1
|
Vanarsa K, Zhang T, Hutcheson J, Kumar SR, Nukala S, Inthavong H, Stanley B, Wu T, Mok CC, Saxena R, Mohan C. iTRAQ-based mass spectrometry screen to identify serum biomarkers in systemic lupus erythematosus. Lupus Sci Med 2024; 11:e000673. [PMID: 38782493 PMCID: PMC11116855 DOI: 10.1136/lupus-2022-000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/15/2022] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disorder with no reliable serum biomarkers currently available other than autoantibodies. METHODS In the present study, isobaric tags for relative and absolute quantitation-based mass spectrometry was used to screen the sera of patients with SLE to uncover potential disease biomarkers. RESULTS 85 common proteins were identified, with 16 being elevated (≥1.3) and 23 being decreased (≤0.7) in SLE. Of the 16 elevated proteins, serum alpha-1-microglobulin/bikunin precursor (AMBP), zinc alpha-2 glycoprotein (AZGP) and retinol-binding protein 4 (RBP4) were validated in independent cross-sectional cohorts (Cohort I, N=52; Cohort II, N=117) using an orthogonal platform, ELISA. Serum AMBP, AZGP and RBP4 were validated to be significantly elevated in both patients with inactive SLE and patients with active SLE compared with healthy controls (HCs) (p<0.05, fold change >2.5) in Cohort I. All three proteins exhibited good discriminatory power for distinguishing active SLE and inactive SLE (area under the curve=0.82-0.96), from HCs. Serum AMBP exhibited the largest fold change in active SLE (5.96) compared with HCs and correlated with renal disease activity. The elevation in serum AMBP was validated in a second cohort of patients with SLE of different ethnic origins, correlating with serum creatinine (r=0.60, p<0.001). CONCLUSION Since serum AMBP is validated to be elevated in SLE and correlated with renal disease, the clinical utility of this novel biomarker warrants further analysis in longitudinal cohorts of patients with lupus and lupus nephritis.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ting Zhang
- University of Houston, Houston, Texas, USA
- Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | - Sneha Ravi Kumar
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Haleigh Inthavong
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Tianfu Wu
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - C C Mok
- Medicine, Tuen Mun Hospital, Hong Kong
| | - Ramesh Saxena
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
2
|
Enríquez-Rodríguez CJ, Pascual-Guardia S, Casadevall C, Caguana-Vélez OA, Rodríguez-Chiaradia D, Barreiro E, Gea J. Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients. Cells 2024; 13:866. [PMID: 38786086 PMCID: PMC11119172 DOI: 10.3390/cells13100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Although Chronic Obstructive Pulmonary Disease (COPD) is highly prevalent, it is often underdiagnosed. One of the main characteristics of this heterogeneous disease is the presence of periods of acute clinical impairment (exacerbations). Obtaining blood biomarkers for either COPD as a chronic entity or its exacerbations (AECOPD) will be particularly useful for the clinical management of patients. However, most of the earlier studies have been characterized by potential biases derived from pre-existing hypotheses in one or more of their analysis steps: some studies have only targeted molecules already suggested by pre-existing knowledge, and others had initially carried out a blind search but later compared the detected biomarkers among well-predefined clinical groups. We hypothesized that a clinically blind cluster analysis on the results of a non-hypothesis-driven wide proteomic search would determine an unbiased grouping of patients, potentially reflecting their endotypes and/or clinical characteristics. To check this hypothesis, we included the plasma samples from 24 clinically stable COPD patients, 10 additional patients with AECOPD, and 10 healthy controls. The samples were analyzed through label-free liquid chromatography/tandem mass spectrometry. Subsequently, the Scikit-learn machine learning module and K-means were used for clustering the individuals based solely on their proteomic profiles. The obtained clusters were confronted with clinical groups only at the end of the entire procedure. Although our clusters were unable to differentiate stable COPD patients from healthy individuals, they segregated those patients with AECOPD from the patients in stable conditions (sensitivity 80%, specificity 79%, and global accuracy, 79.4%). Moreover, the proteins involved in the blind grouping process to identify AECOPD were associated with five biological processes: inflammation, humoral immune response, blood coagulation, modulation of lipid metabolism, and complement system pathways. Even though the present results merit an external validation, our results suggest that the present blinded approach may be useful to segregate AECOPD from stability in both the clinical setting and trials, favoring more personalized medicine and clinical research.
Collapse
Affiliation(s)
- Cesar Jessé Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Carme Casadevall
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Oswaldo Antonio Caguana-Vélez
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Diego Rodríguez-Chiaradia
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Esther Barreiro
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| | - Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar—IMIM, 08003 Barcelona, Spain; (C.J.E.-R.); (S.P.-G.); (C.C.); (O.A.C.-V.); (D.R.-C.); (E.B.)
- MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- CIBERES, ISCiii, 08003 Barcelona, Spain
- BRN, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, Lee TY, Mulligan B, Devkota S, Tilley WT, Hickey TE, Wang B, Giuliano AE, Bose S, Goodarzi H, Ray EC, Cui X, Knott SR. The molecular consequences of androgen activity in the human breast. CELL GENOMICS 2023; 3:100272. [PMID: 36950379 PMCID: PMC10025454 DOI: 10.1016/j.xgen.2023.100272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.
Collapse
Affiliation(s)
- Florian Raths
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mehran Karimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan Ing
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoona Yang
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Mulligan
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wayne T. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward C. Ray
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Transgender Surgery and Health Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon R.V. Knott
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Kavalakatt S, Khadir A, Madhu D, Devarajan S, Warsame S, AlKandari H, AlMahdi M, Koistinen HA, Al‐Mulla F, Tuomilehto J, Abubaker J, Tiss A. Circulating levels of urocortin neuropeptides are impaired in children with overweight. Obesity (Silver Spring) 2022; 30:472-481. [PMID: 35088550 PMCID: PMC9305428 DOI: 10.1002/oby.23356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The corticotropin-releasing factor neuropeptides (corticotropin-releasing hormone [CRH] and urocortin [UCN]-1,2,3) and spexin contribute to the regulation of energy balance and inhibit food intake in mammals. However, the status of these neuropeptides in children with overweight has yet to be elucidated. This study investigated the effect of increased body weight on the circulating levels of these neuropeptides. METHODS A total of 120 children with a mean age of 12 years were enrolled in the study. Blood samples were collected to assess the circulating levels of neuropeptides and were correlated with various anthropometric, clinical, and metabolic markers. RESULTS Plasma levels of UCNs were altered in children with overweight but less so in those with obesity. Furthermore, the expression pattern of UCN1 was opposite to that of UCN2 and UCN3, which suggests a compensatory effect. However, no significant effect of overweight and obesity was observed on CRH and spexin levels. Finally, UCN3 independently associated with circulating zinc-alpha-2-glycoprotein and UCN2 levels, whereas UCN1 was strongly predicted by TNFα levels. CONCLUSIONS Significant changes in neuropeptide levels were primarily observed in children with overweight and were attenuated with increased obesity. This suggests the presence of a compensatory mechanism for neuropeptides to curb the progression of obesity.
