1
|
Chen ZZ, Dufresne J, Bowden P, Celej D, Miao M, Marshall JG. Micro scale chromatography of human plasma proteins for nano LC-ESI-MS/MS. Anal Biochem 2024; 697:115694. [PMID: 39442602 DOI: 10.1016/j.ab.2024.115694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Organic precipitation of proteins with acetonitrile demonstrated complete protein recovery and improved chromatography of human plasma proteins. The separation of 25 μL of human plasma into 22 fractions on a QA SAX resin facilitated more effective protein discovery despite the limited sample size. Micro chromatography of plasma proteins over quaternary amine (QA) strong anion exchange (SAX) resins performed best, followed by diethylaminoethyl (DEAE), heparin (HEP), carboxymethyl cellulose (CMC), and propyl sulfate (PS) resins. Two independent statistical methods, Monte Carlo comparison with random MS/MS spectra and the rigorous X!TANDEM goodness of fit algorithm protein p-values corrected to false discovery rate q-values (q ≤ 0.01) agreed on at least 12,000 plasma proteins, each represented by at least three fully tryptic corrected peptide observations. There was qualitative agreement on 9393 protein/gene symbols between the linear quadrupole versus orbital ion trap but also quantitative agreement with a highly significant linear regression relationship between log observation frequency (F value 4,173, p-value 2.2e-16). The use of a QA resin showed nearly perfect replication of all the proteins that were also found using DEAE-, HEP-, CMC-, and PS-based chromatographic methods combined and together estimated the size of the size of the plasma proteome as ≥12,000 gene symbols.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Jaimie Dufresne
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Peter Bowden
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Dominika Celej
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - Ming Miao
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| | - John G Marshall
- Research Analytical Biochemistry Laboratory, Department of Chemistry and Biology, Toronto Metropolitan University, Canada.
| |
Collapse
|
2
|
Han SB, Kim HS, Jo YJ, Lee SS. Fluorescence Immunoassay of Prostate-Specific Antigen Using 3D Paddle Screw-Type Devices and Their Rotating System. BIOSENSORS 2024; 14:494. [PMID: 39451707 PMCID: PMC11506760 DOI: 10.3390/bios14100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
In this paper, we present a sensitive and highly reproducible fluorescence immunosensor for detecting PSA in human serum. A unique feature of this study is that it uses creatively designed paddle screw-type devices and their custom-made rotating system for PSA immunoassay. The paddle screw devices were designed to maximize the surface-to-volume ratio over which the immunoassay reaction could occur to improve detection sensitivity. This paddle screw-based immunoassay offers an accessible and efficient method with a short analysis time of less than 30 min. Active rotation of the paddle screw plays a crucial role in fast and accurate analysis of PSA. Additionally, a paddle screw-based immunoassay and subsequent fluorescence detection using a custom prototype fluorescence detection system were compared to a typical well plate-based immunoassay system. Results of PSA detection in human serum showed that the detection sensitivity through the paddle screw-based analysis improved about five times compared to that with a well plate-based analysis.
Collapse
Affiliation(s)
| | | | | | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea; (S.B.H.); (H.S.K.); (Y.J.J.)
| |
Collapse
|
3
|
Zhao R, Li M, Xiao P, Song D, Li H. Advances in D-dimer testing: progress in harmonization of clinical assays and innovative detection methods. Anal Bioanal Chem 2024; 416:3737-3750. [PMID: 38503987 DOI: 10.1007/s00216-024-05207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
The D-dimer is a sensitive indicator of coagulation and fibrinolysis activation, especially valuable as a biomarker of intravascular thrombosis. Measurement of plasma D-dimer levels plays a crucial role in the diagnosis and monitoring of conditions such as deep vein thrombosis, pulmonary embolism, and disseminated intravascular coagulation. A variety of immunoassays, including enzyme-linked immunosorbent assays, latex-enhanced immunoturbidimetric assays, whole-blood aggregation analysis, and immunochromatography assays, are widely used in clinical settings to determine D-dimer levels. However, the results obtained from different D-dimer assays vary significantly. These assays exhibit intra-method coefficients of variation ranging from 6.4% to 17.7%, and the measurement discrepancies among different assays can be as high as 20-fold. The accuracy and reliability of D-dimer testing cannot be guaranteed due to the lack of an internationally endorsed reference measurement system (including reference materials and reference measurement procedures), which may lead to misdiagnosis and underdiagnosis, limiting its full clinical application. In this review, we present an in-depth analysis of clinical D-dimer testing, summarizing the existing challenges, the current state of metrology, and progress towards harmonization. We also review the latest advancements in D-dimer detection techniques, which include mass spectrometry and electrochemical and optical immunoassays. By comparing the basic principles, the definition of the measurand, and analytical performance of these methods, we provide an outlook on the potential improvements in D-dimer clinical testing.
Collapse
Affiliation(s)
- Rong Zhao
- National Institute of Metrology, Beijing, 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Mengran Li
- Beijing University of Chemical Technology, Beijing, 100029, China
| | - Peng Xiao
- National Institute of Metrology, Beijing, 100029, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Dewei Song
- National Institute of Metrology, Beijing, 100029, China
| | - Hongmei Li
- National Institute of Metrology, Beijing, 100029, China.
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China.
| |
Collapse
|
4
|
Zhang Y, Zhao J, Jin Q, Zhuang L. Transcriptomic Analyses and Experimental Validation Identified Immune-Related lncRNA-mRNA Pair MIR210HG- BPIFC Regulating the Progression of Hypertrophic Cardiomyopathy. Int J Mol Sci 2024; 25:2816. [PMID: 38474063 DOI: 10.3390/ijms25052816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease in which the myocardium of the heart becomes asymmetrically thickened, malformed, disordered, and loses its normal structure and function. Recent studies have demonstrated the significant involvement of inflammatory responses in HCM. However, the precise role of immune-related long non-coding RNAs (lncRNAs) in the pathogenesis of HCM remains unclear. In this study, we performed a comprehensive analysis of immune-related lncRNAs in HCM. First, transcriptomic RNA-Seq data from both HCM patients and healthy individuals (GSE180313) were reanalyzed thoroughly. Key HCM-related modules were identified using weighted gene co-expression network analysis (WGCNA). A screening for immune-related lncRNAs was conducted within the key modules using immune-related mRNA co-expression analysis. Based on lncRNA-mRNA pairs that exhibit shared regulatory microRNAs (miRNAs), we constructed a competing endogenous RNA (ceRNA) network, comprising 9 lncRNAs and 17 mRNAs that were significantly correlated. Among the 26 lncRNA-mRNA pairs, only the MIR210HG-BPIFC pair was verified by another HCM dataset (GSE130036) and the isoprenaline (ISO)-induced HCM cell model. Furthermore, knockdown of MIR210HG increased the regulatory miRNAs and decreased the mRNA expression of BPIFC correspondingly in AC16 cells. Additionally, the analysis of immune cell infiltration indicated that the MIR210HG-BPIFC pair was potentially involved in the infiltration of naïve CD4+ T cells and CD8+ T cells. Together, our findings indicate that the decreased expression of the lncRNA-mRNA pair MIR210HG-BPIFC was significantly correlated with the pathogenesis of the disease and may be involved in the immune cell infiltration in the mechanism of HCM.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jiuxiao Zhao
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Jin
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
5
|
Asicioglu M, Oztug M, Karaguler NG. Development of an ID-LC-MS/MS method using targeted proteomics for quantifying cardiac troponin I in human serum. Clin Proteomics 2023; 20:40. [PMID: 37759177 PMCID: PMC10536812 DOI: 10.1186/s12014-023-09430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Cardiac troponin is a complex protein consisting of the three subunits I, T and C located in heart muscle cells. When the heart muscle is damaged, it is released into the blood and can be detected. Cardiac troponin I (cTnI) is considered the most reliable and widely accepted test for detecting and confirming acute myocardial infarction. However, there is no current standardization between the commercial assays for cTnI quantification. Our work aims to create a measurement procedure that is traceable to the International System of Units for accurately measuring cardiac cTnI levels in serum samples from patients. METHODS The workflow begins with immobilizing anti-cTnI antibodies onto magnetic nanoparticles to form complexes. These complexes are used to isolate cTnI from serum. Next, trypsin is used to enzymatically digest the isolated cTnI. Finally, the measurement of multiple cTnI peptides is done simultaneously using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). RESULTS The maximum antibody immobilization was achieved by combining 1 mg of nanoparticles with 100 μg of antibody, resulting in an average of 59.2 ± 5.7 μg/mg of immobilized antibody. Subsequently, the anti-cTnI-magnetic nanoparticle complex was utilized to develop and validate a method for quantifying cTnI in human serum using ID-LC-MS/MS and a protein calibration approach. The analytical method was assessed regarding linearity and recovery. The developed method enables the quantification of cTnI from 0.7 to 24 μg/L (R > 0.996). The limit of quantification was 1.8 μg/L and the limit of detection was 0.6 μg/L. Intermediate precision was ≤ 9.6% and repeatability was 2.0-8.7% for all quality control materials. The accuracy of the analyzed quality control materials was between 90 and 110%. Total measurement uncertainties for target value assignment (n = 6) were found to be ≤ 12.5% for all levels. CONCLUSIONS The analytical method demonstrated high analytical performance in accurately quantifying cardiac troponin I levels in human serum. The proposed analytical method has the potential to facilitate the harmonization of cTnI results between clinical laboratories, assign target values to secondary certified reference materials and support reliable measurement of cTnI.
