1
|
Olave NC, Halloran B, Ambalavanan N. FGF2 is secreted in extracellular vesicles from lung cells. Am J Physiol Lung Cell Mol Physiol 2024; 327:L359-L370. [PMID: 39010825 PMCID: PMC11444508 DOI: 10.1152/ajplung.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
The 18-kDa isoform of basic fibroblast growth factor (bFGF/FGF2) lacks a conventional signal peptide sequence and is exported by a novel membrane-associated transport pathway. Extracellular vesicles (EVs) are increasingly recognized as mediators of intercellular communication in the lung, and our prior work demonstrates that EVs carry cargo that contributes to hyperoxic lung injury and are biomarkers for bronchopulmonary dysplasia. We used primary human bronchial epithelial (HBE), pulmonary artery endothelial (HPAE), and fibroblast (HNF) cells to determine whether FGF2 was secreted in EVs. EVs were isolated by ultracentrifugation from HBE, HPAE, and HNF exposed to either normoxia or hyperoxia, followed by nanoparticle tracking analysis and electron microscopy. Hyperoxia exposure increased the total EV number. All three cell types released FGF2-18kDa both directly into the extracellular environment (secretome), as well as in EVs. HBE released more FGF2-18kDa in EVs during hyperoxia, and these were internalized and localized to both nuclei and cytoplasm of recipient cells. By co-immunoprecipitation, we identified potential binding partners of FGF2-18kDa in the nuclei, including histone 1.2 (H1.2) binding protein, that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. FGF2-18kDa interaction with H1.2 binding protein may indicate a mechanism by which FGF2 secreted in EVs modulates cellular processes. FGF2 was also found to increase angiogenesis by Matrigel assay. Further studies are necessary to determine the biological relevance of FGF2 in EVs as modulators of lung injury and disease.NEW & NOTEWORTHY We found that multiple lung cell types release basic fibroblast growth factor (FGF2)-18kDa both directly into the extracellular environment (secretome), as well as in extracellular vesicles (EVs). Bronchial epithelial cells released more FGF2-18kDa in EVs during hyperoxia, which could be internalized rapidly by recipient cells. We also identified potential binding partners of FGF2-18kDa in nuclei that may mediate downstream effects that do not involve FGF2 binding to cell surface receptors. We also confirmed a potential angiogenic role for FGF2-18kDa.
Collapse
Affiliation(s)
- Nelida C Olave
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Brian Halloran
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Boucetta H, Zhang L, Sosnik A, He W. Pulmonary arterial hypertension nanotherapeutics: New pharmacological targets and drug delivery strategies. J Control Release 2024; 365:236-258. [PMID: 37972767 DOI: 10.1016/j.jconrel.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, serious, and incurable disease characterized by high lung pressure. PAH-approved drugs based on conventional pathways are still not exhibiting favorable therapeutic outcomes. Drawbacks like short half-lives, toxicity, and teratogenicity hamper effectiveness, clinical conventionality, and long-term safety. Hence, approaches like repurposing drugs targeting various and new pharmacological cascades and/or loaded in non-toxic/efficient nanocarrier systems are being investigated lately. This review summarizes the status of conventional, repurposed, either in vitro, in vivo, and/or in clinical trials of PAH treatment. In-depth description, discussion, and classification of the new pharmacological targets and nanomedicine strategies with a description of all the nanocarriers that showed promising efficiency in delivering drugs are discussed. Ultimately, an illustration of the different nucleic acids tailored and nanoencapsulated within different types of nanocarriers to restore the pathways affected by this disease is presented.