Collapse
Affiliation(s)
- Sina Kavalakatt
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Abdelkrim Khadir
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | - Dhanya Madhu
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | | | - Samia Warsame
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | | | | | - Heikki A. Koistinen
- Department of MedicineHelsinki University HospitalHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
| | | | - Jaakko Tuomilehto
- Department of Public Health and WelfareFinnish Institute for Health and WelfareHelsinkiFinland
- Department of Public HealthUniversity of HelsinkiHelsinkiFinland
- Diabetes Research GroupKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| | - Ali Tiss
- Biochemistry and Molecular Biology Department, Research DivisionDasman Diabetes InstituteKuwait
| |
Collapse
|
5
|
O'Beirne SL, Salit J, Kaner RJ, Crystal RG, Strulovici-Barel Y. Up-regulation of ACE2, the SARS-CoV-2 receptor, in asthmatics on maintenance inhaled corticosteroids. Respir Res 2021; 22:200. [PMID: 34233672 PMCID: PMC8261394 DOI: 10.1186/s12931-021-01782-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The first step in SARS-CoV-2 infection is binding of the virus to angiotensin converting enzyme 2 (ACE2) on the airway epithelium. Asthma affects over 300 million people world-wide, many of whom may encounter SARS-CoV-2. Epidemiologic data suggests that asthmatics who get infected may be at increased risk of more severe disease. Our objective was to assess whether maintenance inhaled corticosteroids (ICS), a major treatment for asthma, is associated with airway ACE2 expression in asthmatics. METHODS Large airway epithelium (LAE) of asthmatics treated with maintenance ICS (ICS+), asthmatics not treated with ICS (ICS-), and healthy controls (controls) was analyzed for expression of ACE2 and other coronavirus infection-related genes using microarrays. RESULTS As a group, there was no difference in LAE ACE2 expression in all asthmatics vs controls. In contrast, subgroup analysis demonstrated that LAE ACE2 expression was higher in asthmatics ICS+ compared to ICS‾ and ACE2 expression was higher in male ICS+ compared to female ICS+ and ICS‾ of either sex. ACE2 expression did not correlate with serum IgE, absolute eosinophil level, or change in FEV1 in response to bronchodilators in either ICS- or ICS+. CONCLUSION Airway ACE2 expression is increased in asthmatics on long-term treatment with ICS, an observation that should be taken into consideration when assessing the use of inhaled corticosteroids during the pandemic.
Collapse
Affiliation(s)
- Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jacqueline Salit
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
| | - Robert J Kaner
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, 1300 York Avenue, Box 164, New York, NY, 10065, USA.
| |
Collapse
|
6
|
Jain A, Kotimoole CN, Ghoshal S, Bakshi J, Chatterjee A, Prasad TSK, Pal A. Identification of potential salivary biomarker panels for oral squamous cell carcinoma. Sci Rep 2021; 11:3365. [PMID: 33564003 PMCID: PMC7873065 DOI: 10.1038/s41598-021-82635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with the maximum number of incidences and deaths reported from India. One of the major causes of poor survival rate associated with OSCC has been attributed to late presentation due to non-availability of a biomarker. Identification of early diagnostic biomarker will help in reducing the disease morbidity and mortality. We validated 12 salivary proteins using targeted proteomics, identified initially by relative quantification of salivary proteins on LC-MS, in OSCC patients and controls. Salivary AHSG (p = 0.0041**) and KRT6C (p = 0.002**) were upregulated in OSCC cases and AZGP1 (p ≤ 0.0001***), KLK1 (p = 0.006**) and BPIFB2 (p = 0.0061**) were downregulated. Regression modelling resulted in a significant risk prediction model (p < 0.0001***) consisting of AZGP1, AHSG and KRT6C for which ROC curve had AUC, sensitivity and specificity of 82.4%, 78% and 73.5% respectively for all OSCC cases and 87.9%, 87.5% and 73.5% respectively for late stage (T3/T4) OSCC. AZGP1, AHSG, KRT6C and BPIFB2 together resulted in ROC curve (p < 0.0001***) with AUC, sensitivity and specificity of 94%, 100% and 77.6% respectively for N0 cases while KRT6C and AZGP1 for N+ cases with ROC curve (p < 0.0001***) having AUC sensitivity and specificity of 76.8%, 73% and 69.4%. Our data aids in the identification of biomarker panels for the diagnosis of OSCC cases with a differential diagnosis between early and late-stage cases.
Collapse
Affiliation(s)
- Anu Jain
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | | | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
7
|
Zhang H, Rostami MR, Leopold PL, Mezey JG, O’Beirne SL, Strulovici-Barel Y, Crystal RG. Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium. Am J Respir Crit Care Med 2020; 202:219-229. [PMID: 32432483 PMCID: PMC7365377 DOI: 10.1164/rccm.202003-0541oc] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Rationale: Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to ACE2 (angiotensin-converting enzyme 2) on the airway epithelium.Objectives: The objective was to gain insight into the expression of ACE2 in the human airway epithelium.Methods: Airway epithelia sampled by fiberoptic bronchoscopy of trachea, large airway epithelia (LAE), and small airway epithelia (SAE) of nonsmokers and smokers were analyzed for expression of ACE2 and other coronavirus infection-related genes using microarray, RNA sequencing, and 10x single-cell transcriptome analysis, with associated examination of ACE2-related microRNA.Measurements and Main Results:1) ACE2 is expressed similarly in the trachea and LAE, with lower expression in the SAE; 2) in the SAE, ACE2 is expressed in basal, intermediate, club, mucus, and ciliated cells; 3) ACE2 is upregulated in the SAE by smoking, significantly in men; 4) levels of miR-1246 expression could play a role in ACE2 upregulation in the SAE of smokers; and 5) ACE2 is expressed in airway epithelium differentiated in vitro on air-liquid interface cultures from primary airway basal stem/progenitor cells; this can be replicated using LAE and SAE immortalized basal cell lines derived from healthy nonsmokers.Conclusions:ACE2, the gene encoding the receptor for SARS-CoV-2, is expressed in the human airway epithelium, with variations in expression relevant to the biology of initial steps in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Mahboubeh R. Rostami
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Philip L. Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Jason G. Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Sarah L. O’Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
8
|
