1
|
Amiri Roudbar M, Rosengren MK, Mousavi SF, Fegraeus K, Naboulsi R, Meadows JRS, Lindgren G. Effect of an endothelial regulatory module on plasma proteomics in exercising horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101265. [PMID: 38906044 DOI: 10.1016/j.cbd.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Elite performing exercise requires an intricate modulation of the blood pressure to support the working muscles with oxygen. We have previously identified a genomic regulatory module that associates with differences in blood pressures of importance for elite performance in racehorses. This study aimed to determine the effect of the regulatory module on the protein repertoire. We sampled plasma from 12 Coldblooded trotters divided into two endothelial regulatory module haplotype groups, a sub-elite performing haplotype (SPH) and an elite performing haplotype (EPH), each at rest and exercise. The haplotype groups and their interaction were interrogated in two analyses, i) individual paired ratio analysis for identifying differentially abundant proteins of exercise (DAPE) and interaction (DAPI) between haplotype and exercise, and ii) unpaired ratio analysis for identifying differentially abundant protein of haplotype (DAPH). The proteomics analyses revealed a widespread change in plasma protein content during exercise, with a decreased tendency in protein abundance that is mainly related to lung function, tissue fluids, metabolism, calcium ion pathway and cellular energy metabolism. Furthermore, we provide the first investigation of the proteome variation due to the interaction between exercise and related blood pressure haplotypes, which this difference was related to a faster switch to the lipoprotein and lipid metabolism during exercise for EPH. The molecular signatures identified in the present study contribute to an improved understanding of exercise-related blood pressure regulation.
Collapse
Affiliation(s)
- Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful 333, Iran.
| | - Maria K Rosengren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Seyedeh Fatemeh Mousavi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Kim Fegraeus
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Sweden.
| | - Rakan Naboulsi
- Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, Stockholm 17177, Sweden.
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75132 Uppsala, Sweden.
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden; Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Chen Y, Hao X, Li M, Tian Z, Cheng M. UGRP1-modulated MARCO + alveolar macrophages contribute to age-related lung fibrosis. Immun Ageing 2023; 20:14. [PMID: 36934284 PMCID: PMC10024420 DOI: 10.1186/s12979-023-00338-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The aging lungs are vulnerable to chronic pulmonary diseases; however, the underlying mechanisms are not well understood. In this study, we compared the aging lungs of 20-24-month-old mice with the young of 10-16-week-old mice, and found that aging airway epithelial cells significantly upregulated the expression of uteroglobin-related protein 1 (UGRP1), which was responsible for the higher levels of CCL6 in the aging lungs. Alveolar macrophages (AMs) changed intrinsically with aging, exhibiting a decrease in cell number and altered gene expression. Using terminal differentiation trajectories, a population of MARCO+ AMs with the ability to produce CCL6 was identified in the aging lungs. Upregulated UGRP1was demonstrated to modulate CCL6 production of AMs in the UGRP1-MARCO pair in vivo and in vitro. Furthermore, MARCO+ AMs aggravated bleomycin-induced pulmonary fibrosis in a CCL6-dependent manner in the aged mice, and blocking MARCO or neutralizing CCL6 significantly inhibited pulmonary fibrosis, similar to the depletion of AMs. The age-related upregulation of UGRP1 and MARCO+ AMs, involved in the progression of lung fibrosis, was also observed in human lung tissues. Thus, UGRP1 modulated MARCO+ AMs regarding the age-related lung fibrosis in a CCL6-dependent manner, which is key to establishing optimal targeting for the aging population.
Collapse
Affiliation(s)
- Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
| | - Xiaolei Hao
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
| | - Ming Li
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Cancer Immunotherapy Center, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, China
| | - Min Cheng
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Cancer Immunotherapy Center, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, China.
| |
Collapse
|
3
|
Kimura S, Yokoyama S, Pilon AL, Kurotani R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 2022; 236:108112. [PMID: 35016921 PMCID: PMC9271138 DOI: 10.1016/j.pharmthera.2022.108112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shigetoshi Yokoyama
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
4
|
Mootz M, Jakwerth CA, Schmidt‐Weber CB, Zissler UM. Secretoglobins in the big picture of immunoregulation in airway diseases. Allergy 2022; 77:767-777. [PMID: 34343347 DOI: 10.1111/all.15033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.