Collapse
Affiliation(s)
- Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Lei Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
3
|
Thomson LM, Mancuso CA, Wolfe KR, Khailova L, Niemiec S, Ali E, DiMaria M, Mitchell M, Twite M, Morgan G, Frank BS, Davidson JA. The proteomic fingerprint in infants with single ventricle heart disease in the interstage period: evidence of chronic inflammation and widespread activation of biological networks. Front Pediatr 2023; 11:1308700. [PMID: 38143535 PMCID: PMC10748388 DOI: 10.3389/fped.2023.1308700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Children with single ventricle heart disease (SVHD) experience significant morbidity across systems and time, with 70% of patients experiencing acute kidney injury, 33% neurodevelopmental impairment, 14% growth failure, and 5.5% of patients suffering necrotizing enterocolitis. Proteomics is a method to identify new biomarkers and mechanisms of injury in complex physiologic states. Methods Infants with SVHD in the interstage period were compared to similar-age healthy controls. Serum samples were collected, stored at -80°C, and run on a panel of 1,500 proteins in single batch analysis (Somalogic Inc., CO). Partial Least Squares-Discriminant Analysis (PLS-DA) was used to compare the proteomic profile of cases and controls and t-tests to detect differences in individual proteins (FDR <0.05). Protein network analysis with functional enrichment was performed in STRING and Cytoscape. Results PLS-DA readily discriminated between SVHD cases (n = 33) and controls (n = 24) based on their proteomic pattern alone (Accuracy = 0.96, R2 = 0.97, Q2 = 0.80). 568 proteins differed between groups (FDR <0.05). We identified 25 up-regulated functional clusters and 13 down-regulated. Active biological systems fell into six key groups: angiogenesis and cell proliferation/turnover, immune system activation and inflammation, altered metabolism, neural development, gastrointestinal system, and cardiac physiology and development. Conclusions We report a clear differentiation in the circulating proteome of patients with SVHD and healthy controls with >500 circulating proteins distinguishing the groups. These proteomic data identify widespread protein dysregulation across multiple biologic systems with promising biological plausibility as drivers of SVHD morbidity.
Collapse
Affiliation(s)
- Lindsay M. Thomson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Christopher A. Mancuso
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly R. Wolfe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sierra Niemiec
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eiman Ali
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael DiMaria
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Max Mitchell
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mark Twite
- Department of Anesthesia, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gareth Morgan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin S. Frank
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jesse A. Davidson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Zhong (钟颖) Y, Yu (游博群) PB. Angiogenesis Redux: An Overall Protective Role of VEGF/KDR Signaling in the Microvasculature in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2023; 43:1784-1787. [PMID: 37675636 PMCID: PMC10803133 DOI: 10.1161/atvbaha.123.319839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Ying Zhong (钟颖)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul B. Yu (游博群)
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Punzalan FER, Cutiongco – de la Paz EMC, Nevado JJB, Magno JDA, Ona DID, Aman AYCL, Tiongson MDA, Llanes EJB, Reganit PFM, Tiongco RHP, Santos LEG, Aherrera JAM, Abrahan LL, Agustin CF, Bejarin AJP, Sy RG. The rs1458038 variant near FGF5 is associated with poor response to calcium channel blockers among Filipinos. Medicine (Baltimore) 2022; 101:e28703. [PMID: 35119014 PMCID: PMC8812666 DOI: 10.1097/md.0000000000028703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 01/08/2022] [Indexed: 01/04/2023] Open
Abstract
Genetic variation is known to affect response to calcium channel blockers (CCBs) among different populations. This study aimed to determine the genetic variations associated with poor response to this class of antihypertensive drugs among Filipinos.One hundred eighty one hypertensive participants on CCBs therapy were included in an unmatched case-control study. Genomic deoxyribonucleic acid were extracted and genotyped for selected genetic variants. Regression analysis was used to determine the association of genetic and clinical variables with poor response to medication.The variant rs1458038 near fibroblast growth factor 5 gene showed significant association with poor blood pressure-lowering response based on additive effect (CT genotype: adjusted OR 3.41, P = .001; TT genotype: adjusted OR 6.72, P < .001).These findings suggest that blood pressure response to calcium channels blockers among Filipinos with hypertension is associated with gene variant rs1458038 near fibroblast growth factor 5 gene. Further studies are recommended to validate such relationship of the variant to the CCB response.