Zhang H, Rostami MR, Leopold PL, Mezey JG, O'Beirne SL, Strulovici-Barel Y, Crystal RG. Expression of the SARS-CoV-2 ACE2 Receptor in the Human Airway Epithelium. Am J Respir Crit Care Med 2020. [PMID: 32432483 DOI: 10.1164/rccm.202003-0541oc.pmid:32432483;pmcid:pmc7365377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rationale: Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to ACE2 (angiotensin-converting enzyme 2) on the airway epithelium.Objectives: The objective was to gain insight into the expression of ACE2 in the human airway epithelium.Methods: Airway epithelia sampled by fiberoptic bronchoscopy of trachea, large airway epithelia (LAE), and small airway epithelia (SAE) of nonsmokers and smokers were analyzed for expression of ACE2 and other coronavirus infection-related genes using microarray, RNA sequencing, and 10x single-cell transcriptome analysis, with associated examination of ACE2-related microRNA.Measurements and Main Results: 1) ACE2 is expressed similarly in the trachea and LAE, with lower expression in the SAE; 2) in the SAE, ACE2 is expressed in basal, intermediate, club, mucus, and ciliated cells; 3) ACE2 is upregulated in the SAE by smoking, significantly in men; 4) levels of miR-1246 expression could play a role in ACE2 upregulation in the SAE of smokers; and 5) ACE2 is expressed in airway epithelium differentiated in vitro on air-liquid interface cultures from primary airway basal stem/progenitor cells; this can be replicated using LAE and SAE immortalized basal cell lines derived from healthy nonsmokers.Conclusions: ACE2, the gene encoding the receptor for SARS-CoV-2, is expressed in the human airway epithelium, with variations in expression relevant to the biology of initial steps in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Mahboubeh R Rostami
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Philip L Leopold
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Jason G Mezey
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and.,Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Sarah L O'Beirne
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Yael Strulovici-Barel
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York; and
| |
Collapse
|
9
|
Wang L, Liu M, Ning D, Zhu H, Shan G, Wang D, Ping B, Yu Y, Yang H, Yan K, Pan H, Gong F. Low Serum ZAG Levels Correlate With Determinants of the Metabolic Syndrome in Chinese Subjects. Front Endocrinol (Lausanne) 2020; 11:154. [PMID: 32265843 PMCID: PMC7105689 DOI: 10.3389/fendo.2020.00154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction: Zinc-α2-glycoprotein (ZAG) is a novel adipokine, which is involved in metabolic syndrome (MetS). This study aimed to investigate the relationship between serum ZAG and MetS in Chinese adults, who diagnosed according to the 2005 International Diabetes Federation (IDF) criteria. Methods: A group of 151 MetS patients, 84 patients with central obesity and 70 healthy controls were enrolled. General clinical information, serum samples were obtained from all subjects and serum ZAG levels were determined via the commercial ELISA kits. Results: Serum ZAG levels were the highest in the control group, then gradually decreased with the severity of the metabolic abnormalities increased (8.78 ± 1.66 μg/mL for control vs. 8.37 ± 1.52 μg/mL for central obesity vs. 7.98 ± 0.94 μg/mL for MetS, P < 0.05). It was also decreased progressively with an increasing number of the MetS components (P for trend = 0.002). Additionally, serum ZAG/fat mass ratio was calculated and the similar changes were observed in the three groups (0.85 ± 0.53 μg/mL/kg for control vs. 0.39 ± 0.10 μg/mL/kg for central obesity vs. 0.36 ± 0.08 μg/mL/kg for MetS, P < 0.05). In the multiple regression analysis, group was a strong independent factor contributing to serum ZAG levels (P < 0.001). Furthermore, compared with subjects with the highest tertile of ZAG, subjects in the lowest tertile of ZAG had 1.946-fold higher risk of MetS (95% CI 1.419-6.117, P = 0.004). This phenomenon still existed after controlling for age, gender (Model 1), ALP, AST, Cr, UA, Urea based on Model 1 (Model 2), grip strength, smoking, drinking, birth place, current address, education level, manual labor, and exercise frequency based on Model 2 (Model 3). Receiver operation characteristic (ROC) curve analysis revealed that serum ZAG might serve as a candidate biomarker for MetS (sensitivity 57.6%, specificity 70.0% and area under the curve 0.655), and serum ZAG/fat mass ratio showed improved diagnosis value accuracy, with ROC curve area of 0.951 (95% CI, 0.920-0.983, P < 0.001), and 90.7% sensitivity and 88.6% specificity. Conclusions: Serum ZAG levels were lowered in patients with MetS and central obesity. The decreased serum ZAG levels were associated with the increased risks of MetS. Serum ZAG, especially serum ZAG/fat mass ratio might be the candidate diagnostic biomarkers for MetS.
Collapse
Affiliation(s)
- Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongping Ning
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guangliang Shan
- Department of Epidemiology and Health Statistics, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dingming Wang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Bo Ping
- Longli Center for Disease Control and Prevention, Longli, China
| | - Yangwen Yu
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Hui Pan
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Fengying Gong ;
| |
Collapse
|
10
|
Ludgate M. Cambridge Ophthalmological Symposium 2018: introduction and reflections on the day. Eye (Lond) 2019; 33:169-173. [PMID: 30568255 PMCID: PMC6367334 DOI: 10.1038/s41433-018-0320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 11/08/2022] Open
Abstract
I was privileged to be one of the co-chairs, along with Professor Tim Sullivan (Brisbane, Australia), for the Cambridge Ophthalmological Society (COS) annual international symposium, which, this year, was dedicated to thyroid eye disease (TED). Together with the organisers, Miss Rachna Murthy and Professor Keith Martin from COS, we compiled an impressive programme covering all aspects of the condition from events happening in a single orbital cell to improved surgical approaches.
Collapse
Affiliation(s)
- Marian Ludgate
- Professor Emerita, Institute of Infection & Immunity, School of Medicine, Cardiff, UK.
| |
Collapse
|
11
|
Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017; 6:631-653. [PMID: 30090531 PMCID: PMC6062142 DOI: 10.1039/c7tx00047b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Systems biology combines comprehensive molecular analyses with quantitative modeling to understand the characteristics of a biological system as a whole. Leveraging a similar approach, systems toxicology aims to decipher complex biological responses following exposures. This work reports a systems toxicology meta-analysis in the context of in vitro assessment of a candidate modified-risk tobacco product (MRTP) using three human organotypic cultures of the aerodigestive tract (buccal, bronchial, and nasal epithelia). Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare quantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F cigarette smoke (CS) at similar nicotine concentrations. Lower toxicity was observed in all cultures following exposure to THS2.2 aerosol compared with 3R4F CS. Because of their morphological differences, a smaller exposure impact was observed in the buccal (stratified epithelium) compared with the bronchial and nasal (pseudostratified epithelium). However, the causal network enrichment approach supported a similar mechanistic impact of CS across the three cultures, including the impact on xenobiotic, oxidative stress, and inflammatory responses. At comparable nicotine concentrations, THS2.2 aerosol elicited reduced and more transient effects on these processes. To demonstrate the benefits of additional data modalities, we employed a newly established targeted mass-spectrometry marker panel to further confirm the reduced cellular stress responses elicited by THS2.2 aerosol compared with 3R4F CS in the nasal culture. Overall, this work demonstrates the applicability and robustness of the systems toxicology approach for in vitro inhalation toxicity assessment.