Collapse
Affiliation(s)
- Meltem Asicioglu
- TUBITAK National Metrology Institute (TUBITAK UME), Gebze, 41400, Kocaeli, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul Technical University, Istanbul, Turkey
| | - Merve Oztug
- TUBITAK National Metrology Institute (TUBITAK UME), Gebze, 41400, Kocaeli, Turkey.
| | - Nevin Gul Karaguler
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Ocalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Gianazza E, Zoanni B, Mallia A, Brioschi M, Colombo GI, Banfi C. Proteomic studies on apoB-containing lipoprotein in cardiovascular research: A comprehensive review. MASS SPECTROMETRY REVIEWS 2023; 42:1397-1423. [PMID: 34747518 DOI: 10.1002/mas.21747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 06/07/2023]
Abstract
The complexity of cardiovascular diseases (CVDs), which remains the leading cause of death worldwide, makes the current clinical pathway for cardiovascular risk assessment unsatisfactory, as there remains a substantial unexplained residual risk. Simultaneous assessment of a large number of plasma proteins may be a promising tool to further refine risk assessment, and lipoprotein-associated proteins have the potential to fill this gap. Technical advances now allow for high-throughput proteomic analysis in a reproducible and cost-effective manner. Proteomics has great potential to identify and quantify hundreds of candidate marker proteins in a sample and allows the translation from isolated lipoproteins to whole plasma, thus providing an individual multiplexed proteomic fingerprint. This narrative review describes the pathophysiological roles of atherogenic apoB-containing lipoproteins and the recent advances in their mass spectrometry-based proteomic characterization and quantitation for better refinement of CVD risk assessment.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | | |
Collapse
|
7
|
De Figueiredo I, Bartenlian B, Van der Rest G, Pallandre A, Halgand F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023; 11:proteomes11020019. [PMID: 37218924 DOI: 10.3390/proteomes11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Bernard Bartenlian
- Centre des Nanosciences et Nanotechnologies, Université Paris Saclay, 10 Boulevard Thomas Gobert, F91120 Palaiseau, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| |
Collapse
|
8
|
Sato S, Gillette M, de Santiago PR, Kuhn E, Burgess M, Doucette K, Feng Y, Mendez-Dorantes C, Ippoliti PJ, Hobday S, Mitchell MA, Doberstein K, Gysler SM, Hirsch MS, Schwartz L, Birrer MJ, Skates SJ, Burns KH, Carr SA, Drapkin R. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 2023; 13:1537. [PMID: 36707610 PMCID: PMC9883229 DOI: 10.1038/s41598-023-28840-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Long interspersed element 1 (LINE-1) open reading frame 1 protein (ORF1p) expression is a common feature of many cancer types, including high-grade serous ovarian carcinoma (HGSOC). Here, we report that ORF1p is not only expressed but also released by ovarian cancer and primary tumor cells. Immuno-multiple reaction monitoring-mass spectrometry assays showed that released ORF1p is confidently detectable in conditioned media, ascites, and patients' plasma, implicating ORF1p as a potential biomarker. Interestingly, ORF1p expression is detectable in fallopian tube (FT) epithelial precursors of HGSOC but not in benign FT, suggesting that ORF1p expression in an early event in HGSOC development. Finally, treatment of FT cells with DNA methyltransferase inhibitors led to robust expression and release of ORF1p, validating the regulatory role of DNA methylation in LINE-1 repression in non-tumorigenic tissue.
Collapse
Affiliation(s)
- Sho Sato
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michael Gillette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela R de Santiago
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Eric Kuhn
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michael Burgess
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kristen Doucette
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yi Feng
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | | | - Paul J Ippoliti
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sara Hobday
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marilyn A Mitchell
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kai Doberstein
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Stefan M Gysler
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Lauren Schwartz
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael J Birrer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Steven J Skates
- Harvard Medical School, Boston, MA, 02115, USA.,Biostatistics and Computational Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Kathleen H Burns
- Harvard Medical School, Boston, MA, 02115, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Keshishian H, McDonald ER, Mundt F, Melanson R, Krug K, Porter DA, Wallace L, Forestier D, Rabasha B, Marlow SE, Jane‐Valbuena J, Todres E, Specht H, Robinson ML, Jean Beltran PM, Babur O, Olive ME, Golji J, Kuhn E, Burgess M, MacMullan MA, Rejtar T, Wang K, Mani DR, Satpathy S, Gillette MA, Sellers WR, Carr SA. A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Mol Syst Biol 2021; 17:e10156. [PMID: 34569154 PMCID: PMC8474009 DOI: 10.15252/msb.202010156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
Collapse
Affiliation(s)
- Hasmik Keshishian
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | - Filip Mundt
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Present address:
Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Department of Oncology and PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Randy Melanson
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dale A Porter
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
- Present address:
Cedilla TherapeuticsCambridgeMAUSA
| | - Luke Wallace
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Dominique Forestier
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Bokang Rabasha
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Sara E Marlow
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Judit Jane‐Valbuena
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Ellen Todres
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Harrison Specht
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | | | | | - Ozgun Babur
- Computer Science DepartmentUniversity of Massachusetts BostonBostonMAUSA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Javad Golji
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Eric Kuhn
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael Burgess
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Tomas Rejtar
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - Karen Wang
- Novartis Institute of Biomedical ResearchCambridgeMAUSA
| | - DR Mani
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMAUSA
| | - William R Sellers
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard Medical SchoolBostonMAUSA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and HarvardCambridgeMAUSA
| |
Collapse
|
10
|
Lim JY, Lee SS. Quartz crystal microbalance cardiac Troponin I immunosensors employing signal amplification with TiO 2 nanoparticle photocatalyst. Talanta 2021; 228:122233. [PMID: 33773737 DOI: 10.1016/j.talanta.2021.122233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
A sensitive and highly reproducible cardiac troponin I (cTnI) immunoassay in human serum is a challenging research goal for researchers studying biosensors because cTnI can undergo proteolysis and various modifications in blood. Furthermore, the reproducible detection of cTnI at very low concentrations is also required for diagnosing acute myocardial infarction. Here, we present sensitive and highly reproducible quartz crystal microbalance (QCM) immunosensors for the detection of cTnI in human serum. The unique features of this study are the use of a pair of capture antibodies that bind to different epitopes of cTnI, and the use of a signal amplification technique that enlarged the size of the titanium dioxide nanoparticles using photocatalytic silver staining. Since QCM measures changes in the resonance frequency due to the changes in mass occurring on the sensor surface, it is possible to quantitatively analyze cTnI based on the enormous increase in mass using a sandwich immunoassay and subsequent signal amplification by silver staining. The detection limit of the cTnI immunoassay in human serum without photocatalytic silver staining was 307 pg/ml, but 18 pg/ml in photocatalytic silver staining-mediated signal amplification. Thus, amplifying the signal increased the sensitivity and reproducibility of the cTnI immunoassay in human serum.
Collapse
Affiliation(s)
- Ji Yoon Lim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Soo Suk Lee
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Republic of Korea; Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
11
|
Tonry C, McDonald K, Ledwidge M, Hernandez B, Glezeva N, Rooney C, Morrissey B, Pennington SR, Baugh JA, Watson CJ. Multiplexed measurement of candidate blood protein biomarkers of heart failure. ESC Heart Fail 2021; 8:2248-2258. [PMID: 33779078 PMCID: PMC8120401 DOI: 10.1002/ehf2.13320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 02/01/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
AIMS There is a critical need for better biomarkers so that heart failure can be diagnosed at an earlier stage and with greater accuracy. The purpose of this study was to design a robust mass spectrometry (MS)-based assay for the simultaneous measurement of a panel of 35 candidate protein biomarkers of heart failure, in blood. The overall aim was to evaluate the potential clinical utility of this biomarker panel for prediction of heart failure in a cohort of 500 patients. METHODS AND RESULTS Multiple reaction monitoring (MRM) MS assays were designed with Skyline and Spectrum Mill PeptideSelector software and developed using nanoflow reverse phase C18 chromatographic Chip Cube-based separation, coupled to a 6460 triple quadrupole mass spectrometer. Optimized MRM assays were applied, in a sample-blinded manner, to serum samples from a cohort of 500 patients with heart failure and non-heart failure (non-HF) controls who had cardiovascular risk factors. Both heart failure with reduced ejection fraction (HFrEF) patients and heart failure with preserved ejection fraction (HFpEF) patients were included in the study. Peptides for the Apolipoprotein AI (APOA1) protein were the most significantly differentially expressed between non-HF and heart failure patients (P = 0.013 and P = 0.046). Four proteins were significantly differentially expressed between non-HF and the specific subtypes of HF (HFrEF and HFpEF); Leucine-rich-alpha-2-glycoprotein (LRG1, P < 0.001), zinc-alpha-2-glycoprotein (P = 0.005), serum paraoxanse/arylesterase (P = 0.013), and APOA1 (P = 0.038). A statistical model found that combined measurements of the candidate biomarkers in addition to BNP were capable of correctly predicting heart failure with 83.17% accuracy and an area under the curve (AUC) of 0.90. This was a notable improvement on predictive capacity of BNP measurements alone, which achieved 77.1% accuracy and an AUC of 0.86 (P = 0.005). The protein peptides for LRG1, which contributed most significantly to model performance, were significantly associated with future new onset HF in the non-HF cohort [Peptide 1: odds ratio (OR) 2.345 95% confidence interval (CI) (1.456-3.775) P = 0.000; peptide 2: OR 2.264 95% CI (1.422-3.605), P = 0.001]. CONCLUSIONS This study has highlighted a number of promising candidate biomarkers for (i) diagnosis of heart failure and subtypes of heart failure and (ii) prediction of future new onset heart failure in patients with cardiovascular risk factors. Furthermore, this study demonstrates that multiplexed measurement of a combined biomarker signature that includes BNP is a more accurate predictor of heart failure than BNP alone.