Collapse
Affiliation(s)
- Felix Eduardo R. Punzalan
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Eva Maria C. Cutiongco – de la Paz
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Jose Jr. B. Nevado
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
| | - Jose Donato A. Magno
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Deborah Ignacia D. Ona
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Aimee Yvonne Criselle L. Aman
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Marc Denver A. Tiongson
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Elmer Jasper B. Llanes
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Paul Ferdinand M. Reganit
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Richard Henry P. Tiongco
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Lourdes Ella G. Santos
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Jaime Alfonso M. Aherrera
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Lauro L. Abrahan
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Charlene F. Agustin
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| | - Adrian John P. Bejarin
- Institute of Human Genetics, National Institutes of Health, University of the Philippines, Manila
- Philippine Genome Center, University of the Philippines, Diliman, Quezon City, Manila
| | - Rody G. Sy
- Department of Internal Medicine, University of the Philippines – Philippine General Hospital, Manila
| |
Collapse
|
6
|
Yang J, Ambade AS, Nies M, Griffiths M, Damico R, Vaidya D, Brandal S, Pauciulo MW, Lutz KA, Coleman AW, Nichols WC, Austin ED, Ivy D, Hassoun PM, Everett AD. Hepatoma-derived growth factor is associated with pulmonary vascular remodeling and PAH disease severity and survival. Pulm Circ 2022; 12:e12007. [PMID: 35506100 PMCID: PMC9052972 DOI: 10.1002/pul2.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Hepatoma-derived growth factor (HDGF) was previously shown to be associated with increased mortality in a small study of idiopathic and connective tissue disease-associated pulmonary arterial hypertension (PAH). In this study, we measured serum HDGF levels in a large multicenter cohort (total 2017 adult PAH-Biobank enrollees), we analyzed the associations between HDGF levels and various clinical measures using linear or logistic regression models. Higher HDGF levels were found to be significantly associated with worse pulmonary hemodynamics, prostacyclin treatment; among PAH subtypes, higher HDGF levels were most associated with portopulmonary hypertension (beta = 0.469, p < 0.0001). Both Kaplan-Meier curve and Cox proportional hazard regression demonstrated that higher HDGF levels are associated with a higher risk of mortality (COX hazard ratio 1.31, p < 0.0001). Further, in the Sugen hypoxia (SuHx) rat model, the highest HDGF levels were post-pulmonary circulation, and HDGF levels significantly increased with the development of PAH. In pulmonary arteries, immunohistochemistry staining showed that HDGF was highly expressed in pulmonary smooth muscle cells in both PAH patients and SuHx rats. In conclusion, we found that higher serum HDGF was linked with increased mortality, and associated with disease severity in a large multi-center adult PAH cohort (n = 2017). In the SuHX PAH models, circulating HDGF levels are pulmonary in origin and increase with PAH progression. HDGF may be actively involved in vascular remodeling in PAH.