Collapse
Affiliation(s)
- A R Iskandar
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - B Titz
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Sewer
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - P Leroy
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - T Schneider
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - F Zanetti
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - C Mathis
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Elamin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - S Frentzel
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - W K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - F Martin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - N V Ivanov
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - M C Peitsch
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - J Hoeng
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
12
|
Th17 and IL-17 Cause Acceleration of Inflammation and Fat Loss by Inducing α 2-Glycoprotein 1 (AZGP1) in Rheumatoid Arthritis with High-Fat Diet. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1049-1058. [PMID: 28284716 DOI: 10.1016/j.ajpath.2016.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/01/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that affects the joints. High-fat diet (HFD) is a risk factor for RA and is related to inflammation but responds minimally to medication. Given the association between HFD and inflammation, it is important to understand the function of inflammation-related T cells in RA with HFD. Collagen-induced arthritis (CIA), a model of RA, was induced in HFD mice by injection of collagen II, and metabolic markers and T cells were analyzed. The metabolic index and IgG assay results were higher in HFD-CIA mice than in nonfat diet-CIA mice. Numbers of inflammation-related T cells and macrophages, such as Th1 and Th17 cells and M1 macrophages, were higher in spleens of HFD-CIA mice. HFD-CIA mice had a high level of α2-glycoprotein 1 (Azgp1), a soluble protein that stimulates lipolysis. To examine the association between Azgp1 and Th17 cells, the reciprocal effects of Azgp1 and IL-17 on Th17 differentiation and lipid metabolism were measured. Interestingly, Azgp1 increased the Th17 population of splenocytes. Taken together, our data suggest that the acceleration of fat loss caused by Azgp1 in RA with metabolic syndrome is related to the increase of IL-17. Mice injected with the Azgp1-overexpression vector exhibited more severe CIA compared with the mock vector-injected mice.
Collapse
|
13
|
Patel SJ, Darie CC, Clarkson BD. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density. Electrophoresis 2016; 38:417-428. [PMID: 27804141 DOI: 10.1002/elps.201600399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 01/02/2023]
Abstract
The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed.
Collapse
Affiliation(s)
- Sapan J Patel
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA.,Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Costel C Darie
- Clarkson University, Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Bayard D Clarkson
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, New York, NY, USA
| |
Collapse
|
14
|
Dicker D, Feldman BS, Leventer-Roberts M, Benis A. Obesity or smoking: Which factor contributes more to the incidence of myocardial infarction? Eur J Intern Med 2016; 32:43-6. [PMID: 27151319 DOI: 10.1016/j.ejim.2016.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/06/2016] [Accepted: 03/29/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Comparing the contributions of smoking and obesity to the risk of myocardial infarction (MI) can help prioritize behavioral modifications. The objective of this study was to determine the relative risk of smoking, obesity and the joint burden on the risk of MI. METHODS This is a retrospective cohort study of data accessed from electronic medical records of the largest health care organization in Israel. The study population included all 738,380 members of Clalit Health Services, with at least one smoking status and one BMI assessment recorded in 2009 or 2010, aged 40-74years, who were MI-free before 2009. Obesity was defined as BMI >30kg/m(2). New and primary MI between January 1 and December 31, 2011 were recorded. RESULTS Rates of MI were: 0.18% for non-obese never smokers, 0.25% for obese never smokers, 0.40% for non-obese past smokers, 0.50% for obese past smokers, 0.53% for non-obese current smokers and 0.66% for obese current smokers. Among non-obese individuals, past smokers and current smokers had a greater risk of MI than did never smokers, after adjusting for age, gender and socioeconomic position (OR, 1.45; 95% CI, 1.23-1.70 and OR, 2.35; 95% CI, 2.10-2.63, respectively). The burden of obesity increased the risk of MI for never smokers but the burden of obesity did not elevate the risk of MI when combined with current or past smoking groups, after adjusting for comorbidities. CONCLUSIONS Past and, more so, current smoking confers greater risk for MI than obesity.
Collapse
Affiliation(s)
- Dror Dicker
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah Tikva, Israel.
| | - Becca S Feldman
- Clalit Research Institute, Chief Physician's Office, Clalit Health Services, Tel Aviv, Israel
| | - Maya Leventer-Roberts
- Clalit Research Institute, Chief Physician's Office, Clalit Health Services, Tel Aviv, Israel; Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arriel Benis
- Clalit Research Institute, Chief Physician's Office, Clalit Health Services, Tel Aviv, Israel
| |
Collapse
|
15
|
Titz B, Sewer A, Schneider T, Elamin A, Martin F, Dijon S, Luettich K, Guedj E, Vuillaume G, Ivanov NV, Peck MJ, Chaudhary NI, Hoeng J, Peitsch MC. Alterations in the sputum proteome and transcriptome in smokers and early-stage COPD subjects. J Proteomics 2015; 128:306-20. [DOI: 10.1016/j.jprot.2015.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/15/2015] [Indexed: 12/15/2022]
|
16
|
Baraniuk JN, Casado B, Pannell LK, McGarvey PB, Boschetto P, Luisetti M, Iadarola P. Protein networks in induced sputum from smokers and COPD patients. Int J Chron Obstruct Pulmon Dis 2015; 10:1957-75. [PMID: 26396508 PMCID: PMC4576903 DOI: 10.2147/copd.s75978] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Subtypes of cigarette smoke-induced disease affect different lung structures and may have distinct pathophysiological mechanisms. OBJECTIVE To determine if proteomic classification of the cellular and vascular origins of sputum proteins can characterize these mechanisms and phenotypes. SUBJECTS AND METHODS Individual sputum specimens from lifelong nonsmokers (n=7) and smokers with normal lung function (n=13), mucous hypersecretion with normal lung function (n=11), obstructed airflow without emphysema (n=15), and obstruction plus emphysema (n=10) were assessed with mass spectrometry. Data reduction, logarithmic transformation of spectral counts, and Cytoscape network-interaction analysis were performed. The original 203 proteins were reduced to the most informative 50. Sources were secretory dimeric IgA, submucosal gland serous and mucous cells, goblet and other epithelial cells, and vascular permeability. RESULTS Epithelial proteins discriminated nonsmokers from smokers. Mucin 5AC was elevated in healthy smokers and chronic bronchitis, suggesting a continuum with the severity of hypersecretion determined by mechanisms of goblet-cell hyperplasia. Obstructed airflow was correlated with glandular proteins and lower levels of Ig joining chain compared to other groups. Emphysema subjects' sputum was unique, with high plasma proteins and components of neutrophil extracellular traps, such as histones and defensins. In contrast, defensins were correlated with epithelial proteins in all other groups. Protein-network interactions were unique to each group. CONCLUSION The proteomes were interpreted as complex "biosignatures" that suggest distinct pathophysiological mechanisms for mucin 5AC hypersecretion, airflow obstruction, and inflammatory emphysema phenotypes. Proteomic phenotyping may improve genotyping studies by selecting more homogeneous study groups. Each phenotype may require its own mechanistically based diagnostic, risk-assessment, drug- and other treatment algorithms.