Collapse
Affiliation(s)
- Martine Mootz
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
- Technical University of Munich (TUM)TUM School of MedicineKlinikum Rechts der Isar Munich Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM) Technical University of Munich (TUM) and Helmholtz Center MunichGerman Research Center for Environmental Health (HMGU) Munich Germany
- Member of the German Center of Lung Research (DZL)CPC‐M Munich Germany
| |
Collapse
|
5
|
Yang Y, Jia M, Ou Y, Adcock IM, Yao X. Mechanisms and biomarkers of airway epithelial cell damage in asthma: A review. CLINICAL RESPIRATORY JOURNAL 2021; 15:1027-1045. [PMID: 34097803 DOI: 10.1111/crj.13407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bronchial asthma is a heterogeneous disease with complex pathological mechanisms representing different phenotypes, including severe asthma. The airway epithelium is a major site of complex pathological changes in severe asthma due, in part, to activation of inflammatory and immune mechanisms in response to noxious agents. Current imaging procedures are unable to accurately measure epithelial and airway remodeling. Damage of airway epithelial cells occurs is linked to specific phenotypes and endotypes which provides an opportunity for the identification of biomarkers reflecting epithelial, and airway, remodeling. Identification of patients with more severe epithelial disruption using biomarkers may also provide personalised therapeutic opportunities and/or markers of successful therapeutic intervention. Here, we review the evidence for ongoing epithelial cell dysregulation in the pathogenesis of asthma, the sentinel role of the airway epithelium and how understanding these molecular mechanisms provides the basis for the identification of candidate biomarkers for asthma prediction, prevention, diagnosis, treatment and monitoring.
Collapse
Affiliation(s)
- Yuemei Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingwei Ou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Emergency Medical, Zhejiang Province People's Hospital, Zhejiang, China
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Almuntashiri S, Zhu Y, Han Y, Wang X, Somanath PR, Zhang D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J Clin Med 2020; 9:jcm9124039. [PMID: 33327505 PMCID: PMC7764992 DOI: 10.3390/jcm9124039] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Club cell secretory protein (CC16) is encoded by the SCGB1A1 gene. It is also known as CC10, secretoglobin, or uteroglobin. CC16 is a 16 kDa homodimeric protein secreted primarily by the non-ciliated bronchial epithelial cells, which can be detected in the airways, circulation, sputum, nasal fluid, and urine. The biological activities of CC16 and its pathways have not been completely understood, but many studies suggest that CC16 has anti-inflammatory and anti-oxidative effects. The human CC16 gene is located on chromosome 11, p12-q13, where several regulatory genes of allergy and inflammation exist. Studies reveal that factors such as gender, age, obesity, renal function, diurnal variation, and exercise regulate CC16 levels in circulation. Current findings indicate CC16 not only may reflect the pathogenesis of pulmonary diseases, but also could serve as a potential biomarker in several lung diseases and a promising treatment for chronic obstructive pulmonary disease (COPD). In this review, we summarize our current understanding of CC16 in pulmonary diseases.
Collapse
Affiliation(s)
- Sultan Almuntashiri
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yin Zhu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Yohan Han
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
| | - Xiaoyun Wang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA;
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Department of Medicine, Augusta University, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA; (S.A.); (Y.Z.); (Y.H.); (P.R.S.)
- Correspondence: ; Tel.: +1-706-721-6491; Fax: +1-706-721-3994
| |
Collapse
|
7
|
Castro-Rodriguez J, Atton I, Villarroel G, Serrano C. Relation between serum CC16 levels and asthma predictive index in pre-schoolers with recurrent wheezing. Allergol Immunopathol (Madr) 2018; 46:460-466. [PMID: 29685782 DOI: 10.1016/j.aller.2017.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Low levels of serum CC16 were reported in asthmatic adults, but the studies on children were scarce and conflicting. The aim of this study was to compare serum CC16 levels in pre-school children with recurrent wheezing assessed using an asthma predictive index (API). METHODS We performed a case-control study based on API, with all enrolled pre-school children who had recurrent wheezing episodes (>3 episodes/last year confirmed by a physician) and had presented at one paediatric clinic in Santiago, Chile. The population was divided according to stringent API criteria into positive or negative. RESULTS In a one-year period, 60 pre-schoolers were enrolled. After excluding 12, 48 pre-schoolers remained (27 males, age range from 24 to 71 months) and completed the study; 34 were API positive and 14 were API negative. There were no significant differences in demographics between groups. The level of serum CC16 levels for pre-schoolers with a positive API and negative API were (median 9.2 [7.1-11.5] and 9.4 [5.5-10], p=0.26, respectively). The area under the curve for the serum CC16 levels to predict a positive API was 0.6, 95% CI [0.43-0.77], p=0.3. A correlation between serum CC16 levels and age was found (r=0.36 [0.07-0.59], p=0.01], but not between serum CC16 levels and peripheral eosinophils blood. CONCLUSION There was no evidence that serum CC16 levels played a role in recurrent wheezing and a positive API in pre-school children. More studies are needed to confirm this finding.