Collapse
Affiliation(s)
- Claire Tonry
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK
| | - Ken McDonald
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mark Ledwidge
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Belinda Hernandez
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Nadezhda Glezeva
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Cathy Rooney
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Brian Morrissey
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Stephen R Pennington
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - John A Baugh
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, UK.,UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Stevens KG, Pukala TL. Conjugating immunoassays to mass spectrometry: Solutions to contemporary challenges in clinical diagnostics. Trends Analyt Chem 2020; 132:116064. [PMID: 33046944 PMCID: PMC7539833 DOI: 10.1016/j.trac.2020.116064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developments in immunoassays and mass spectrometry have independently influenced diagnostic technology. However, both techniques possess unique strengths and limitations, which define their ability to meet evolving requirements for faster, more affordable and more accurate clinical tests. In response, hybrid techniques, which combine the accessibility and ease-of-use of immunoassays with the sensitivity, high throughput and multiplexing capabilities of mass spectrometry are continually being explored. Developments in antibody conjugation methodology have expanded the role of these biomolecules to applications outside of conventional colorimetric assays and histology. Furthermore, the range of different mass spectrometry ionisation and analysis technologies has enabled its successful adaptation as a detection method for numerous clinically relevant immunological assays. Several recent examples of combined mass spectrometry-immunoassay techniques demonstrate the potential of these methods as improved diagnostic tests for several important human diseases. The present challenges are to continue technological advancements in mass spectrometry instrumentation and develop improved bioconjugation methods, which can overcome their existing limitations and demonstrate the clinical significance of these hybrid approaches.
Collapse
|
13
|
Al-Khalili Szigyarto C. Duchenne Muscular Dystrophy: recent advances in protein biomarkers and the clinical application. Expert Rev Proteomics 2020; 17:365-375. [PMID: 32713262 DOI: 10.1080/14789450.2020.1773806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Early biomarker discovery studies have praised the value of their emerging results, predicting an unprecedented impact on health care. Biomarkers are expected to provide tests with increased specificity and sensitivity compared to existing measures, improve the decision-making process, and accelerate the development of therapies. For rare disorders, like Duchenne Muscular Dystrophy (DMD) such biomarkers can assist the development of therapies, therefore also helping to find a cure for the disease. AREA COVERED State-of-the-art technologies have been used to identify blood biomarkers for DMD and efforts have been coordinated to develop and promote translation of biomarkers for clinical practice. Biomarker translation to clinical practice is however, adjoined by challenges related to the complexity of the disease, involving numerous biological processes, and the limited sample resources. This review highlights the current progress on the development of biomarkers, describing the proteomics technologies used, the most promising findings and the challenges encountered. EXPERT OPINION Strategies for effective use of samples combined with orthogonal proteomics methods for protein quantification are essential for translating biomarkers to the patient's bed side. Progress is achieved only if strong evidence is provided that the biomarker constitutes a reliable indicator of the patient's health status for a specific context of use.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Science for Life Laboratory, KTH - Royal Institute of Technology , Solna, Sweden.,School of Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology , Stockholm, Sweden
| |
Collapse
|
14
|
Chiang S, Zhang W, Farnsworth C, Zhu Y, Lee K, Ouyang Z. Targeted Quantification of Peptides Using Miniature Mass Spectrometry. J Proteome Res 2020; 19:2043-2052. [PMID: 32202427 DOI: 10.1021/acs.jproteome.9b00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Proteomics by mass spectrometry (MS) allows for the identification of amino acid/peptide sequences in complex mixtures. Peptide analysis and quantitation enables screening of protein biomarkers and targeted protein biomarker analysis for clinical applications. Whereas miniature mass spectrometers have primarily demonstrated point-of-care analyses with simple procedures aiming at drugs and lipids, it would be interesting to explore their potential in analyzing proteins and peptides. In this work, we adapted a miniature MS instrument for peptide analysis. A mass range as wide as 100-2000 m/z was achieved for obtaining peptide spectra using this instrument with dual linear ion traps. MS2 and MS3 can be performed to analyze a wide range of peptides. The parameters of pressure, electric potentials, and solution conditions were optimized to analyze peptides with molecular weights between 900 and 1800 Da. The amino acid sequences were identified using both beam-type and in-trap collision-induced dissociation, and the results were comparable to those obtained by a commercial quadrupole time-of-flight mass spectrometer. With product ion monitoring scan mode, peptide quantitation was performed with a limit of detection of 20 nM achieved for the Met peptide. The method developed has also been applied to the analysis of the trypsin-digested cell lysate of SKBR3 cells with a low expression level of the Met gene.
Collapse
Affiliation(s)
- Spencer Chiang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wenpeng Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Yiying Zhu
- Cell Signaling Technology, Danvers, Massachusetts 01923, United States
| | - Kimberly Lee
- Cell Signaling Technology, Danvers, Massachusetts 01923, United States
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Minikel EV, Kuhn E, Cocco AR, Vallabh SM, Hartigan CR, Reidenbach AG, Safar JG, Raymond GJ, McCarthy MD, O'Keefe R, Llorens F, Zerr I, Capellari S, Parchi P, Schreiber SL, Carr SA. Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. Mol Cell Proteomics 2019; 18:2388-2400. [PMID: 31558565 PMCID: PMC6885701 DOI: 10.1074/mcp.ra119.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
Therapies currently in preclinical development for prion disease seek to lower prion protein (PrP) expression in the brain. Trials of such therapies are likely to rely on quantification of PrP in cerebrospinal fluid (CSF) as a pharmacodynamic biomarker and possibly as a trial endpoint. Studies using PrP ELISA kits have shown that CSF PrP is lowered in the symptomatic phase of disease, a potential confounder for reading out the effect of PrP-lowering drugs in symptomatic patients. Because misfolding or proteolytic cleavage could potentially render PrP invisible to ELISA even if its concentration were constant or increasing in disease, we sought to establish an orthogonal method for CSF PrP quantification. We developed a multi-species targeted mass spectrometry method based on multiple reaction monitoring (MRM) of nine PrP tryptic peptides quantified relative to an isotopically labeled recombinant protein standard for human samples, or isotopically labeled synthetic peptides for nonhuman species. Analytical validation experiments showed process replicate coefficients of variation below 15%, good dilution linearity and recovery, and suitable performance for both CSF and brain homogenate and across humans as well as preclinical species of interest. In n = 55 CSF samples from individuals referred to prion surveillance centers with rapidly progressive dementia, all six human PrP peptides, spanning the N- and C-terminal domains of PrP, were uniformly reduced in prion disease cases compared with individuals with nonprion diagnoses. Thus, lowered CSF PrP concentration in prion disease is a genuine result of the disease process and not an artifact of ELISA-based measurement. As a result, dose-finding studies for PrP lowering drugs may need to be conducted in presymptomatic at-risk individuals rather than in symptomatic patients. We provide a targeted mass spectrometry-based method suitable for preclinical quantification of CSF PrP as a tool for drug development.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139; Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| | - Eric Kuhn
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Alexandra R Cocco
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139
| | | | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jiri G Safar
- Departments of Pathology and Neurology Case Western Reserve University, Cleveland, OH 44106
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, NIAID Rocky Mountain Labs, Hamilton, MT 59840
| | - Michael D McCarthy
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Rhonda O'Keefe
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Franc Llorens
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Inga Zerr
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40138, Italy
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| |
Collapse
|
16
|
Critical reagent screening and characterization: benefits and approaches for protein biomarker assays by hybrid LC–MS. Bioanalysis 2019; 11:785-795. [DOI: 10.4155/bio-2018-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, hybrid ligand-binding assays (LBAs)/LC–MS assays have been increasingly used for quantitation of protein biomarkers in biological matrices. However, unlike in LBAs where the importance of critical reagent screening and characterization is well understood and widely reported, benefits of well-characterized hybrid LC–MS assay reagents are frequently underestimated. Two groups of analyte-specific reagents, binding reagents and assay calibrators, are considered the critical reagents for biomarker assays. In this article, we summarize the similarities and differences of critical reagents used in LBAs and hybrid LC–MS assays, overview the benefits and approaches of critical reagent screening, characterization, antibody conjugation and discuss bioanalytical considerations in hybrid LC–MS assay development for robust measurements of protein biomarkers in biological matrices.