Collapse
Affiliation(s)
- Jun Yang
- Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anjira S. Ambade
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Melanie Nies
- Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Megan Griffiths
- Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
- Division of Pediatric Cardiology, Department of Pediatrics, Vagelos College of Physicians and SurgeonsColumbia UniversityNew York CityNew YorkUSA
| | - Rachel Damico
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dhananjay Vaidya
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Epidemiology, School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Pediatrics, Biostatics Epidemiology, and Data Management CoreJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Stephanie Brandal
- Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael W. Pauciulo
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of MedicineChildren's Hospital Medical CenterCincinnatiOhioUSA
| | - Katie A. Lutz
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of MedicineChildren's Hospital Medical CenterCincinnatiOhioUSA
| | - Anna W. Coleman
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of MedicineChildren's Hospital Medical CenterCincinnatiOhioUSA
| | - William C. Nichols
- Division of Human Genetics, Department of Pediatrics, University of Cincinnati College of MedicineChildren's Hospital Medical CenterCincinnatiOhioUSA
| | - Eric D. Austin
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Dunbar Ivy
- Division of Cardiology, Department of Pediatrics, Heart Institute, Children's Hospital ColoradoUniversity of ColoradoAuroraColoradoUSA
| | - Paul M. Hassoun
- Department of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Allen D. Everett
- Department of PediatricsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
7
|
Research Progress on Pulmonary Arterial Hypertension and the Role of the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Axis in Pulmonary Arterial Hypertension. Cardiovasc Drugs Ther 2022; 36:363-370. [PMID: 33394361 PMCID: PMC7779643 DOI: 10.1007/s10557-020-07114-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 01/31/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a complex aetiology and high mortality. Functional and structural changes in the small pulmonary arteries lead to elevated pulmonary arterial pressure, resulting in right heart failure. The pathobiology of PAH is not fully understood, and novel treatment targets in PAH are desperately needed. The renin-angiotensin system is critical for maintaining homeostasis of the cardiovascular system. The system consists of the angiotensin converting enzyme (ACE)-angiotensin (Ang) II-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang-(1-7)-Mas receptor axis. The former, the ACE-Ang II-AT1R axis, is involved in vasoconstrictive and hypertensive actions along with cardiac and vascular remodelling. The latter, the ACE2-Ang-(1-7)-Mas axis, generally mediates counterbalancing effects against those mediated by the ACE-Ang II-AT1R axis. Based on established functions, the ACE2-Ang-(1-7)-Mas axis may represent a novel target for the treatment of PAH. This review focuses on recent advances in pulmonary circulation science and the role of the ACE2-Ang-(1-7)-Mas axis in PAH.
Collapse
|
8
|
Berghausen EM, Janssen W, Vantler M, Gnatzy-Feik LL, Krause M, Behringer A, Joseph C, Zierden M, Freyhaus HT, Klinke A, Baldus S, Alcazar MA, Savai R, Pullamsetti SS, Wong DW, Boor P, Zhao JJ, Schermuly RT, Rosenkranz S. Disrupted PI3K subunit p110α signaling protects against pulmonary hypertension and reverses established disease in rodents. J Clin Invest 2021; 131:136939. [PMID: 34596056 DOI: 10.1172/jci136939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Enhanced signaling via RTKs in pulmonary hypertension (PH) impedes current treatment options because it perpetuates proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs). Here, we demonstrated hyperphosphorylation of multiple RTKs in diseased human vessels and increased activation of their common downstream effector phosphatidylinositol 3'-kinase (PI3K), which thus emerged as an attractive therapeutic target. Systematic characterization of class IA catalytic PI3K isoforms identified p110α as the key regulator of pathogenic signaling pathways and PASMC responses (proliferation, migration, survival) downstream of multiple RTKs. Smooth muscle cell-specific genetic ablation or pharmacological inhibition of p110α prevented onset and progression of pulmonary hypertension (PH) as well as right heart hypertrophy in vivo and even reversed established vascular remodeling and PH in various animal models. These effects were attributable to both inhibition of vascular proliferation and induction of apoptosis. Since this pathway is abundantly activated in human disease, p110α represents a central target in PH.
