact with their hosts during different stages of infection. This chapter reviews recent advances in the application of cryo-ET in imaging enveloped viruses and the structural and mechanistic insights revealed studying the viral infection cycle within their eukaryotic cellular hosts, with particular attention to viral entry, replication, assembly, and egress during infection.
Collapse
Affiliation(s)
- Swetha Vijayakrishnan
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Glasgow, Scotland, UK.
| |
Collapse
|
11
|
Jadhav AC, Kounatidis I. Correlative Cryo-imaging Using Soft X-Ray Tomography for the Study of Virus Biology in Cells and Tissues. Subcell Biochem 2023; 106:169-196. [PMID: 38159227 DOI: 10.1007/978-3-031-40086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are obligate intracellular pathogens that depend on their host cell machinery and metabolism for their replicative life cycle. Virus entry, replication, and assembly are dynamic processes that lead to the reorganisation of host cell components. Therefore, a complete understanding of the viral processes requires their study in the cellular context where advanced imaging has been proven valuable in providing the necessary information. Among the available imaging techniques, soft X-ray tomography (SXT) at cryogenic temperatures can provide three-dimensional mapping to 25 nm resolution and is ideally suited to visualise the internal organisation of virus-infected cells. In this chapter, the principles and practices of synchrotron-based cryo-soft X-ray tomography (cryo-SXT) in virus research are presented. The potential of the cryo-SXT in correlative microscopy platforms is also demonstrated through working examples of reovirus and hepatitis research at Beamline B24 (Diamond Light Source Synchrotron, UK) and BL09-Mistral beamline (ALBA Synchrotron, Spain), respectively.
Collapse
Affiliation(s)
- Archana C Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
12
|
Chen JH, Vanslembrouck B, Ekman A, Aho V, Larabell CA, Le Gros MA, Vihinen-Ranta M, Weinhardt V. Soft X-ray Tomography Reveals HSV-1-Induced Remodeling of Human B Cells. Viruses 2022; 14:2651. [PMID: 36560654 PMCID: PMC9781670 DOI: 10.3390/v14122651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bieke Vanslembrouck
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Axel Ekman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vesa Aho
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Mark A. Le Gros
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Benedyk TH, Connor V, Caroe ER, Shamin M, Svergun DI, Deane JE, Jeffries CM, Crump CM, Graham SC. Herpes simplex virus 1 protein pUL21 alters ceramide metabolism by activating the interorganelle transport protein CERT. J Biol Chem 2022; 298:102589. [PMID: 36243114 PMCID: PMC9668737 DOI: 10.1016/j.jbc.2022.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus (HSV)-1 dramatically alters the architecture and protein composition of cellular membranes during infection, but its effects upon membrane lipid composition remain unclear. HSV-1 pUL21 is a virus-encoded protein phosphatase adaptor that promotes dephosphorylation of multiple cellular and virus proteins, including the cellular ceramide (Cer) transport protein CERT. CERT mediates nonvesicular Cer transport from the endoplasmic reticulum to the trans-Golgi network, whereupon Cer is converted to sphingomyelin (SM) and other sphingolipids that play important roles in cellular proliferation, signaling, and membrane trafficking. Here, we use click chemistry to profile the kinetics of sphingolipid metabolism, showing that pUL21-mediated dephosphorylation activates CERT and accelerates Cer-to-SM conversion. Purified pUL21 and full-length CERT interact with submicromolar affinity, and we solve the solution structure of the pUL21 C-terminal domain in complex with the CERT Pleckstrin homology and steroidogenic acute regulatory-related lipid transfer domains using small-angle X-ray scattering. We identify a single amino acid mutation on the surface of pUL21 that disrupts CERT binding in vitro and in cultured cells. This residue is highly conserved across the genus Simplexvirus. In addition, we identify a pUL21 residue essential for binding to HSV-1 pUL16. Sphingolipid profiling demonstrates that Cer-to-SM conversion is severely diminished in the context of HSV-1 infection, a defect that is compounded when infecting with a virus encoding the mutated form of pUL21 that lacks the ability to activate CERT. However, virus replication and spread in cultured keratinocytes or epithelial cells is not significantly altered when pUL21-mediated CERT dephosphorylation is abolished. Collectively, we demonstrate that HSV-1 modifies sphingolipid metabolism via specific protein-protein interactions.
Collapse
Affiliation(s)
| | - Viv Connor
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Eve R Caroe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maria Shamin
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Site, Hamburg, Germany
| | - Colin M Crump
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|