Collapse
|
17
|
Collins CJ, Chang IJ, Jung S, Dayuha R, Whiteaker JR, Segundo GRS, Torgerson TR, Ochs HD, Paulovich AG, Hahn SH. Rapid Multiplexed Proteomic Screening for Primary Immunodeficiency Disorders From Dried Blood Spots. Front Immunol 2018; 9:2756. [PMID: 30564228 PMCID: PMC6288356 DOI: 10.3389/fimmu.2018.02756] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Primary immunodeficiency disorders (PIDD) comprise a group of life-threatening congenital diseases characterized by absent or impaired immune responses. Despite the fact that effective, curative treatments are available with optimal clinical outcomes when diagnosed early, newborn screening does not exist for the majority of these diseases due to the lack of detectable, specific biomarkers or validated methods for population-based screening. Peptide immunoaffinity enrichment coupled with selected reaction monitoring mass spectrometry (immuno-SRM) is a sensitive proteomic assay, involving antibody-mediated peptide capture, that allows for concurrent quantification of multiple analytes. This assay has promise for use in potential newborn screening of PIDDs that lead to diminished or absent target proteins in the majority of cases. Objective: To determine and evaluate if a multiplex assay based on immuno-SRM is able to reliably and precisely distinguish affected patients with X-linked agammaglobulinemia (XLA), Wiskott-Aldrich Syndrome (WAS), and CD3ϵ-associated severe combined immunodeficiency (SCID) from one another and from unaffected normal control dried blood spot (DBS) samples. Methods: We performed a blinded, multiplexed analysis of proteolytically-generated peptides from WASp, BTK, and CD3ϵ (for WAS, XLA, and SCID, respectively) in DBS samples from 42 PIDD patients, 40 normal adult controls, and 62 normal newborns. The peptide ATPase copper transporting protein (ATP7B) 1056 was simultaneously monitored for quality assurance purposes. Results: The immuno-SRM assays reliably quantified the target peptides in DBS and accurately distinguished affected patients from normal controls. Analysis of signature peptides found statistically significant reduction or absence of peptide levels in affected patients compared to control groups in each case (WASp and BTK: p = 0.0001, SCID: p = 0.05). Intra and inter-assay precision ranged from 11 to 22% and 11 to 43% respectively; linearity (1.39-2000 fmol peptide), and stability (≤ 0.09% difference in 72 h) showed high precision for the multiplexed assay. Inter-laboratory assay comparison showed high concordance for measured peptide concentrations, with R2 linearity ≥ 0.97 for the WASp 274, CD3ϵ 197, BTK 407, and ATP7B 1056 peptides. Conclusion: Immuno-SRM-based quantification of proteotypic peptides from WASp, BTK, and CD3ϵ in DBS distinguishes relevant PIDD cases from one another and from controls, raising the possibility of employing this approach for large-scale multiplexed newborn screening of selective PIDDs.
Collapse
Affiliation(s)
| | - Irene J Chang
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Sunhee Jung
- Seattle Children's Research Institute, Seattle, WA, United States
| | - Remwilyn Dayuha
- Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Gesmar R S Segundo
- Setor de Alergia e Imunologia Pediátrica, Ambulatório de Pediatria, Departamento de Pediatria, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Troy R Torgerson
- Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Hans D Ochs
- Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Si Houn Hahn
- Seattle Children's Research Institute, Seattle, WA, United States.,Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
18
|
Levernæs MCS, Brandtzaeg OK, Amundsen SF, Reubsaet L, Lundanes E, Halvorsen TG, Wilson SR. Selective Fishing for Peptides with Antibody-Immobilized Acrylate Monoliths, Coupled Online with NanoLC-MS. Anal Chem 2018; 90:13860-13866. [DOI: 10.1021/acs.analchem.8b00935] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maren C. S. Levernæs
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | | | - Sunniva Furre Amundsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Léon Reubsaet
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, Oslo NO-0316, Norway
| | - Steven R. Wilson
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
19
|
Critical considerations for immunocapture enrichment LC–MS bioanalysis of protein therapeutics and biomarkers. Bioanalysis 2018; 10:987-995. [DOI: 10.4155/bio-2018-0062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, immunocapture enrichment coupled with LC–MS technology has seen more applications for the measurement of low abundant protein therapeutics and biomarkers in biological matrices. In this article, several critical considerations for the application of immunocapture enrichment to LC–MS bioanalysis of protein therapeutics and biomarkers, including reagent selection, reagent characterization, designing of capture format, etc. are discussed. All these considerations are critical in developing reliable and robust bioanalytical assays with high assay specificity and sensitivity. Successful examples using the immunocapture LC–MS approach in the quantification of biotherapeutic and low abundant protein biomarkers will also be discussed.
Collapse
|
20
|
Kim B, Araujo R, Howard M, Magni R, Liotta LA, Luchini A. Affinity enrichment for mass spectrometry: improving the yield of low abundance biomarkers. Expert Rev Proteomics 2018. [PMID: 29542338 DOI: 10.1080/14789450.2018.1450631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Mass spectrometry (MS) is the premier tool for discovering novel disease-associated protein biomarkers. Unfortunately, when applied to complex body fluid samples, MS has poor sensitivity for the detection of low abundance biomarkers (≪10 ng/mL), derived directly from the diseased tissue cells or pathogens. Areas covered: Herein we discuss the strengths and drawbacks of technologies used to concentrate low abundance analytes in body fluids, with the aim to improve the effective sensitivity for MS discovery. Solvent removal by dry-down or dialysis, and immune-depletion of high abundance serum or plasma proteins, is shown to have disadvantages compared to positive selection of the candidate biomarkers by affinity enrichment. A theoretical analysis of affinity enrichment reveals that the yield for low abundance biomarkers is a direct function of the binding affinity (Association/Dissociation rates) used for biomarker capture. In addition, a high affinity capture pre processing step can effectively dissociate the candidate biomarker from partitioning with high abundance proteins such as albumin. Expert commentary: Properly designed high affinity capture materials can enrich the yield of low abundance (0.1-10 picograms/mL) candidate biomarkers for MS detection. Affinity capture and concentration, as an upfront step in sample preparation for MS, combined with MS advances in software and hardware that improve the resolution of the chromatographic separation can yield a transformative new class of low abundance biomarkers predicting disease risk or disease latency.
Collapse
Affiliation(s)
| | - Robyn Araujo
- b School of Mathematical Sciences , Queensland University of Technology , Brisbane , Australia
| | - Marissa Howard
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Ruben Magni
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Lance A Liotta
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Alessandra Luchini
- c Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
21
|
Steinhilber AE, Schmidt FF, Naboulsi W, Planatscher H, Niedzwiecka A, Zagon J, Braeuning A, Lampen A, Joos TO, Poetz O. Mass Spectrometry-Based Immunoassay for the Quantification of Banned Ruminant Processed Animal Proteins in Vegetal Feeds. Anal Chem 2018; 90:4135-4143. [PMID: 29470057 DOI: 10.1021/acs.analchem.8b00120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ban of processed animal proteins (PAPs) in feed for farmed animals introduced in 2001 was one of the main EU measures to control the bovine spongiform encephalopathy (BSE) crisis. Currently, microscopy and polymerase chain reaction (PCR) are the official methods for the detection of illegal PAPs in feed. However, the progressive release of the feed ban, recently with the legalization of nonruminant PAPs for the use in aquaculture, requires the development of alternative methods to determine the species origin and the source (legal or not). Additionally, discussions about the need for quantitative tests came up, particularly if the zero-tolerance-concept is replaced by introducing PAP thresholds. To address this issue, we developed and partially validated a multiplex mass spectrometry-based immunoassay to quantify ruminant specific peptides in vegetal cattle feed. The workflow comprises a new sample preparation procedure based on a tryptic digestion of PAPs in suspension, a subsequent immunoaffinity enrichment of the released peptides, and a LC-MS/MS-based analysis for peptide quantification using isotope labeled standard peptides. For the very first time, a mass spectrometry-based method is capable of detecting and quantifying illegal PAPs in animal feed over a concentration range of 4 orders of magnitude with a detection limit in the range of 0.1% to 1% (w/w).