Collapse
Affiliation(s)
- Eva M Berghausen
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Wiebke Janssen
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Marius Vantler
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Leoni L Gnatzy-Feik
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Max Krause
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Arnica Behringer
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Christine Joseph
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and
| | - Mario Zierden
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Henrik Ten Freyhaus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Anna Klinke
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Miguel A Alcazar
- Center for Molecular Medicine Cologne (CMMC) and.,Institute for Lung Health, member of the DZL, UGMLC, Giessen, Germany.,Department of Pediatric and Adolecent Medicine, University of Cologne, Cologne, Germany
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Dickson Wl Wong
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jean J Zhao
- Dana-Farber Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph T Schermuly
- Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,University of Giessen and Marburg Lung Center (UGMLC), and German Centre for Lung Research (DZL), Giessen, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Heart Center at the University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC) and.,Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Yang L, Zhou F, Zheng D, Wang D, Li X, Zhao C, Huang X. FGF/FGFR signaling: From lung development to respiratory diseases. Cytokine Growth Factor Rev 2021; 62:94-104. [PMID: 34593304 DOI: 10.1016/j.cytogfr.2021.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/31/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023]
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Feng Zhou
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China
| | - Dandan Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Chengguang Zhao
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
10
|
Mukherjee D, Konduri GG. Pediatric Pulmonary Hypertension: Definitions, Mechanisms, Diagnosis, and Treatment. Compr Physiol 2021; 11:2135-2190. [PMID: 34190343 PMCID: PMC8289457 DOI: 10.1002/cphy.c200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pediatric pulmonary hypertension (PPH) is a multifactorial disease with diverse etiologies and presenting features. Pulmonary hypertension (PH), defined as elevated pulmonary artery pressure, is the presenting feature for several pulmonary vascular diseases. It is often a hidden component of other lung diseases, such as cystic fibrosis and bronchopulmonary dysplasia. Alterations in lung development and genetic conditions are an important contributor to pediatric pulmonary hypertensive disease, which is a distinct entity from adult PH. Many of the causes of pediatric PH have prenatal onset with altered lung development due to maternal and fetal conditions. Since lung growth is altered in several conditions that lead to PPH, therapy for PPH includes both pulmonary vasodilators and strategies to restore lung growth. These strategies include optimal alveolar recruitment, maintaining physiologic blood gas tension, nutritional support, and addressing contributing factors, such as airway disease and gastroesophageal reflux. The outcome for infants and children with PH is highly variable and largely dependent on the underlying cause. The best outcomes are for neonates with persistent pulmonary hypertension (PPHN) and reversible lung diseases, while some genetic conditions such as alveolar capillary dysplasia are lethal. © 2021 American Physiological Society. Compr Physiol 11:2135-2190, 2021.
Collapse
Affiliation(s)
- Devashis Mukherjee
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| | - Girija G. Konduri
- Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Children’s Research Institute, Children’s Wisconsin, Milwaukee, Wisconsin, 53226 USA
| |
Collapse
|
11
|
Yamamura A, Nayeem MJ, Sato M. [Roles of growth factors on vascular remodeling in pulmonary hypertension]. Nihon Yakurigaku Zasshi 2021; 156:161-165. [PMID: 33952845 DOI: 10.1254/fpj.21006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pulmonary hypertension (PH) is defined as mean pulmonary arterial pressure at rest ≥25 mmHg. Pulmonary arterial hypertension (PAH) is classified as group 1 of PH and is a progressive and fatal disease of the pulmonary artery. The pathogenesis is sustained pulmonary vasoconstriction and pulmonary vascular remodeling, which cause progressive elevations in pulmonary vascular resistance and pulmonary arterial pressure. Elevated pulmonary arterial pressure leads to right heart failure and finally death. The pulmonary vascular remodeling is