Collapse
|
8
|
Zhou Y, Bao WW, Qian ZM, Dee Geiger S, Parrish KL, Yang BY, Lee YL, Dong GH. Perfluoroalkyl substance exposure and urine CC16 levels among asthmatics: A case-control study of children. ENVIRONMENTAL RESEARCH 2017; 159:158-163. [PMID: 28802206 DOI: 10.1016/j.envres.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 08/03/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Studies have reported an association between serum perfluoroalkyl substances (PFASs) and asthma. However, few studies have examined the possible associations between PFASs and the 16-kDa club cell secretory protein (Clara) (CC16) level, a prominent biomarker of asthma, among adolescents. METHODS We recruited a total of 231 asthmatic children and 225 non-asthmatic controls in the Genetic and Biomarkers study for Childhood Asthma (GBCA) in northern Taiwan from 2009 to 2010. Structured questionnaires were administered by face-to-face interview. Urine CC16 was determined by an enzyme-link immunoassay kit. Multiple general linear models were employed to examine the associations between PFASs and urinary CC16 levels. RESULTS Asthmatic participants had significantly higher serum PFAS concentrations overall than the healthy controls. After adjusting for confounding factors, urinary CC16 was significantly, negatively associated with PFASs, especially PFOS, PFOA, PFDA and PFNA, and especially among males, as follows: PFOS (β = -0.003, 95% confidence interval [CI]: -0.004, -0.002), PFOA (β = -0.045, 95% CI: -0.086, -0.004), and PFHxA (β = -0.310, 95% CI: -0.455, -0.165) among asthmatic boys, and PFDA (β = -0.126, 95%CI: -0.241, -0.012) and PFNA (β = -0.329, 95% CI: -0.526, -0.132) among non-asthmatic boys. Among girls, PFDA (β = -0.088, 95% CI: -0.172, -0.004), was the only PFAS significantly associated with CC16. Significant interaction effects (p < 0.15) on CC16 levels were found between asthma and PFOS, PFOA, PFBS and PFHxA in all participants. CONCLUSION Our overall results showed that serum PFASs were significantly, inversely associated with CC16 levels. Associations were stronger among males.
Collapse
Affiliation(s)
- Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Wen Bao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhengmin Min Qian
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Sarah Dee Geiger
- School of Nursing and Health Studies, Northern Illinois University, DeKalb, IL 60115, USA
| | - Katelyn L Parrish
- Department of Epidemiology, College for Public Health and Social Justice, Saint Louis University, Saint Louis 63104, USA
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Kim SK, Seok H, Park HJ, Han K, Kang SW, Ban JY, Jung HJ, Kim KI, Lee BJ, Kim J, Chung JH. Association Between Secretoglobin Family 3A Member 2 (SCGB3A2) Gene Polymorphisms and Asthma in a Korean Population. Med Sci Monit 2017; 23:1880-1885. [PMID: 28422086 PMCID: PMC5405786 DOI: 10.12659/msm.903983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Secretoglobin family 3A member 2 (SCGB3A2) plays an important role in secreting lung surfactant protein, which is a downstream target of thyroid transcription factor. Material/Methods We investigated whether single-nucleotide polymorphisms (SNPs) of SCGB3A2 gene contribute to susceptibility to asthma. To explore this possible association, 2 promoter SNPs (rs6882292, 659 G/A and rs1368408, −112 G/A) and missense SNP (rs151333009, stop codon) were tested in SCGB3A2 gene in 101 asthma patients and 377 healthy control subjects. SNPStats was used to obtain odds ratio (OR), 95% confidence intervals (CI), and P value adjusted for age and sex as covariables. Logistic regression method in each model (dominant, recessive, and log-additive) was applied to analyze genetic data. Results rs151333009 SNP showed a monomorphic genotype. Two promoter SNPs (rs6882292, −659 G/A and rs1368408, −112 G/A) showed significant association with asthma (rs6882292, OR=2.66, 95% CI=1.42–5.01, p=0.0033 in dominant model, OR=2.45, 95% CI=1.33–4.54, p=0.0055 in log-additive model; rs1368408, OR=1.59, 95% CI=1.02–2.49, p=0.041 in dominant model, OR=3.02, 95% CI=1.15–7.90, p=0.03 in recessive model, OR=1.63, 95% CI=1.63, 95% CI=1.12–2.37, p=0.012 in log-additive model). Conclusions These results suggest that the promoter SNPs (rs6882292 and rs1368408) of SCGB3A2 gene may contribute to susceptibility to asthma in a Korean population.