Collapse
Affiliation(s)
- Andreas E Steinhilber
- NMI Natural and Medical Sciences Institute at the University of Tuebingen , 72770 Reutlingen , Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tuebingen , 72770 Reutlingen , Germany
| | | | | | | | - Jutta Zagon
- Federal Institute for Risk Assessment , 10589 Berlin , Germany
| | | | - Alfonso Lampen
- Federal Institute for Risk Assessment , 10589 Berlin , Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen , 72770 Reutlingen , Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen , 72770 Reutlingen , Germany.,SIGNATOPE GmbH , 72770 Reutlingen , Germany
| |
Collapse
|
22
|
Schneck NA, Phinney KW, Lee SB, Lowenthal MS. Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Anal Bioanal Chem 2018; 410:2805-2813. [PMID: 29492621 DOI: 10.1007/s00216-018-0960-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/17/2023]
Abstract
Quantification of cardiac troponin I (cTnI), a protein biomarker used for diagnosing myocardial infarction, has been achieved in native patient plasma based on an immunoaffinity enrichment strategy and isotope dilution (ID) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The key steps in the workflow involved isolating cTnI from plasma using anti-cTnI antibody coupled to magnetic nanoparticles, followed by an enzymatic digestion with trypsin. Three tryptic peptides from cTnI were monitored and used for quantification by ID-LC-MS/MS via multiple reaction monitoring (MRM). Measurements were performed using a matrix-matched calibration system. NIST SRM 2921 Human Cardiac Troponin Complex acted as the calibrant and a full-length isotopically labeled protein analog of cTnI was used as an internal standard. The method was successfully demonstrated on five patient plasma samples, with cTnI concentrations measuring between 4.86 μg/L and 11.3 μg/L (signifying moderate myocardial infarctions). LC-MS/MS measurement precision was validated by three unique peptides from cTnI and two MRM transitions per peptide. Relative standard deviation (CV) from the five plasma samples was determined to be ≤14.3%. This study has demonstrated that quantification of cTnI in native plasma from myocardial infarction patients can be achieved based on an ID-LC-MS/MS method. The development of an ID-LC-MS/MS method for cTnI in plasma is a first step for future certification of matrix-based reference materials, which may be used to help harmonize discordant cTnI clinical assays. Graphical abstract A schematic of the workflow for measuring cardiac troponin I (cTnI), a low-abundant protein biomarker used for diagnosing myocardial infarction, in human plasma by isotope-dilution LC-MS/MS analysis.
Collapse
Affiliation(s)
- Nicole A Schneck
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA
| | - Karen W Phinney
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA
| | - Sang Bok Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA.
| | - Mark S Lowenthal
- Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8314, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
23
|
Halvorsen TG, Reubsaet L. Antibody based affinity capture LC-MS/MS in quantitative determination of proteins in biological matrices. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Rezeli M, Sjödin K, Lindberg H, Gidlöf O, Lindahl B, Jernberg T, Spaak J, Erlinge D, Marko-Varga G. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples. J Proteome Res 2017; 16:3242-3254. [PMID: 28738677 DOI: 10.1021/acs.jproteome.7b00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.
Collapse
Affiliation(s)
- Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| | - Karin Sjödin
- Department of Drug Metabolism, H Lundbeck & Co AS , Copenhagen, DK-2500, Denmark
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| | - Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital , Lund, SE-221 85, Sweden
| | - Bertil Lindahl
- Department of Medical Sciences, Cardiology & Uppsala Clinical Research Center, Uppsala University , Uppsala, SE-751 83, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet , Stockholm, SE-182 88, Sweden
| | - Jonas Spaak
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet , Stockholm, SE-182 88, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Skåne University Hospital , Lund, SE-221 85, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University , BMC D13, Lund SE-221 84, Sweden
| |
Collapse
|
25
|
Li H, Popp R, Borchers CH. Affinity-mass spectrometric technologies for quantitative proteomics in biological fluids. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Chutipongtanate S, Chatchen S, Svasti J. Plasma prefractionation methods for proteomic analysis and perspectives in clinical applications. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201600135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital; Mahidol University; Salaya Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine; Mahidol University; Salaya Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry; Chulabhorn Research Institute, Krung Thep Maha Nakhon; Thailand
- Applied Biological Sciences Program; Chulabhorn Graduate Institute; Thailand
| |
Collapse
|
27
|
Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 2017; 14:117-136. [DOI: 10.1080/14789450.2017.1274653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
28
|
Magni R, Luchini A. Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers. Methods Mol Biol 2017; 1606:103-113. [PMID: 28501996 DOI: 10.1007/978-1-4939-6990-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the recent years, a lot of emphasis has been placed on the discovery and detection of clinically relevant biomarkers. Biomarkers are crucial for the early detection of several diseases, and they play an important role in the improvement of current treatments, thus reducing patient mortality rate. Because biofluids account to 60% of the body mass, they represent a goldmine of significant biomarkers. Unfortunately, because of their low concentration in body fluids, their lability, and the presence of high abundance proteins (i.e., albumin and immunoglobulins), low abundance biomarkers are difficult to detect with mass spectrometry or immunoassays. Nanoparticles made of poly(N-isopropylacrylamide) (NIPAm) and functionalized with affinity reactive baits allow researchers to overcome these physiological barriers and in one single step capture, concentrate, and preserve labile biomarkers in complex body fluids (i.e. urine, blood, sweat, CSF). Although hydrogel nanoparticles have been largely studied and used as a drug delivery tool, our application focuses on their capturing abilities instead of the releasing of specific drug molecules. Once the functionalized nanoparticles are incubated with a biological fluid, small biomarkers are captured by the affinity baits while unwanted high abundance analytes are excluded. The potentially relevant biomarkers are then concentrated into small volumes. The concentration factor (up to 10,000-fold) successfully enhances the detection sensitivity of mass spectrometry and immunoassays allowing the detection of previously invisible proteins.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA.
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA
| |
Collapse
|
29
|
O'Grady JP, Meyer KW, Poe DN. Affinity Proteomics for Fast, Sensitive, Quantitative Analysis of Proteins in Plasma. Methods Mol Biol 2017; 1619:55-61. [PMID: 28674877 DOI: 10.1007/978-1-4939-7057-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The improving efficacy of many biological therapeutics and identification of low-level biomarkers are driving the analytical proteomics community to deal with extremely high levels of sample complexity relative to their analytes. Many protein quantitation and biomarker validation procedures utilize an immunoaffinity enrichment step to purify the sample and maximize the sensitivity of the corresponding liquid chromatography tandem mass spectrometry measurements. In order to generate surrogate peptides with better mass spectrometric properties, protein enrichment is followed by a proteolytic cleavage step. This is often a time-consuming multistep process. Presented here is a workflow which enables rapid protein enrichment and proteolytic cleavage to be performed in a single, easy-to-use reactor. Using this strategy Klotho, a low-abundance biomarker found in plasma, can be accurately quantitated using a protocol that takes under 5 h from start to finish.
Collapse
Affiliation(s)
- John P O'Grady
- Perfinity Biosciences, Inc, 1281 Win Hentschel Blvd, West Lafayette, IN, 47906, USA.
| | - Kevin W Meyer
- Perfinity Biosciences, Inc, 1281 Win Hentschel Blvd, West Lafayette, IN, 47906, USA
| | - Derrick N Poe
- Perfinity Biosciences, Inc, 1281 Win Hentschel Blvd, West Lafayette, IN, 47906, USA
| |
Collapse
|
30
|
Lin F, Li Z, Hua Y, Lim YP. Proteomic profiling predicts drug response to novel targeted anticancer therapeutics. Expert Rev Proteomics 2016; 13:411-20. [PMID: 26954459 DOI: 10.1586/14789450.2016.1164043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most recently approved anti-cancer drugs by the US FDA are targeted therapeutic agents and this represents an important trend for future anticancer therapy. Unlike conventional chemotherapy that rarely considers individual differences, it is crucial for targeted therapies to identify the beneficial subgroup of patients for the treatment. Currently, genomics and transcriptomics are the major 'omic' analytics used in studies of drug response prediction. However, proteomic profiling excels both in its advantages of directly detecting an instantaneous dynamic of the whole proteome, which contains most current diagnostic markers and therapeutic targets. Moreover, proteomic profiling improves understanding of the mechanism for drug resistance and helps finding optimal combination therapy. This article reviews the recent success of applications of proteomic analytics in predicting the response to targeted anticancer therapeutics, and discusses the potential avenues and pitfalls of proteomic platforms and techniques used most in the field.