triggered by an increase in cytosolic Ca2+ concentration ([Ca2+]cyt). [Ca2+]cyt is regulated by the stimulation of vasoconstrictors and growth factors though their receptors and ion channels on the plasma membrane. It has been reported that the epidermal growth factor (EGF), fibroblast growth factor (FGF), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are involved in the development of PAH. Upon binding of these growth factors with their specific receptor tyrosine kinases, their receptors activate cytosolic Ca2+ signaling and signal transduction cascades to induce cell proliferation, differentiation, and migration. Expressions of some growth factors and their receptors upregulate in PAH patients, which contributes to the formation of vascular remodeling and plexiform lesions in PAH. We have recently found that enhanced Ca2+-sensing receptor (CaSR) function is involved the development of PAH and CaSR expression is upregulated by PDGF in pulmonary arterial smooth muscle cells (PASMCs) from idiopathic PAH patients. This review will be discussed the physiological and pathological roles of growth factors in PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University
| | | | | |
Collapse
|
12
|
Hong L, Ma X, Liu J, Luo Y, Lin J, Shen Y, Zhang L. Circular RNA-HIPK3 regulates human pulmonary artery endothelial cells function and vessel growth by regulating microRNA-328-3p/STAT3 axis. Pulm Circ 2021; 11:20458940211000234. [PMID: 33854768 PMCID: PMC8010839 DOI: 10.1177/20458940211000234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The proliferation and migration of pulmonary artery endothelial cells are the pathological basis of pulmonary vascular remodeling with pulmonary hypertension. Recent studies have shown that circular RNA (circRNA) regulates biological processes in various vascular diseases, including pulmonary arterial hypertension. It has been reported that circRNA regulates the vascular endothelial cells’ function. Therefore, circRNA may have crucial roles in human pulmonary artery endothelial cells (hPAECs) proliferation, migration, and tube formation in pulmonary arterial hypertension. In this study, we aimed to discover the role and mechanism of circular RNA HIPK3 (circHIPK3) in the proliferation and migration of pulmonary hypertension hPAECs. First, we used platelet-derived growth factor—stimulated hPAECs as a cellular model of pulmonary arterial hypertension. The results showed that platelet-derived growth factor promoted hPAECs proliferation, migration, and tube formation. Notably, platelet-derived growth factor upregulated the expression of circHIPK3 in hPAECs and regulated their proliferation, migration, and angiogenesis. Mechanistically, we confirmed miR-328-3p was copiously pulled down by circHIPK3 in hPAECs. Luciferase reporter and RNA immunoprecipitation assays further indicated the cytoplasmic interactions between circHIPK3 and miR-328-3p. Subsequently, we found that circHIPK3 might increase the expression of STAT3 by sponging miR-328-3p. Collectively, our results demonstrated that the circHIPK3-miR-328-3p-STAT3 axis contributed to the pathogenesis of pulmonary arterial hypertension by stimulating hPAECs proliferation, migration, and angiogenesis. The circHIPK3 has an accelerated role in pulmonary arterial hypertension development, implicating the potential values of circHIPK3 in pulmonary arterial hypertension therapy.
Collapse
Affiliation(s)
- Liuqing Hong
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Xiaoying Ma
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Jiyuan Liu
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Yinzhu Luo
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Jincai Lin
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Ying Shen
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| | - Liyan Zhang
- Department of Neonatology, The Children's Hospital of Fuzhou, Fuzhou, People's Republic of China
| |
Collapse
|
13
|
Csósza G, Karlócai K, Losonczy G, Müller V, Lázár Z. Growth factors in pulmonary arterial hypertension: Focus on preserving right ventricular function. Physiol Int 2020; 107:177-194. [PMID: 32692713 DOI: 10.1556/2060.2020.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease, characterized by increased vascular resistance leading to right ventricle (RV) failure. The extent of right ventricular dysfunction crucially influences disease prognosis; however, currently no therapies have specific cardioprotective effects. Besides discussing the pathophysiology of right ventricular adaptation in PAH, this review focuses on the roles of growth factors (GFs) in disease pathomechanism. We also summarize the involvement of GFs in the preservation of cardiomyocyte function, to evaluate their potential as cardioprotective biomarkers and novel therapeutic targets in PAH.