Collapse
Affiliation(s)
- Su Kang Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hosik Seok
- Department of Pharmacology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hae Jeong Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyuup Han
- Department of Pharmacology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Sang Wook Kang
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Ju Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Hee-Jae Jung
- Division of Allergy and Respiratory System, Department of Korean Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kwan-Il Kim
- Division of Allergy and Respiratory System, Department of Korean Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Beom-Joon Lee
- Division of Allergy and Respiratory System, Department of Korean Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jinju Kim
- Department of Korean Physiology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Joo-Ho Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Emmanouil P, Loukides S, Kostikas K, Papatheodorou G, Papaporfyriou A, Hillas G, Vamvakaris I, Triggidou R, Katafigiotis P, Kokkini A, Papiris S, Koulouris N, Bakakos P. Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma. Allergy 2015; 70:711-4. [PMID: 25728058 DOI: 10.1111/all.12603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 01/25/2023]
Abstract
Clara cell secretory protein (CC16) is associated with Th2 modulation. Surfactant protein D (SPD) plays an important role in surfactant homeostasis and eosinophil chemotaxis. We measured CC16 and SPD in sputum supernatants of 84 asthmatic patients and 12 healthy controls. In 22 asthmatics, we additionally measured CC16 and SPD levels in BAL and assessed smooth muscle area (SMA), reticular basement membrane (RBM) thickness, and epithelial detachment (ED) in bronchial biopsies. Induced sputum CC16 and SPD were significantly higher in patients with severe asthma (SRA) compared to mild-moderate and healthy controls. BAL CC16 and SPD levels were also higher in SRA compared to mild-moderate asthma. CC16 BAL levels correlated with ED, while SPD BAL levels correlated with SMA and RBM. Severity represented a significant covariate for these associations. CC16 and SPD levels are upregulated in SRA and correlate with remodeling indices, suggesting a possible role of these biomarkers in the remodeling process.
Collapse
Affiliation(s)
- P. Emmanouil
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - S. Loukides
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | - K. Kostikas
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | | | - A. Papaporfyriou
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - G. Hillas
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - I. Vamvakaris
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - R. Triggidou
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - P. Katafigiotis
- Pathology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - A. Kokkini
- Cytology Department; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - S. Papiris
- 2nd Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Attikon’ Hospital; Athens Greece
| | - N. Koulouris
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| | - P. Bakakos
- 1st Department of Respiratory Medicine; Medical School of National and Kapodistrian University of Athens; ‘Sotiria’ Hospital of Chest Diseases; Athens Greece
| |
Collapse
|
11
|
Secretoglobin 3A2 Attenuates Lipopolysaccharide-Induced Inflammation Through Inhibition of ERK and JNK Pathways in Bronchial Epithelial Cells. Inflammation 2014; 38:828-34. [DOI: 10.1007/s10753-014-9992-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Xie H, Wu M, Shen B, Niu Y, Huo Y, Cheng Y. Association between the -112G/A polymorphism of uteroglobulin-related protein 1 gene and asthma risk: A meta-analysis. Exp Ther Med 2014; 7:721-727. [PMID: 24520274 PMCID: PMC3919937 DOI: 10.3892/etm.2014.1471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 12/06/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the correlation between the -112G/A polymorphism of the uteroglobulin-related protein 1 (UGRP1) gene and asthma risk using meta-analysis. PubMed, BIOSIS Previews and EBSCOhost were searched, and data were extracted independently by two reviewers. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were used to assess the strength of the associations. Statistical analysis was performed using Review Manager 5.2 and STATA 11.0 software. Six studies, involving 816 cases and 1,165 controls, were included in the analysis. The meta-analysis showed a significant correlation between the UGRP1-112G/A polymorphism and asthma for AA versus GG (P=0.01) and AA versus GA/GG (P=0.02). Furthermore, stratification by ethnicity revealed a significant correlation between the -112G/A polymorphism and asthma for A versus G (P=0.02), AA versus GG (P=0.01) and AA versus GA/GG (P=0.03) in Asians, but not in Caucasians. When stratified by atopy, a significant correlation was observed for A versus G (P=0.02) and AA/GA versus GG (P=0.04) in the mixed group. No correlation was observed for age stratification. Results of the current meta-analysis indicate that the -112G/A polymorphism of the UGRP1 gene is likely to contribute to asthma risk, particularly in the Asian population.