Collapse
Affiliation(s)
- James N Baraniuk
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, USA
| | - Begona Casado
- Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, USA
| | - Lewis K Pannell
- Proteomics and Mass Spectrometry Laboratory, Mitchell Cancer Center, University of South Alabama, Mobile, AL, USA
| | - Peter B McGarvey
- Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA
| | - Piera Boschetto
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maurizio Luisetti
- SC Pneumologia, Dipartimento Medicina Molecolare, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Paolo Iadarola
- Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
17
|
A functional proteomics approach to the comprehension of sarcoidosis. J Proteomics 2015; 128:375-87. [PMID: 26342673 DOI: 10.1016/j.jprot.2015.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary sarcoidosis (Sar) is an idiopathic disease histologically typified by non-caseating epitheliod cell sarcoid granulomas. A cohort of 37 Sar patients with chronic persistent pulmonary disease was described in this study. BAL protein profiles from 9 of these Sar patients were compared with those from 8 smoker (SC) and 10 no-smoker controls (NSC) by proteomic approach. Principal Component Analysis was performed to clusterize the samples in the corresponding conditions highlighting a differential pattern profiles primarily in Sar than SC. Spot identification reveals thirty-four unique proteins involved in lipid, mineral, and vitamin Dmetabolism, and immuneregulation of macrophage function. Enrichment analysis has been elaborated by MetaCore, revealing 14-3-3ε, α1-antitrypsin, GSTP1, and ApoA1 as "central hubs". Process Network as well as Pathway Maps underline proteins involved in immune response and inflammation induced by complement system, innate inflammatory response and IL-6signalling. Disease Biomarker Network highlights Tuberculosis and COPD as pathologies that share biomarkers with sarcoidosis. In conclusion, Sar protein expression profile seems more similar to that of NSC than SC, conversely to other ILDs. Moreover, Disease Biomarker Network revealed several common features between Sar and TB, exhorting to orientate the future proteomics investigations also in comparative BALF analysis of Sar and TB.
Collapse
|
18
|
Chan YL, Saad S, Simar D, Oliver B, McGrath K, Reyk DV, Bertrand PP, Gorrie C, Pollock C, Chen H. Short term exendin-4 treatment reduces markers of metabolic disorders in female offspring of obese rat dams. Int J Dev Neurosci 2015; 46:67-75. [PMID: 26287659 DOI: 10.1016/j.ijdevneu.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Maternal obesity imposes significant health risks in the offspring including diabetes and dyslipidemia. We previously showed that the hypoglycaemic agent exendin-4 (Ex-4) administered from weaning can reverse the maternal impact of 'transmitted disorders' in such offspring. However daily injection for six-weeks was required and the beneficial effect may lapse upon drug withdrawal. This study aimed to investigate whether short term Ex-4 treatment during suckling period in a rodent model can reverse transmitted metabolic disorders due to maternal obesity. METHODS Maternal obesity was induced in female Sprague Dawley rats by high-fat diet feeding for 6 weeks, throughout gestation and lactation. Female offspring were treated with Ex-4 (5μg/kg/day) between postnatal day (P) 4 and 14. Female offspring were harvested at weaning (P20). Lipid and glucose metabolic markers were measured in the liver and fat. Appetite regulators were measured in the plasma and hypothalamus. RESULTS Maternal obesity significantly increased body weight, fat mass, and liver weight in the offspring. There was an associated inhibition of peroxisomal proliferator activated receptor gamma coactivator 1α (PGC1α), increased fatty acid synthase (FASN) expression in the liver, and reduced adipocyte triglyceride lipase (ATGL) expression. It also increased the plasma gut hormone ghrelin and reduced glucagon-like peptide-1. Ex-4 treatment partially reversed the maternal impact on adiposity and impaired lipid metabolism in the offspring, with increased liver PGC1α and inhibition of FASN mRNA expression. Ex-4 treatment also increased the expression of a novel fat depletion gene a2-zinc-glycoprotein 1 in the fat tissue. CONCLUSION Short term Ex-4 treatment during the suckling period significantly improved the metabolic profile in the offspring from the obese mothers at weaning. Long-term studies are needed to follow such offspring to adulthood to examine the sustained effects of Ex-4 in preventing the development of metabolic disease.
Collapse
Affiliation(s)
- Yik Lung Chan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Sonia Saad
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - David van Reyk
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Paul P Bertrand
- School of Medical Sciences, RMIT University, VIC, 3001, Australia
| | - Cathy Gorrie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Carol Pollock
- Department of Medicine, Kolling Institute of Medical Research, The University of Sydney, Sydney, NSW 2065, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
19
|
Xu Y, Hu B, Alnajm SS, Lu Y, Huang Y, Allen-Gipson D, Cheng F. SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression. PLoS One 2015; 10:e0128326. [PMID: 26010234 PMCID: PMC4444269 DOI: 10.1371/journal.pone.0128326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information for drug development against smoking-related diseases. The SEGEL web server is available online at http://www.chengfeng.info/smoking_database.html.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Brian Hu
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Sammy S. Alnajm
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Yin Lu
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
| | - Yangxin Huang
- Department of Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- Division of Allergy and Clinical Immunology, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- Department of Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Tsai JS, Chen SC, Huang KC, Lue BH, Lee LT, Chiu TY, Chen CY, Guo FR, Chuang LM. Plasma zinc α2-glycoprotein levels are elevated in smokers and correlated with metabolic syndrome. Eur J Clin Invest 2015; 45:452-9. [PMID: 25708842 DOI: 10.1111/eci.12425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/18/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Smoking is a strong risk factor of metabolic syndrome. Zinc α2-glycoprotein (ZAG) is a protein involved in metabolic syndrome. This study aims to investigate the effect of smoking on plasma ZAG levels and its relations to metabolic syndrome. MATERIALS AND METHODS A group of 41 cigarette smokers and 47 non-smokers were enrolled. ZAG levels were measured to correlate to participants' demographic and metabolic parameters. RESULTS Plasma ZAG levels of smokers were higher than those of controls (P < 0.0001). Plasma ZAG levels were positively correlated with male gender (P = 0.0002), number of cigarettes smoked per day (P < 0.0001), smoking duration in years (P < 0.0001), smoking index (P < 0.0001) and nicotine dependence score (P < 0.0001). In the multiple regression analysis, smoking was a strong independent factor affecting plasma ZAG levels (P = 0.0034). Plasma ZAG levels elevated progressively with the number of metabolic syndrome components (P = 0.0143). In the multiple regression analysis, plasma ZAG was an independent factor for metabolic syndrome. CONCLUSIONS Plasma ZAG levels are high in smokers and correlate with metabolic syndrome. Our results indicate ZAG is an independent risk factor, but also interacted with smoking, for the metabolic syndrome.