Collapse
Affiliation(s)
- Fan Lin
- a Department of Cell Biology , Nanjing Medical University , Nanjing , China.,b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Zilin Li
- b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Yunfen Hua
- c College of Pharmaceutical Science, Zhejiang University of Technology , Hangzhou , China
| | - Yoon Pin Lim
- b Department of Biochemistry , Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,d Bioinformatics Institute, Agency for Science and Technology , Singapore.,e NUS Graduate School of Integrative Sciences and Technology , Singapore
| |
Collapse
|
31
|
Jung S, Whiteaker JR, Zhao L, Yoo HW, Paulovich AG, Hahn SH. Quantification of ATP7B Protein in Dried Blood Spots by Peptide Immuno-SRM as a Potential Screen for Wilson's Disease. J Proteome Res 2016; 16:862-871. [PMID: 27935710 DOI: 10.1021/acs.jproteome.6b00828] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Wilson's Disease (WD), a copper transport disorder caused by a genetic defect in the ATP7B gene, has been a long time strong candidate for newborn screening (NBS), since early interventions can give better results by preventing irreversible neurological disability or liver cirrhosis. Several previous pilot studies measuring ceruloplasmin (CP) in infants or children showed that this marker alone was insufficient to meet the universal screening for WD. WD results from mutations that cause absent or markedly diminished levels of ATP7B. Therefore, ATP7B could serve as a marker for the screening of WD, if the protein can be detected from dried blood spots (DBS). This study demonstrates that the immuno-SRM platform can quantify ATP7B in DBS in the picomolar range, and that the assay readily distinguishes affected cases from normal controls (p < 0.0001). The assay precision was <10% CV, and the protein was stable for a week in DBS at room temperature. These promising proof-of-concept data open up the possibility of screening WD in newborns and the potential for a multiplexed assay for screening a variety of congenital disorders using proteins as biomarkers in DBS.
Collapse
Affiliation(s)
- Sunhee Jung
- Seattle Children's Hospital Research Institute , Seattle, Washington 98101, United States
| | - Jeffrey R Whiteaker
- Fred Hutchison Cancer Research Center , Seattle, Washington 98109, United States
| | - Lei Zhao
- Fred Hutchison Cancer Research Center , Seattle, Washington 98109, United States
| | - Han-Wook Yoo
- Asan Medical Center, Ulsan University College of Medicine , Seoul 05505, South Korea
| | - Amanda G Paulovich
- Fred Hutchison Cancer Research Center , Seattle, Washington 98109, United States
| | - Si Houn Hahn
- Seattle Children's Hospital Research Institute , Seattle, Washington 98101, United States.,Department of Pediatrics, University of Washington School of Medicine , Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Jaffe JD, Feeney CM, Patel J, Lu X, Mani DR. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1745-1751. [PMID: 27562500 PMCID: PMC5061621 DOI: 10.1007/s13361-016-1465-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jacob D Jaffe
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Caitlin M Feeney
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Waters Corporation, Milford, MA, 01757, USA
| | - Jinal Patel
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Xiaodong Lu
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - D R Mani
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
33
|
A whole-molecule immunocapture LC–MS approach for the in vivo quantitation of biotherapeutics. Bioanalysis 2016; 8:2103-14. [DOI: 10.4155/bio-2016-0180] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Large-molecule biotherapeutic quantitation in vivo by LC–MS has traditionally relied on enzymatic digestion followed by quantitation of a ‘surrogate peptide’ to infer whole-molecule concentration. MS methods presented here measure the whole molecule and provide a platform to better understand the various circulating drug forms by allowing for variant quantitation. Results: An immunocapture LC–MS method for quantitation of a biotherapeutic monoclonal antibody from human plasma is presented. Sensitivity, precision and accuracy for each molecular portion are presented along with an example of glycoform variant quantitation. Conclusion: The method is presented as a basic platform to be further developed for Good Practice (GxP) applications, critical quality attribute analysis or general understanding of molecular forms present as required for the wide range of drug development processes.
Collapse
|
34
|
Otieno BA, Krause CE, Jones AL, Kremer RB, Rusling JF. Cancer Diagnostics via Ultrasensitive Multiplexed Detection of Parathyroid Hormone-Related Peptides with a Microfluidic Immunoarray. Anal Chem 2016; 88:9269-75. [PMID: 27558535 PMCID: PMC5032051 DOI: 10.1021/acs.analchem.6b02637] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Parathyroid hormone-related
peptide (PTHrP) is recognized as the
major causative agent of humoral hypercalcemia of malignancy (HHM).
The paraneoplastic PTHrP has also been implicated in tumor progression
and metastasis of many human cancers. Conventional PTHrP detection
methods like immunoradiometric assay (IRMA) lack the sensitivity required
to measure target peptide levels prior to the development of hypercalcemia.
In general, sensitive, multiplexed peptide measurement by immunoassay
represents challenges that we address in this paper. We describe here
the first ultrasensitive multiplexed peptide assay to measure intact
PTHrP 1-173 as well as circulating N-terminal and C-terminal peptide
fragments. This versatile approach should apply to almost any collection
of peptides that are long enough to present binding sites for two
antibodies. To target PTHrP, we employed a microfluidic immunoarray
featuring a chamber for online capture of the peptides from serum
onto magnetic beads decorated with massive numbers of peptide-specific
antibodies and enzyme labels. Magnetic bead-peptide conjugates were
then washed and sent to a detection chamber housing an antibody-modified
8-electrode array fabricated by inkjet printing of gold nanoparticles.
Limits of detection (LODs) of 150 aM (∼1000-fold lower than
IRMA) in 5 μL of serum were achieved for simultaneous detection
of PTHrP isoforms and peptide fragments in 30 min. Good correlation
for patient samples was found with IRMA (n = 57); r2 = 0.99 assaying PTHrP 1-86 equiv fragments.
Analysis by a receiver operating characteristic (ROC) plot gave an
area under the curve of 0.96, 80–83% clinical sensitivity,
and 96–100% clinical specificity. Results suggest that PTHrP1-173
isoform and its short C-terminal fragments are the predominant circulating
forms of PTHrP. This new ultrasensitive, multiplexed assay for PTHrP
and fragments is promising for clinical diagnosis, prognosis, and
therapeutic monitoring from early to advanced stage cancer patients
and to examine underlying mechanisms of PTHrP overproduction.
Collapse
Affiliation(s)
- Brunah A Otieno
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Colleen E Krause
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Hartford , West Hartford, Connecticut 06117, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Richard B Kremer
- Department of Medicine, McGill University , Montreal, Quebec H3A 1A1, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, University of Connecticut Health Center , Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland at Galway , Galway, Ireland
| |
Collapse
|
35
|
Xiao Y, Wang Y. Global discovery of protein kinases and other nucleotide-binding proteins by mass spectrometry. MASS SPECTROMETRY REVIEWS 2016; 35:601-19. [PMID: 25376990 PMCID: PMC5609854 DOI: 10.1002/mas.21447] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 05/11/2023]
Abstract
Nucleotide-binding proteins, such as protein kinases, ATPases and GTP-binding proteins, are among the most important families of proteins that are involved in a number of pivotal cellular processes. However, global study of the structure, function, and expression level of nucleotide-binding proteins as well as protein-nucleotide interactions can hardly be achieved with the use of conventional approaches owing to enormous diversity of the nucleotide-binding protein family. Recent advances in mass spectrometry (MS) instrumentation, coupled with a variety of nucleotide-binding protein enrichment methods, rendered MS-based proteomics a powerful tool for the comprehensive characterizations of the nucleotide-binding proteome, especially the kinome. Here, we review the recent developments in the use of mass spectrometry, together with general and widely used affinity enrichment approaches, for the proteome-wide capture, identification and quantification of nucleotide-binding proteins, including protein kinases, ATPases, GTPases, and other nucleotide-binding proteins. The working principles, advantages, and limitations of each enrichment platform in identifying nucleotide-binding proteins as well as profiling protein-nucleotide interactions are summarized. The perspectives in developing novel MS-based nucleotide-binding protein detection platform are also discussed. © 2014 Wiley Periodicals, Inc. Mass Spec Rev 35:601-619, 2016.
Collapse
Affiliation(s)
| | - Yinsheng Wang
- Correspondence to: Yinsheng Wang, Department of Chemistry, University of California, Riverside, CA 92521-0403.
| |
Collapse
|
36
|
Ippoliti PJ, Kuhn E, Mani DR, Fagbami L, Keshishian H, Burgess MW, Jaffe JD, Carr SA. Automated Microchromatography Enables Multiplexing of Immunoaffinity Enrichment of Peptides to Greater than 150 for Targeted MS-Based Assays. Anal Chem 2016; 88:7548-55. [PMID: 27321643 DOI: 10.1021/acs.analchem.6b00946] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Immunoaffinity enrichment of peptides coupled with analysis by stable isotope dilution multiple reaction mass spectrometry has been shown to have analytical performance and detection limits suitable for many biomarker verification studies and biological applications. Prior studies have shown that antipeptide antibodies can be multiplexed up to 50 in a single assay without significant loss of performance. Achieving higher multiplex levels is relevant to all studies involving precious biological material as this minimizes the amount of sample that must be consumed to measure a given set of analytes and reduces the assay cost per analyte. Here we developed automated methods employing the Agilent AssayMAP Bravo microchromatography platform and used these methods to characterize the performance of immunoaffinity enrichment of peptides up to multiplex levels of 172. Median capture efficiency for the target peptides remained high (88%) even at levels of 150-plex and declined to 70% at 172-plex compared to antibody performance observed at standard lower multiplex levels (n = 25). Subsequently, we developed and analytically characterized a multiplexed immuno-multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) assay (n = 110) and applied it to measure candidate protein biomarkers of cardiovascular disease in plasma of patients undergoing planned myocardial infarction. The median lower limit of detection of all peptides was 71.5 amol/μL (nM), and the coefficient of variation (CV) was less than 15% at the lower limit of quantification. The results demonstrate that high multiplexed immuno-MRM-MS assays are readily achievable using the optimized sample processing and peptide capture methods described here.