Collapse
Affiliation(s)
- Haojun Xie
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Muli Wu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Shen
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi Niu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yating Huo
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
13
|
Koutsokera A, Kostikas K, Nicod LP, Fitting JW. Pulmonary biomarkers in COPD exacerbations: a systematic review. Respir Res 2013; 14:111. [PMID: 24143945 PMCID: PMC4014989 DOI: 10.1186/1465-9921-14-111] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/07/2013] [Indexed: 01/01/2023] Open
Abstract
Exacerbations of COPD (ECOPD) represent a major burden for patients and health care systems. Innovative sampling techniques have led to the identification of several pulmonary biomarkers. Although some molecules are promising, their usefulness in clinical practice is not yet established. Medline and Highwire databases were used to identify studies evaluating pulmonary sampled biomarkers in ECOPD. We combined 3 terms for ECOPD, 3 for biomarkers and 6 for the sampling method. Seventy-nine studies were considered eligible for inclusion in the review and were analyzed further. Pulmonary biomarkers sampled with non-invasive, semi-invasive and invasive methods were evaluated for their potential to illustrate the disease's clinical course, to correlate to clinical variables and to predict clinical outcomes, ECOPD etiology and response to treatment. According to published data several pulmonary biomarkers assessed in ECOPD have the potential to illustrate the natural history of disease through the modification of their levels. Among the clinically relevant molecules, those that have been studied the most and appear to be promising are spontaneous and induced sputum biomarkers for reflecting clinical severity and symptomatic recovery, as well as for directing towards an etiological diagnosis. Current evidence on the clinical usefulness of exhaled breath condensate and bronchoalveolar lavage biomarkers in ECOPD is limited. In conclusion, pulmonary biomarkers have the potential to provide information on the mechanisms underlying ECOPD, and several correlate with clinical variables and outcomes. However, on the basis of published evidence, no single molecule is adequately validated for wide clinical use. Clinical trials that incorporate biomarkers in decisional algorithms are required.
Collapse
Affiliation(s)
- Angela Koutsokera
- Department of Respiratory Medicine, University Hospital of Lausanne, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
14
|
Serum and nasal lavage fluid Clara cell protein decreases in children with allergic rhinitis. Int J Pediatr Otorhinolaryngol 2012; 76:1241-4. [PMID: 22704673 DOI: 10.1016/j.ijporl.2012.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Allergic rhinitis is among the most common chronic disorders of childhood with prevalence of up to 40% in children. Clara cell secretory protein (CCSP) is secreted by Clara cells in the lining fluid of airways. It has an immune-modulatory and anti-inflammatory activity. AIM OF WORK Study aimed at evaluating CCSP as a biomarker in serum and nasal lavage fluid of children with allergic rhinitis. METHODS A case-control study was conducted on sera and nasal lavage fluid samples from 15 children with allergic rhinitis and 15 healthy children as a control group. RESULTS Children with allergic rhinitis had a male to female ratio 2 to 1, with a mean age of 9.47±2.75 years, while among the healthy group, six were males and nine were females, with a mean age of 8.63±2.28 years. Rhinorrhea and nasal obstruction were the most frequent symptoms (100%) followed by itching (93.3%) then sneezing (73.3%). Among allergic rhinitis patients serum CCSP mean±SD was 2.03±0.59μg/l; it was reliable to predict allergic rhinitis (P<0.0001); while nasal lavage CCSP mean±SD was 12.73±8.25μg/l and it was not reliable to predict allergic rhinitis. Its best cut-off value was 3.75μg/l with a sensitivity of 100%, specificity 80%, with a diagnostic accuracy of 90%. CONCLUSION Clara cell secretory protein is a new peripheral sensitive marker of airway injury. Furthermore, serum CCSP level is a predictor of allergic rhinitis but not nasal lavage fluid CCSP.
Collapse
|
15
|
Irander K, Palm JP, Borres MP, Ghafouri B. Clara cell protein in nasal lavage fluid and nasal nitric oxide - biomarkers with anti-inflammatory properties in allergic rhinitis. Clin Mol Allergy 2012; 10:4. [PMID: 22309677 PMCID: PMC3395834 DOI: 10.1186/1476-7961-10-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/06/2012] [Indexed: 12/18/2022] Open
Abstract
Background Clara cell protein (CC16) is ascribed a protective and anti-inflammatory role in airway inflammation. Lower levels have been observed in asthmatic subjects as well as in subjects with intermittent allergic rhinitis than in healthy controls. Nasal nitric oxide (nNO) is present in high concentrations in the upper airways, and considered a biomarker with beneficial effects, due to inhibition of bacteria and viruses along with stimulation of ciliary motility. The aim of this study was to evaluate the presumed anti-inflammatory effects of nasal CC16 and nNO in subjects with allergic rhinitis. Methods The levels of CC16 in nasal lavage fluids, achieved from subjects with persistent allergic rhinitis (n = 13), intermittent allergic rhinitis in an allergen free interval (n = 5) and healthy controls (n = 7), were analyzed by Western blot. The levels of nNO were measured by the subtraction method using NIOX®. The occurrences of effector cells in allergic inflammation, i.e. metachromatic cells (MC, mast cells and basophiles) and eosinophils (Eos) were analyzed by light microscopy in samples achieved by nasal brushing. Results The levels of CC16 correlated with nNO levels (r2 = 0.37; p = 0.02) in allergic subjects. The levels of both biomarkers showed inverse relationships with MC occurrence, as higher levels of CC16 (p = 0.03) and nNO (p = 0.05) were found in allergic subjects with no demonstrable MC compared to the levels in subjects with demonstrable MC. Similar relationships, but not reaching significance, were observed between the CC16 and nNO levels and Eos occurrence. The levels of CC16 and nNO did not differ between the allergic and the control groups. Conclusions The correlation between nasal CC16 and nNO levels in patients with allergic rhinitis, along with an inverse relationship between their levels and the occurrences of MC in allergic inflammation, may indicate that both biomarkers have anti-inflammatory effects by suppression of cell recruitment. The mechanisms behind these observations warrant further analyses.