Collapse
Affiliation(s)
- Jaw-Shiun Tsai
- Department of Family Medicine, College of Medicine, National Taiwan University and Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gupta S, Hassan S, Bhatt VR, Abdul Sater H, Dilawari A. Lung cancer trends: smoking, obesity, and sex assessed in the Staten Island University's lung cancer patients. Int J Gen Med 2014; 7:333-7. [PMID: 25061333 PMCID: PMC4085324 DOI: 10.2147/ijgm.s55806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction The incidence of lung cancer in the United States decreased by 1.8% from 1991 to 2005 while it increased by 0.5% in females. We assessed whether nonsmokers afflicted with lung cancer at Staten Island University Hospital are disproportionately female in comparison to national averages. We also evaluated different factors including race, histology, and body mass index (BMI) in correlation with smoking history. Methods A retrospective chart review was conducted from 2005 to 2011 on 857 patients. Patients were divided into two groups according to their smoking status: current or ever-smokers, and former or never-smokers. A chi-square test for categorical data and multivariate logistic regression analyses was used to study the relation between BMI and the other clinical and demographic data. Results Forty-nine percent of patients were men and 51% were women with a mean age at diagnosis of 67.8 years. Current smokers were most common (50.2%) followed by ever-smokers (18.2%), former smokers (15.8%) and never-smokers (15.6%). Forty eight percent had stage IV lung cancer upon presentation. Never-smokers with lung cancer were 24 times more likely to be females. However, the proportion of female former smokers (31.6%) was lower than the proportion of male former smokers (68.4%) (P=0.001). There was no significant association between American Joint Committee on Cancer (AJCC) stage, sex, race, and histological type in the two smoking groups. Current/ever-smokers tended to be younger at age of diagnosis (P=0.0003). BMI was lower in the current/ever-smokers (26.8 kg/m2) versus former/never-smokers (28.8) in males (P=0.0005). BMI was significantly higher in males (30.26) versus females (25.25) in the never-smoker category (P=0.004). Current smokers, compared to others, had a lower BMI in males (26.4 versus 28.3; P=0.0001) and females (25.5 versus 26.9; P=0.013) but the mean BMI for all groups was in the overweight/obese range. Conclusion Our population of lung cancer patients although demographically distinct, reflects a similar proportion of afflicted nonsmokers to the national population. Smoking is a major risk factor for lung cancer, but there is also a possible direct correlation with BMI that would support obesity as a potential risk factor for lung cancer.
Collapse
Affiliation(s)
- Shilpi Gupta
- Hematology-Oncology, Staten Island University Hospital, Staten Island, NY, USA
| | - Samer Hassan
- Hematology-Oncology, Staten Island University Hospital, Staten Island, NY, USA
| | - Vijaya R Bhatt
- Hematology-Oncology, Nebraska Medical Ctr, Omaha, NE, USA
| | | | - Asma Dilawari
- Hematology-Oncology, MedStar Georgetown University Hospital, Olney, Maryland, USA
| |
Collapse
|
22
|
Ung CY, Lam SH, Zhang X, Li H, Zhang L, Li B, Gong Z. Inverted expression profiles of sex-biased genes in response to toxicant perturbations and diseases. PLoS One 2013; 8:e56668. [PMID: 23457601 PMCID: PMC3573008 DOI: 10.1371/journal.pone.0056668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 01/16/2013] [Indexed: 11/18/2022] Open
Abstract
The influence of sex factor is widely recognized in various diseases, but its molecular basis, particularly how sex-biased genes, those with sexually dimorphic expression, behave in response to toxico-pathological changes is poorly understood. In this study, zebrafish toxicogenomic data and transcriptomic data from human pathological studies were analysed for the responses of male- and female-biased genes. Our analyses revealed obvious inverted expression profiles of sex-biased genes, where affected males tended to up-regulate genes of female-biased expression and down-regulate genes of male-biased expression, and vice versa in affected females, in a broad range of toxico-pathological conditions. Intriguingly, the extent of these inverted profiles correlated well to the susceptibility or severity of a given toxico-pathological state, suggesting that inverted expression profiles of sex-biased genes observed in this study can be used as important indicators to assess biological disorders.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
- Bioinformatics Programme, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (CYU); (ZG)
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Xun Zhang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Hu Li
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Louxin Zhang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
- Department of Mathematics, National University of Singapore, Kent Ridge, Singapore
| | - Baowen Li
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Kent Ridge, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore
- * E-mail: (CYU); (ZG)
| |
Collapse
|
23
|
Hwang S. Comparison and evaluation of pathway-level aggregation methods of gene expression data. BMC Genomics 2012; 13 Suppl 7:S26. [PMID: 23282027 PMCID: PMC3521227 DOI: 10.1186/1471-2164-13-s7-s26] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Microarray experiments produce expression measurements in genomic scale. A way to derive functional understanding of the data is to focus on functional sets of genes, such as pathways, instead of individual genes. While a common practice for the pathway-level analysis has been functional enrichment analysis such as over-representation analysis and gene set enrichment analysis, an alternative approach has also been explored. In this approach, gene expression data are first aggregated at pathway level to transform the original data into a compact representation in which each row corresponds to a pathway instead of a gene. Thereafter the pathway expression data can be used for differential expression and classification analyses in pathway space, leveraging existing algorithms usually applied to gene expression data. While several studies have proposed the pathway-level aggregation methods, it remains unclear how they compare with one another, since the evaluations were done to a limited extent. Thus this study presents a comprehensive evaluation of six most prominent aggregation methods. Results The compared methods include five existing methods--mean of all member genes (Mean all), mean of condition-responsive genes (Mean CORGs), analysis of sample set enrichment scores (ASSESS), principal component analysis (PCA), and partial least squares (PLS)--and a variant of an existing method (Mean top 50%, averaging top half of member genes). Comprehensive and stringent benchmarking was performed by collecting seven pairs of related but independent datasets encompassing various phenotypes. Aggregation was done in the space of KEGG pathways. Performance of the methods was assessed by classification accuracy validated both internally and externally, and by examining the correlative extent of pathway signatures between the dataset pairs. The assessment revealed that (i) the best accuracy and correlation were obtained from ASSESS and Mean top 50%, (ii) Mean all showed the lowest accuracy, and (iii) Mean CORGs and PLS gave rise to the largest extent of discordance in the pathway signature correlation. Conclusions The two best performing method (ASSESS and Mean top 50%) are suggested to be preferred. The benchmarking analysis also suggests that there is both room and necessity for developing a novel method for pathway-level aggregation.