Collapse
Affiliation(s)
- Paul J Ippoliti
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Eric Kuhn
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - D R Mani
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Lola Fagbami
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Hasmik Keshishian
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Michael W Burgess
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Jacob D Jaffe
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| | - Steven A Carr
- Broad Institute of MIT and Harvard , Cambridge, Massachusetts 02142, United States
| |
Collapse
|
37
|
De Marchi T, Foekens JA, Umar A, Martens JWM. Endocrine therapy resistance in estrogen receptor (ER)-positive breast cancer. Drug Discov Today 2016; 21:1181-8. [PMID: 27233379 DOI: 10.1016/j.drudis.2016.05.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
Abstract
Estrogen receptor (ER)-positive breast cancer represents the majority (∼70%) of all breast malignancies. In this subgroup of breast cancers, endocrine therapies are effective both in the adjuvant and recurrent settings, although resistance remains a major issue. Several high-throughput approaches have been used to elucidate mechanisms of resistance and to derive potential predictive markers or alternative therapies. In this review, we cover the state-of-the-art of endocrine-resistance biomarker discovery with regard to the latest technological developments, and discuss current opportunities and restrictions for their implementation into a clinical setting.
Collapse
Affiliation(s)
- Tommaso De Marchi
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John A Foekens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Arzu Umar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
38
|
De Marchi T, Kuhn E, Dekker LJ, Stingl C, Braakman RBH, Opdam M, Linn SC, Sweep FCGJ, Span PN, Luider TM, Foekens JA, Martens JWM, Carr SA, Umar A. Targeted MS Assay Predicting Tamoxifen Resistance in Estrogen-Receptor-Positive Breast Cancer Tissues and Sera. J Proteome Res 2016; 15:1230-42. [DOI: 10.1021/acs.jproteome.5b01119] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tommaso De Marchi
- Erasmus University Medical Center Rotterdam, Erasmus
MC Cancer Institute, Department of Medical Oncology, 3015 CN Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Erik Kuhn
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Lennard J. Dekker
- Erasmus University Medical Center Rotterdam, Department
of Neurology, 3015 CN Rotterdam, The Netherlands
| | - Christoph Stingl
- Erasmus University Medical Center Rotterdam, Department
of Neurology, 3015 CN Rotterdam, The Netherlands
| | - Rene B. H. Braakman
- Erasmus University Medical Center Rotterdam, Erasmus
MC Cancer Institute, Department of Medical Oncology, 3015 CN Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mark Opdam
- Netherlands Cancer Institute − Antoni van Leeuwenhoek
Hospital, Division of Medical Oncology, 1066 CX Amsterdam, The Netherlands
| | - Sabine C. Linn
- Netherlands Cancer Institute − Antoni van Leeuwenhoek
Hospital, Division of Medical Oncology, 1066 CX Amsterdam, The Netherlands
| | - Fred C. G. J. Sweep
- Radboud University Medical Center, Department of
Laboratory Medicine, 6525
GA Nijmegen, The Netherlands
| | - Paul N. Span
- Radboud University Medical Center, Department of
Radiation Oncology, 6525
GA Nijmegen, The Netherlands
| | - Theo M. Luider
- Erasmus University Medical Center Rotterdam, Department
of Neurology, 3015 CN Rotterdam, The Netherlands
| | - John A. Foekens
- Erasmus University Medical Center Rotterdam, Erasmus
MC Cancer Institute, Department of Medical Oncology, 3015 CN Rotterdam, The Netherlands
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - John W. M. Martens
- Erasmus University Medical Center Rotterdam, Erasmus
MC Cancer Institute, Department of Medical Oncology, 3015 CN Rotterdam, The Netherlands
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arzu Umar
- Erasmus University Medical Center Rotterdam, Erasmus
MC Cancer Institute, Department of Medical Oncology, 3015 CN Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
39
|
Application of high-resolution MS for development of peptide and large-molecule drug candidates. Bioanalysis 2016; 8:169-77. [DOI: 10.4155/bio.15.249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: For quantitative bioanalysis utilizing MS, the instrument of choice is typically a triple quadruple mass spectrometer. However, advances in high-resolution MS have allowed sensitivity and dynamic ranges to approach that of triple quadrupole instruments. Results: A matrix-free protein digest, a digested therapeutic protein and the intact peptide therapeutic liraglutide were each analyzed on high-resolution and triple quadrupole mass spectrometers with data compared. Samples from a mouse PK study with liraglutide were analyzed using the two different instruments, and equivalent PK exposure data were demonstrated. Conclusion: High-resolution and triple quadrupole mass spectrometers can generate data resulting in identical PK parameters from an in-life sample set, thus giving confidence in either technique in support of biotherapeutic PK exposure studies.
Collapse
|
40
|
Wu C, Duan J, Liu T, Smith RD, Qian WJ. Contributions of immunoaffinity chromatography to deep proteome profiling of human biofluids. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:57-68. [PMID: 26868616 DOI: 10.1016/j.jchromb.2016.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Human biofluids, especially blood plasma or serum, hold great potential as the sources of candidate biomarkers for various diseases; however, the enormous dynamic range of protein concentrations in biofluids represents a significant analytical challenge for detecting promising low-abundance proteins. Over the last decade, various immunoaffinity chromatographic methods have been developed and routinely applied for separating low-abundance proteins from the high- and moderate-abundance proteins, thus enabling much more effective detection of low-abundance proteins. Herein, we review the advances of immunoaffinity separation methods and their contributions to the proteomic applications in human biofluids. The limitations and future perspectives of immunoaffinity separation methods are also discussed.
Collapse
Affiliation(s)
- Chaochao Wu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
41
|
Zhao Y, Brasier AR. Qualification and Verification of Protein Biomarker Candidates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 919:493-514. [DOI: 10.1007/978-3-319-41448-5_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Kuhn E, Carr SA. Multiplexed Immunoaffinity Enrichment of Peptides with Anti-peptide Antibodies and Quantification by Stable Isotope Dilution Multiple Reaction Monitoring Mass Spectrometry. Methods Mol Biol 2016; 1410:135-167. [PMID: 26867743 DOI: 10.1007/978-1-4939-3524-6_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunoaffinity enrichment of peptides using anti-peptide antibodies and their subsequent analysis by targeted mass spectrometry using stable isotope-labeled peptide standards is a sensitive and relatively high-throughput assay technology for unmodified and modified peptides in cells, tissues, and biofluids. Suppliers of antibodies and peptides are increasingly aware of this technique and have started incorporating customized quality measures and production protocols to increase the success rate, performance, and supply of the necessary reagents. Over the past decade, analytical biochemists, clinical diagnosticians, antibody experts, and mass spectrometry specialists have shared ideas, instrumentation, reagents, and protocols, to demonstrate that immuno-MRM-MS is reproducible across laboratories. Assay performance is now suitable for verification of candidate biomarkers from large scale discovery "omics" studies, measuring diagnostic proteins in plasma in the clinical laboratory, and for developing a companion assay for preclinical drug studies. Here we illustrate the process for developing these assays with a step-by-step guide for a 20-plex immuno-MRM-MS assay. We emphasize the need for analytical validation of the assay to insure that antibodies, peptides, and mass spectrometer are working as intended, in a multiplexed manner, with suitable assay performance (median values for 20 peptides: CV = 12.4% at 740 amol/μL, LOD = 310 amol/μL) for applications in quantitative biology and candidate biomarker verification. The assays described conform to Tier 2 (of 3) level of analytical assay validation (1), meaning that the assays are capable of repeatedly measuring sets of analytes of interest within and across samples/experiments and employ internal standards for each analyte for confident detection and precise quantification.
Collapse
Affiliation(s)
- Eric Kuhn
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| | - Steven A Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
43
|
Fredolini C, Byström S, Pin E, Edfors F, Tamburro D, Iglesias MJ, Häggmark A, Hong MG, Uhlen M, Nilsson P, Schwenk JM. Immunocapture strategies in translational proteomics. Expert Rev Proteomics 2015; 13:83-98. [PMID: 26558424 PMCID: PMC4732419 DOI: 10.1586/14789450.2016.1111141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field's current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics.
Collapse
Affiliation(s)
- Claudia Fredolini
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Sanna Byström
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Elisa Pin
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Fredrik Edfors
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Davide Tamburro
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, SciLifeLab, Karolinska Institutet, Solna, Sweden
| | - Maria Jesus Iglesias
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Anna Häggmark
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mun-Gwan Hong
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Mathias Uhlen
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| | - Jochen M Schwenk
- Affinity Proteomics, SciLifeLab, School of Biotechnology, KTH - Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
44
|
Boström T, Takanen JO, Hober S. Antibodies as means for selective mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:3-13. [PMID: 26565067 DOI: 10.1016/j.jchromb.2015.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
Abstract
For protein analysis of biological samples, two major strategies are used today; mass spectrometry (MS) and antibody-based methods. Each strategy offers advantages and drawbacks. However, combining the two using an immunoenrichment step with MS analysis brings together the benefits of each method resulting in increased sensitivity, faster analysis and possibility of higher degrees of multiplexing. The immunoenrichment can be performed either on protein or peptide level and quantification standards can be added in order to enable determination of the absolute protein concentration in the sample. The combination of immunoenrichment and MS holds great promise for the future in both proteomics and clinical diagnostics. This review describes different setups of immunoenrichment coupled to mass spectrometry and how these can be utilized in various applications.