Collapse
Affiliation(s)
- Kristina Irander
- Division of Rehabilitation Medicine, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, and Pain and Rehabilitation Centre, County Council of Östergötland, Linköping, Sweden.
| | | | | | | |
Collapse
|
16
|
Sputum and nasal lavage lung-specific biomarkers before and after smoking cessation. BMC Pulm Med 2011; 11:35. [PMID: 21635782 PMCID: PMC3121733 DOI: 10.1186/1471-2466-11-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 06/02/2011] [Indexed: 11/23/2022] Open
Abstract
Background Little is known about the effect of smoking cessation on airway inflammation. Secretory Leukocyte Protease Inhibitor (SLPI), Clara Cell protein 16 (CC16), elafin and human defensin beta-2 (HBD-2) protect human airways against inflammation and oxidative stress. In this longitudinal study we aimed to investigate changes in sputum and nasal lavage SLPI, CC16, elafin and HBD-2 levels in healthy smokers after 6 and 12 months of smoking cessation. Methods Induced sputum and nasal lavage was obtained from healthy current smokers (n = 76) before smoking cessation, after 6 months of smoking cessation (n = 29), after 1 year of smoking cessation (n = 22) and from 10 healthy never smokers. SLPI, CC16, elafin and HBD-2 levels were measured in sputum and nasal lavage supernatants by commercially available ELISA kits. Results Sputum SLPI and CC-16 levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.005 and p = 0.08 respectively). SLPI and CC16 levels did not differ before and 6 months after smoking cessation (p = 0.118 and p = 0.543 respectively), neither before and 1 year after smoking cessation (p = 0.363 and p = 0.470 respectively). Nasal lavage SLPI was decreased 12 months after smoking cessation (p = 0.033). Nasal lavage elafin levels were increased in healthy smokers before smoking cessation versus never-smokers (p = 0.007), but there were no changes 6 months and 1 year after smoking cessation. Conclusions Only nasal lavage SLPI decrease after 1 year after smoking cessation. We may speculate that there is an ongoing inflammatory process stimulating the production of counter-regulating proteins in the airways of healthy ex-smokers.
Collapse
|
17
|
Andiappan AK, Yeo WS, Parate PN, Anantharaman R, Suri BK, Wang DY, Chew FT. Variation in Uteroglobin-Related Protein 1 (UGRP1) gene is associated with allergic rhinitis in Singapore Chinese. BMC MEDICAL GENETICS 2011; 12:39. [PMID: 21410962 PMCID: PMC3070627 DOI: 10.1186/1471-2350-12-39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 03/16/2011] [Indexed: 11/22/2022]
Abstract
Background Uteroglobin-Related Protein 1 (UGRP1) is a secretoglobulin protein which has been suggested to play a role in lung inflammation and allergic diseases. UGRP1 has also been shown to be an important pneumoprotein, with diagnostic potential as a biomarker of lung damage. Previous genetic studies evaluating the association between variations on UGRP1 and allergic phenotypes have yielded mixed results. The aim of this present study was to identify genetic polymorphisms in UGRP1 and investigate if they were associated with asthma and allergic rhinitis in the Singapore Chinese population. Methods Resequencing of the UGRP1 gene was conducted on 40 randomly selected individuals from Singapore of ethnic Chinese origin. The polymorphisms identified were then tagged and genotyped in a population of 1893 Singapore Chinese individuals. Genetic associations were evaluated in this population comparing 795 individuals with allergic rhinitis, 718 with asthma (of which 337 had both asthma and allergic rhinitis) and 717 healthy controls with no history of allergy or allergic diseases. Results By resequencing the UGRP1 gene within our population, we identified 11 novel and 16 known single nucleotide polymorphisms (SNPs). TagSNPs were then genotyped, revealing a significant association between rs7726552 and allergic rhinitis (Odds Ratio: 0.81, 95% Confidence Interval: 0.66-0.98, P = 0.039). This association remained statistically significant when it was analyzed genotypically or when stratified according to haplotypes. When variations on UGRP1 were evaluated against asthma, no association was observed. Conclusion This study documents the association between polymorphisms in UGRP1 and allergic rhinitis, suggesting a potential role in its pathogenesis.