Collapse
Affiliation(s)
- Seungwoo Hwang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.
| |
Collapse
|
24
|
Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol Life Sci 2012; 69:3341-3350. [PMID: 22689099 DOI: 10.1007/s00018-012-1027-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/23/2012] [Accepted: 05/07/2012] [Indexed: 01/02/2023]
Abstract
Lung cancer is the leading cause of cancer death for both men and women worldwide. Since most of the symptoms found for lung cancer are nonspecific, diagnosis is mostly done at late and progressed stage with the consecutive poor therapy outcome. Effective early detection techniques are sorely needed. The emerging field of salivary diagnostics could provide scientifically credible, easy-to-use, non-invasive and cost-effective detection methods. Recent advances have allowed us to develop discriminatory salivary biomarkers for a variety of diseases from oral to systematic diseases. In this study, salivary transcriptomes of lung cancer patients were profiled and led to the discovery and pre-validation of seven highly discriminatory transcriptomic salivary biomarkers (BRAF, CCNI, EGRF, FGF19, FRS2, GREB1, and LZTS1). The logistic regression model combining five of the mRNA biomarkers (CCNI, EGFR, FGF19, FRS2, and GREB1) could differentiate lung cancer patients from normal control subjects, yielding AUC value of 0.925 with 93.75 % sensitivity and 82.81 % specificity in the pre-validation sample set. These salivary mRNA biomarkers possess the discriminatory power for the detection of lung cancer. This report provides the proof of concept of salivary biomarkers for the non-invasive detection of the systematic disease. These results poised the salivary biomarkers for the initiation of a multi-center validation in a definitive clinical context.
Collapse
|
25
|
Lin YS, Caffrey JL, Hsu PC, Chang MH, Faramawi MF, Lin JW. Environmental exposure to dioxin-like compounds and the mortality risk in the U.S. population. Int J Hyg Environ Health 2012; 215:541-6. [PMID: 22429684 DOI: 10.1016/j.ijheh.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 01/16/2012] [Accepted: 02/11/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Little is known about the mortality risk associated with chronic dioxin exposure in the general U.S. populations. OBJECTIVE To explore the association between dioxin-like chemicals and mortality risk in a large population-based cohort study. METHODS The analysis included 2361 subjects aged 40 years or older from the 1999-2004 National Health and Nutrition Examination Survey (NHANES). Exposure to a mixture of dioxin-like chemicals, including dibenzo-p-dioxins, dibenzofurans, and polychlorinated biphenyls was estimated using toxic equivalency values (TEQs) calculated with 2005 World Health Organization toxic equivalency factors. All-cause and cause-specific mortalities were obtained from the NHANES-linked follow-up data through December 31, 2006. Cox proportional-hazards models were applied to assess the associations of interest. RESULTS A total of 242 deaths occurred during the follow-up period, including 75 from cardiovascular disease and 72 from cancer. There was an increased mortality risk associated with logarithmically expressed dioxin TEQs for all-cause deaths (hazard ratio=1.19, 95% confidence interval=1.02-1.39, p=0.02). Similar graded dose-response trends were found for cardiovascular and cancer mortality which did not reach statistical significance. CONCLUSIONS In general, higher dioxin exposure is associated with an increased mortality risk among subjects aged 40 and above. The cause-specific analyses and responsible mechanisms will require further investigation.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Environmental and Occupational Health, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | | | | | | | | |
Collapse
|
26
|
Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DTW. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics 2011; 11:M111.012112. [PMID: 22096114 DOI: 10.1074/mcp.m111.012112] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is often asymptomatic or causes only nonspecific symptoms in its early stages. Early detection represents one of the most promising approaches to reduce the growing lung cancer burden. Human saliva is an attractive diagnostic fluid because its collection is less invasive than that of tissue or blood. Profiling of proteins in saliva over the course of disease progression could reveal potential biomarkers indicative of oral or systematic diseases, which may be used extensively in future medical diagnostics. There were 72 subjects enrolled in this study for saliva sample collection according to the approved protocol. Two-dimensional difference gel electrophoresis combined with MS was the platform for salivary proteome separation, quantification, and identification from two pooled samples. Candidate proteomic biomarkers were verified and prevalidated by using immunoassay methods. There were 16 candidate protein biomarkers discovered by two-dimensional difference gel electrophoresis and MS. Three proteins were further verified in the discovery sample set, prevalidation sample set, and lung cancer cell lines. The discriminatory power of these candidate biomarkers in lung cancer patients and healthy control subjects can reach 88.5% sensitivity and 92.3% specificity with AUC = 0.90. This preliminary data report demonstrates that proteomic biomarkers are present in human saliva when people develop lung cancer. The discriminatory power of these candidate biomarkers indicate that a simple saliva test might be established for lung cancer clinical screening and detection.
Collapse
Affiliation(s)
- Hua Xiao
- Dental Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Pérez MS, Tellechea ML, Aranguren F, Taverna MJ, Rodríguez RG, Meroño T, Brites F, Poskus E, Frechtel GD. The rs1801278 G>A polymorphism of IRS-1 is associated with metabolic syndrome in healthy nondiabetic men. Modulation by cigarette smoking status. Diabetes Res Clin Pract 2011; 93:e95-7. [PMID: 21645940 DOI: 10.1016/j.diabres.2011.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/27/2011] [Accepted: 05/09/2011] [Indexed: 01/29/2023]
Abstract
AIMS To explore associations between IRS-1 rs1801278 G>A polymorphism and metabolic syndrome (MS). METHODS rs1801278 G>A was genotyped in 610 healthy Argentinian men. RESULTS GA carriers had lower risk of MS (OR=0.52, P=0.045), particularly among smokers (OR=0.10, P=0.006). CONCLUSIONS rs1801278 GA carriers had lower risk of MS, especially among smokers.
Collapse
Affiliation(s)
- María Silvia Pérez
- Laboratory of Molecular Biology, Department of Genetics and Molecular Biology, School of Pharmacy and Biochemistry, University of Buenos Aires (UBA), Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gower AC, Steiling K, Brothers JF, Lenburg ME, Spira A. Transcriptomic studies of the airway field of injury associated with smoking-related lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2011; 8:173-9. [PMID: 21543797 PMCID: PMC3159071 DOI: 10.1513/pats.201011-066ms] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/30/2010] [Indexed: 12/12/2022]
Abstract
The "field of injury" hypothesis proposes that exposure to an inhaled insult such as cigarette smoke elicits a common molecular response throughout the respiratory tract. This response can therefore be quantified in any airway tissue, including readily accessible epithelial cells in the bronchus, nose, and mouth. High-throughput technologies, such as whole-genome gene expression microarrays, can be employed to catalog the physiological consequences of such exposures in the airway epithelium. Pulmonary diseases such as chronic obstructive pulmonary disease, lung cancer, and asthma are also thought to be associated with a field of injury, and in patients with these diseases, airway epithelial cells can be a useful surrogate for diseased tissue that is often difficult to obtain. Global measurement of mRNA and microRNA expression in these cells can provide useful information about the molecular pathogenesis of such diseases and may be useful for diagnosis and for predicting prognosis and response to therapy. In this review, our aim is to summarize the history and state of the art of such "transcriptomic" studies in the human airway epithelium, especially in smoking and smoking-related lung diseases, and to highlight future directions for this field.