Collapse
Affiliation(s)
- Tove Boström
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jenny Ottosson Takanen
- School of Biotechnology, Division of Proteomics and Nanobiotechnology, KTH-Royal Institute ofTechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
45
|
Kramer G, Woolerton Y, van Straalen JP, Vissers JPC, Dekker N, Langridge JI, Beynon RJ, Speijer D, Sturk A, Aerts JMFG. Accuracy and Reproducibility in Quantification of Plasma Protein Concentrations by Mass Spectrometry without the Use of Isotopic Standards. PLoS One 2015; 10:e0140097. [PMID: 26474480 PMCID: PMC4608811 DOI: 10.1371/journal.pone.0140097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/22/2015] [Indexed: 12/28/2022] Open
Abstract
Background Quantitative proteomic analysis with mass spectrometry holds great promise for simultaneously quantifying proteins in various biosamples, such as human plasma. Thus far, studies addressing the reproducible measurement of endogenous protein concentrations in human plasma have focussed on targeted analyses employing isotopically labelled standards. Non-targeted proteomics, on the other hand, has been less employed to this end, even though it has been instrumental in discovery proteomics, generating large datasets in multiple fields of research. Results Using a non-targeted mass spectrometric assay (LCMSE), we quantified abundant plasma proteins (43 mg/mL—40 ug/mL range) in human blood plasma specimens from 30 healthy volunteers and one blood serum sample (ProteomeXchange: PXD000347). Quantitative results were obtained by label-free mass spectrometry using a single internal standard to estimate protein concentrations. This approach resulted in quantitative results for 59 proteins (cut off ≥11 samples quantified) of which 41 proteins were quantified in all 31 samples and 23 of these with an inter-assay variability of ≤ 20%. Results for 7 apolipoproteins were compared with those obtained using isotope-labelled standards, while 12 proteins were compared to routine immunoassays. Comparison of quantitative data obtained by LCMSE and immunoassays showed good to excellent correlations in relative protein abundance (r = 0.72–0.96) and comparable median concentrations for 8 out of 12 proteins tested. Plasma concentrations of 56 proteins determined by LCMSE were of similar accuracy as those reported by targeted studies and 7 apolipoproteins quantified by isotope-labelled standards, when compared to reference concentrations from literature. Conclusions This study shows that LCMSE offers good quantification of relative abundance as well as reasonable estimations of concentrations of abundant plasma proteins.
Collapse
Affiliation(s)
- Gertjan Kramer
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Yvonne Woolerton
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jan P. van Straalen
- Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Nick Dekker
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Robert J. Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Auguste Sturk
- Department of Clinical Chemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Singh SA, Miyosawa K, Aikawa M. Mass spectrometry meets the challenge of understanding the complexity of the lipoproteome: recent findings regarding proteins involved in dyslipidemia and cardiovascular disease. Expert Rev Proteomics 2015; 12:519-32. [PMID: 26325144 DOI: 10.1586/14789450.2015.1078731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the fact that link between dyslipidemia and atherosclerosis was made over 100 years ago, atherosclerosis remains a major cause of morbidity and mortality worldwide. Major efforts focus towards understanding lipid metabolism, particularly by studying its particle compartments in circulation: the lipoproteins. In recent years, mass spectrometry has played an integral role in the deep sequencing of the lipoproteome and in metabolism studies conducted in vivo. This review highlights the path of lipoprotein research towards state-of-the-art mass spectrometry with special emphasis on the method of selected reaction monitoring and its impact on apolipoprotein metabolism studies. Also presented is what is expected for the lipoprotein field with the recent advent of high resolution/accurate mass parallel reaction monitoring mass spectrometry. The benefits of high resolution/accurate mass measurements are demonstrated by example instrument workflows and by detailing a novel method to quantify very low levels of circulating proprotein convertase subtilisin-kexin type 9 in rabbit. It is anticipated that future clinical studies or clinical trials aimed to treat dyslipidemia by manipulating key regulatory proteins will benefit from the new and exciting opportunities afforded by the latest technologies in mass spectrometry.
Collapse
Affiliation(s)
- Sasha A Singh
- a 1 Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katsutoshi Miyosawa
- a 1 Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masanori Aikawa
- a 1 Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,b 2 Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Zhao L, Whiteaker JR, Voytovich UJ, Ivey RG, Paulovich AG. Antibody-Coupled Magnetic Beads Can Be Reused in Immuno-MRM Assays To Reduce Cost and Extend Antibody Supply. J Proteome Res 2015; 14:4425-31. [PMID: 26302155 DOI: 10.1021/acs.jproteome.5b00290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immunoaffinity enrichment of peptides coupled to targeted, multiple reaction monitoring mass spectrometry (immuno-MRM) enables precise quantification of peptides. Affinity-purified polyclonal antibodies are routinely used as affinity reagents in immuno-MRM assays, but they are not renewable, limiting the number of experiments that can be performed. In this technical note, we describe a workflow to regenerate anti-peptide polyclonal antibodies coupled to magnetic beads for enrichments in multiplex immuno-MRM assays. A multiplexed panel of 44 antibodies (targeting 60 peptides) is used to show that peptide analytes can be effectively stripped off of antibodies using acid washing without compromising assay performance. The performance of the multiplexed panel (determined by correlation, agreement, and precision of reused assays) is reproducible (R(2) between 0.81 and 0.99) and consistent (median CVs 8-15%) for at least 10 times of washing and reuse. Application of this workflow to immuno-MRM studies greatly reduces per sample assay cost and increases the number of samples that can be interrogated with a limited supply of polyclonal antibody reagent. This allows more characterization for promising and desirable targets prior to committing funds and efforts to conversion to a renewable monoclonal antibody.
Collapse
Affiliation(s)
- Lei Zhao
- Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Jeffrey R Whiteaker
- Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Uliana J Voytovich
- Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Richard G Ivey
- Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Amanda G Paulovich
- Fred Hutchinson Cancer Research Center , 1100 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
48
|
Trenchevska O, Schaab MR, Nelson RW, Nedelkov D. Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. Methods 2015; 81:86-92. [PMID: 25752847 PMCID: PMC4574700 DOI: 10.1016/j.ymeth.2015.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼ 40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.
Collapse
Affiliation(s)
- Olgica Trenchevska
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Matthew R Schaab
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Randall W Nelson
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States
| | - Dobrin Nedelkov
- The Biodesign Institute at Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
49
|
de la Cuesta F, Mourino-Alvarez L, Baldan-Martin M, Moreno-Luna R, Barderas MG. Contribution of proteomics to the management of vascular disorders. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
50
|
Basak T, Varshney S, Akhtar S, Sengupta S. Understanding different facets of cardiovascular diseases based on model systems to human studies: a proteomic and metabolomic perspective. J Proteomics 2015; 127:50-60. [PMID: 25956427 DOI: 10.1016/j.jprot.2015.04.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/08/2015] [Accepted: 04/25/2015] [Indexed: 02/02/2023]
Abstract
UNLABELLED Cardiovascular disease has remained as the largest cause of morbidity and mortality worldwide. From dissecting the disease aetiology to identifying prognostic markers for better management of the disease is still a challenge for researchers. In the post human genome sequencing era much of the thrust has been focussed towards application of advanced genomic tools along with evaluation of traditional risk factors. With the advancement of next generation proteomics and metabolomics approaches it has now become possible to understand the protein interaction network & metabolic rewiring which lead to the perturbations of the disease phenotype. Further, elucidating different post translational modifications using advanced mass spectrometry based methods have provided an impetus towards in depth understanding of the proteome. The past decade has observed a plethora of studies where proteomics has been applied successfully to identify potential prognostic and diagnostic markers as well as to understand the disease mechanisms for various types of cardiovascular diseases. In this review, we attempted to document relevant proteomics based studies that have been undertaken either to identify potential biomarkers or have elucidated newer mechanistic insights into understanding the patho-physiology of cardiovascular disease, primarily coronary artery disease, cardiomyopathy, and myocardial ischemia. We have also provided a perspective on the potential of proteomics in combating this deadly disease. BIOLOGICAL SIGNIFICANCE This review has catalogued recent studies on proteomics and metabolomics involved in understanding several cardiovascular diseases (CVDs). A holistic systems biology based approach, of which proteomics and metabolomics are two very important components, would help in delineating various pathways associated with complex disorders like CVD. This would ultimately provide better mechanistic understanding of the disease biology leading to development of prognostic biomarkers. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India.
| | - Swati Varshney
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India
| | - Shamima Akhtar
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110020, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-IGIB South Campus, New Delhi, India.
| |
Collapse
|