Collapse
|
18
|
Lu X, Wang N, Long XB, You XJ, Cui YH, Liu Z. The cytokine-driven regulation of secretoglobins in normal human upper airway and their expression, particularly that of uteroglobin-related protein 1, in chronic rhinosinusitis. Respir Res 2011; 12:28. [PMID: 21385388 PMCID: PMC3063214 DOI: 10.1186/1465-9921-12-28] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 03/08/2011] [Indexed: 12/11/2022] Open
Abstract
Background The involvement of secretoglobins (SCGBs) other than SCGB1A1 (Clara cell 10-kDa protein, CC10) in human airway diseases remains unexplored. Among those SCGBs, SCGB3A2 (uteroglobin-related protein 1, UGRP1) is particularly interesting, given its structure and function similarities with SCGB1A1 (CC10). The aim of this study was to investigate the expression regulation of SCGBs other than SCGB1A1 (CC10) in human upper airway, and their potential involvement, particularly that of SCGB3A2 (UGRP1), in chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) and without nasal polyps (CRSsNP). Methods Eight SCGB family members including SCGB3A2 (UGRP1), SCGB1C1 (ligand binding protein RYD5), SCGB1D1 (lipophilin A), SCGB1D2 (lipophilin B), SCGB1D4 (interferon-γ inducible SCGB), SCGB2A1 (mammaglobin 2), SCGB2A2 (mammaglobin 1), and SCGB3A1 (uteroglobin-related protein 2) were studied. The regulation of SCGBs mRNA expression in normal nasal mucosa by proinflammatory, Th1, and Th2 cytokines was studied through nasal explant culture. SCGBs mRNA expression levels in CRSsNP and CRSwNP patients and controls were compared. The mRNA levels were detected by means of quantitative reverse transcriptase-polymerase chain reaction. The protein expression of SCGB3A2 (UGRP1) was analyzed using immunohistochemistry. Results The expression of SCGBs except SCGB1D2 (lipophilin B) could be found in upper airway and be differentially regulated by different cytokines. SCGB3A2 (UGRP1) mRNA expression was induced by Th1 cytokine, but suppressed by proinflammatory and Th2 cytokines. SCGBs mRNA expression was altered in CRS; particularly, SCGB3A2 (UGRP1) protein and mRNA expression was markedly decreased in both CRSsNP and CRSwNP and its protein levels inversely correlated with the number of total infiltrating cells, preoperative sinonasal CT scores, and postoperative endoscopy and symptom scores. Conclusion SCGBs except SCGB1D2 (lipophilin B) are expressed in human upper airway and their expression can be differentially regulated by inflammatory cytokines. SCGBs mRNA expression is altered in CRS. Reduced production of UGRP1, which is likely due, at least in part, to a local cytokine environment, may contribute to the hyper-inflammation in CRS and correlates with response to surgery.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
19
|
Van De Velde V, Courtens W, Bernard A. Development of a new sensitive ELISA for the determination of uteroglobin-related protein 1, a new potential biomarker. Biomarkers 2010; 15:619-24. [DOI: 10.3109/1354750x.2010.508842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Wong AP, Keating A, Waddell TK. Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 2010; 11:676-87. [PMID: 19878054 DOI: 10.3109/14653240903313974] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Clara cell secretory protein (CCSP) is one of the most abundant proteins in the airway surface fluid, and has many putative functions. Recent advances in the field of stem cells and lung regeneration have identified potentially new roles of CCSP and CCSP-expressing cell populations in airway maintenance, repair and regeneration. This review focuses on the airway regenerative potential of CCSP and the cells that express this protein. The use of this protein or CCSP-expressing cells as an indication of biologic processes that contribute to lung injury or repair is highlighted.