Collapse
Affiliation(s)
- Adam C. Gower
- Bioinformatics Program, Boston University, Section of Computational Biomedicine, Department of Medicine, and Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Katrina Steiling
- Bioinformatics Program, Boston University, Section of Computational Biomedicine, Department of Medicine, and Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - John F. Brothers
- Bioinformatics Program, Boston University, Section of Computational Biomedicine, Department of Medicine, and Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Marc E. Lenburg
- Bioinformatics Program, Boston University, Section of Computational Biomedicine, Department of Medicine, and Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Avrum Spira
- Bioinformatics Program, Boston University, Section of Computational Biomedicine, Department of Medicine, and Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
29
|
Kleppinger A, Litt MD, Kenny AM, Oncken CA. Effects of smoking cessation on body composition in postmenopausal women. J Womens Health (Larchmt) 2010; 19:1651-7. [PMID: 20718625 PMCID: PMC2965692 DOI: 10.1089/jwh.2009.1853] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Smoking cessation is associated with weight gain, but the effects of smoking cessation on measures of body composition (BC) have not been adequately evaluated. The purpose of this study is to examine the effects of 16 months of cigarette abstinence on areas of BC measured by dual-energy x-ray absorptiometry (DXA). METHODS One hundred fifty-two postmenopausal women participated in a smoking cessation study using the nicotine patch. Secondary analyses were conducted on data from 119 subjects (age 56 +/- 7 years, range 41-78 years) who had had DXA scans at baseline and 16 months later. Participants were classified either as quitters (self-reported cigarette abstinence confirmed with exhaled carbon monoxide [co] RESULTS Quitters significantly increased body weight (p < 0.001), fat mass (p < 0.001), muscle mass (p = 0.04), and functional muscle mass (p = 0.004) over time, when baseline BC measures and other confounding factors were controlled. Regression analysis indicated change in BC could not be accounted for by calorie intake or physical activity. CONCLUSIONS Smoking cessation may be associated with increased fat and muscle mass in postmenopausal women. The novel finding of an increase in functional muscle mass suggests that smoking cessation could increase functional capacity. Further studies need to replicate these findings and examine mechanisms of these effects.
Collapse
Affiliation(s)
- Alison Kleppinger
- Center on Aging, University of Connecticut Health Center, Farmington, Connecticut 6030-6147, USA.
| | | | | | | |
Collapse
|
30
|
Wang R, Wang G, Ricard MJ, Ferris B, Strulovici-Barel Y, Salit J, Hackett NR, Gudas LJ, Crystal RG. Smoking-induced upregulation of AKR1B10 expression in the airway epithelium of healthy individuals. Chest 2010; 138:1402-10. [PMID: 20705797 DOI: 10.1378/chest.09-2634] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The aldo-keto reductase (AKR) gene superfamily codes for monomeric, soluble reduced nicotinamide adenine dinucleotide phosphate-dependent oxidoreductases that mediate elimination reactions. AKR1B10, an AKR that eliminates retinals, has been observed as upregulated in squamous metaplasia and non-small cell lung cancer and has been suggested as a diagnostic marker specific to tobacco-related carcinogenesis. We hypothesized that upregulation of AKR1B10 expression may be initiated in healthy smokers prior to the development of evidence of lung cancer. METHODS Expression of AKR1B10 was assessed at the mRNA level using microarrays with TaqMan confirmation in the large airway epithelium (21 healthy nonsmokers, 31 healthy smokers) and small airway epithelium (51 healthy nonsmokers, 58 healthy smokers) obtained by fiberoptic bronchoscopy and brushing. RESULTS Compared with healthy nonsmokers, AKR1B10 mRNA levels were significantly upregulated in both large and small airway epithelia of healthy smokers. Consistent with the mRNA data, AKR1B10 protein was significantly upregulated in the airway epithelium of healthy smokers as assessed by Western blot analysis and immunohistochemistry, with AKR1B10 expressed in both differentiated and basal cells. Finally, cigarette smoke extract mediated upregulation of AKR1B10 in airway epithelial cells in vitro, and transfection of AKR1B10 into airway epithelial cells enhanced the conversion of retinal to retinol. CONCLUSIONS Smoking per se mediates upregulation of AKR1B10 expression in the airway epithelia of healthy smokers with no evidence of lung cancer. In the context of these observations and the link of AKR1B10 to the metabolism of retinals and to lung cancer, the smoking-induced upregulation of AKR1B10 may be an early process in the multiple events leading to lung cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dvorak A, Tilley AE, Shaykhiev R, Wang R, Crystal RG. Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol 2010; 44:465-73. [PMID: 20525805 DOI: 10.1165/rcmb.2009-0453oc] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human airway epithelial cells cultured in vitro at the air-liquid interface (ALI) form a pseudostratified epithelium that forms tight junctions and cilia, and produces mucin. These cells are widely used in models of differentiation, injury, and repair. To assess how closely the transcriptome of ALI epithelium matches that of in vivo airway epithelial cells, we used microarrays to compare the transcriptome of human large airway epithelial cells cultured at the ALI with the transcriptome of large airway epithelium obtained via bronchoscopy and brushing. Gene expression profiling showed that global gene expression correlated well between ALI cells and brushed cells, but with some differences. Gene expression patterns mirrored differences in proportions of cell types (ALIs have higher percentages of basal cells, whereas brushed cells have higher percentages of ciliated cells), that is, ALI cells expressed higher levels of basal cell-related genes, and brushed cells expressed higher levels of cilia-related genes. Pathway analysis showed that ALI cells had increased expression of cell cycle and proliferation genes, whereas brushed cells had increased expression of cytoskeletal organization and humoral immune response genes. Overall, ALI cells provide a good representation of the in vivo airway epithelial transcriptome, but for some biologic questions, the differences between in vitro and in vivo environments need to be considered.
Collapse
Affiliation(s)
- Anna Dvorak
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Control of adipose mass is important in the treatment of both cachexia and obesity. This review focuses on a novel adipokine, zinc-alpha2-glycoprotein (ZAG), which plays an important role in the mobilization and utilization of stored lipids. RECENT FINDINGS An increased lipolysis is responsible for the loss of adipose tissue in cachexia, through an increased lipolytic response to catecholamines, arising from an increased expression of hormone-sensitive lipase. In obesity, there is a decreased response of adipocytes to catecholamines and reduced expression of hormone-sensitive lipase. ZAG was identified as a lipolytic factor produced by certain cachexia-inducing tumours, and subsequently adipose tissue (both white and brown), the expression of which was found to increase in cachexia. In contrast, ZAG expression is low in obesity. ZAG not only increases lipolysis in white adipose tissue through the classical cyclic AMP pathway, but also stimulates an increase in expression of uncoupling protein-1 in brown adipose tissue, which would stimulate utilization of the release lipid to generate heat. Homozygous ZAG null mice show an increase in body weight, especially when fed a high-fat diet, whereas adipocytes from such animals show a resistance to lipolysis by catecholamines and agents that increase cyclic AMP levels. SUMMARY These results suggest that ZAG may play an important role in the regulation of adipose mass in obesity and cachexia.
Collapse
|