Collapse
Affiliation(s)
- Amy P Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre for Regenerative Medicine, Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Bolton SJ, Pinnion K, Marshall CV, Wilson E, Barker JE, Oreffo V, Foster ML. Changes in Clara cell 10 kDa protein (CC10)-positive cell distribution in acute lung injury following repeated lipopolysaccharide challenge in the rat. Toxicol Pathol 2008; 36:440-8. [PMID: 18420837 DOI: 10.1177/0192623308315357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Clara cell 10 kDa protein (CC10) is the major secretory protein of Clara cells and is thought to play a protective role in the lung owing to its anti-inflammatory properties. There is little information on the anatomical distribution of CC10-positive cells in rat lung following lipopolysaccharide (LPS) challenge. We have determined the expression of CC10 along the tracheobronchial tree in saline-treated and LPS-treated rats. Saline-treated rats showed sporadic CC10 staining in central airways and abundant staining in bronchioles. In transitional airways, most cells were positive except for squamous cells. Following LPS challenge, there was a reduction in staining in the upper airways but little change within bronchioles. Squamous epithelia within the transitional airways now showed positive staining. These cells also co-stained for pancytokeratin and appeared to co-localize with surfactant D- and Ki67-positive cells, indicating the presence of a dedifferentiated cell type with both epithelial and pneumocyte phenotypes. These data show that diffuse inflammatory injury results in generalized loss of CC10 in central airways. Conversely, the transitional airways showed evidence of a dedifferentiated population of squamous cells that now stained for CC10. We hypothesize that this is an attempt by peripheral lung to maintain alveolar sac integrity during an inflammatory episode.
Collapse
Affiliation(s)
- S J Bolton
- Department of Pathology, Safety Assessment UK, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mukherjee AB, Zhang Z, Chilton BS. Uteroglobin: a steroid-inducible immunomodulatory protein that founded the Secretoglobin superfamily. Endocr Rev 2007; 28:707-25. [PMID: 17916741 DOI: 10.1210/er.2007-0018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Blastokinin or uteroglobin (UG) is a steroid-inducible, evolutionarily conserved, secreted protein that has been extensively studied from the standpoint of its structure and molecular biology. However, the physiological function(s) of UG still remains elusive. Isolated from the uterus of rabbits during early pregnancy, UG is the founding member of a growing superfamily of proteins called Secretoglobin (Scgb). Numerous studies demonstrated that UG is a multifunctional protein with antiinflammatory/ immunomodulatory properties. It inhibits soluble phospholipase A(2) activity and binds and perhaps sequesters hydrophobic ligands such as progesterone, retinols, polychlorinated biphenyls, phospholipids, and prostaglandins. In addition to its antiinflammatory activities, UG manifests antichemotactic, antiallergic, antitumorigenic, and embryonic growth-stimulatory activities. The tissue-specific expression of the UG gene is regulated by several steroid hormones, although a nonsteroid hormone, prolactin, further augments its expression in the uterus. The mucosal epithelia of virtually all organs that communicate with the external environment express UG, and it is present in the blood, urine, and other body fluids. Although the physiological functions of this protein are still under investigation, a single nucleotide polymorphism in the UG gene appears to be associated with several inflammatory/autoimmune diseases. Investigations with UG-knockout mice revealed that the absence of this protein leads to phenotypes that suggest its critical homeostatic role(s) against oxidative damage, inflammation, autoimmunity, and cancer. Recent studies on UG-binding proteins (receptors) provide further insight into the multifunctional nature of this protein. Based on its antiinflammatory and antiallergic properties, UG is a potential drug target.
Collapse
Affiliation(s)
- Anil B Mukherjee
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institute of Health, Building 10, Bethesda, Maryland 20892-1830, USA.
| | | | | |
Collapse
|
23
|
Lakind JS, Holgate ST, Ownby DR, Mansur AH, Helms PJ, Pyatt D, Hays SM. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers 2007; 12:445-67. [PMID: 17701745 DOI: 10.1080/13547500701359327] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biomarkers associated with asthma aetiology and exacerbation have been sought to shed light on this multifactorial disease. One candidate is the serum concentration of the Clara cell secretory protein (CC16, sometimes referred to as CC10 or uteroglobin). In this review, we examine serum CC16's relation to asthma aetiology and exacerbation. There is evidence that acute exposures to certain pulmonary irritants can cause a transient increase in serum CC16 levels, and limited evidence also suggests that a transient increase in serum CC16 levels can be caused by a localized pulmonary inflammation. Research also indicates that a transient increase in serum CC16 is not associated with measurable pulmonary damage or impairment of pulmonary function. The biological interpretation of chronic changes in serum CC16 is less clear. Changes in serum CC16 concentrations (either transient or chronic) are not specific to any one agent, disease state, or aetiology. This lack of specificity limits the use of serum CC16 as a biomarker of specific exposures. To date, many of the critical issues that must be understood before serum CC16 levels can have an application as a biomarker of effect or exposure have not been adequately addressed.
Collapse
Affiliation(s)
- J S Lakind
- LaKind Associates, LLC, Catonsville, MD, USA.
| | | | | | | | | | | | | |
Collapse
|