Collapse
Affiliation(s)
- G Csósza
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - K Karlócai
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - G Losonczy
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - V Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Z Lázár
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
14
|
Gorr MW, Sriram K, Muthusamy A, Insel PA. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension. Br J Pharmacol 2020; 177:3505-3518. [PMID: 32337710 DOI: 10.1111/bph.15074] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH, type 1 pulmonary hypertension) has a 3-year survival of ~50% and is in need of new, effective therapies. In PAH, remodelling of the pulmonary artery (PA) increases pulmonary vascular resistance and can result in right heart dysfunction and failure. Genetic mutations can cause PAH but it can also be idiopathic (IPAH). Enhanced contractility and proliferation of PA smooth muscle cells (PASMCs) are key contributors to the pathophysiology of PAH, but the underlying mechanisms are not well understood. EXPERIMENTAL APPROACH We utilized RNA-sequencing (RNA-seq) of IPAH and control patient-derived PASMCs as an unbiased approach to define differentially expressed (DE) genes that may identify new biology and potential therapeutic targets. KEY RESULTS Analysis of DE genes for shared gene pathways revealed increases in genes involved in cell proliferation and mitosis and decreases in a variety of gene sets, including response to cytokine signalling. ADGRG6/GPR126, an adhesion G protein-coupled receptor (GPCR), was increased in IPAH-PASMCs compared to control-PASMCs. Increased expression of this GPCR in control-PASMCs decreased their proliferation; siRNA knockdown of ADGRG6/GPR126 in IPAH-PASMCs tended to increase proliferation. CONCLUSION AND IMPLICATIONS These data provide insights regarding the expression of current and experimental PAH drug targets, GPCRs and GPCR-related genes as potentially new therapeutic targets in PAH-PASMCs. Overall, the findings identify genes and pathways that may contribute to IPAH-PASMC function and suggest that ADGRG6/GPR126 is a novel therapeutic target for IPAH.
Collapse
Affiliation(s)
- Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Colleges of Nursing and Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Abinaya Muthusamy
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Rol N, de Raaf MA, Sun XQ, Kuiper VP, da Silva Gonçalves Bos D, Happé C, Kurakula K, Dickhoff C, Thuillet R, Tu L, Guignabert C, Schalij I, Lodder K, Pan X, Herrmann FE, van Nieuw Amerongen GP, Koolwijk P, Vonk-Noordegraaf A, de Man FS, Wollin L, Goumans MJ, Szulcek R, Bogaard HJ. Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension. Cardiovasc Res 2020; 115:432-439. [PMID: 30032282 DOI: 10.1093/cvr/cvy186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 01/24/2023] Open
Abstract
Aims Pulmonary arterial hypertension (PAH) is associated with increased levels of circulating growth factors and corresponding receptors such as platelet derived growth factor, fibroblast growth factor and vascular endothelial growth factor. Nintedanib, a tyrosine kinase inhibitor targeting primarily these receptors, is approved for the treatment of patients with idiopathic pulmonary fibrosis. Our objective was to examine the effect of nintedanib on proliferation of human pulmonary microvascular endothelial cells (MVEC) and assess its effects in rats with advanced experimental pulmonary hypertension (PH). Methods and results Proliferation was assessed in control and PAH MVEC exposed to nintedanib. PH was induced in rats by subcutaneous injection of Sugen (SU5416) and subsequent exposure to 10% hypoxia for 4 weeks (SuHx model). Four weeks after re-exposure to normoxia, nintedanib was administered once daily for 3 weeks. Effects of the treatment were assessed with echocardiography, right heart catheterization, and histological analysis of the heart and lungs. Changes in extracellular matrix production was assessed in human cardiac fibroblasts stimulated with nintedanib. Decreased proliferation with nintedanib was observed in control MVEC, but not in PAH patient derived MVEC. Nintedanib treatment did not affect right ventricular (RV) systolic pressure or total pulmonary resistance index in SuHx rats and had no effects on pulmonary vascular remodelling. However, despite unaltered pressure overload, the right ventricle showed less dilatation and decreased fibrosis, hypertrophy, and collagen type III with nintedanib treatment. This could be explained by less fibronectin production by cardiac fibroblasts exposed to nintedanib. Conclusion Nintedanib inhibits proliferation of pulmonary MVECs from controls, but not from PAH patients. While in rats with experimental PH nintedanib has no effects on the pulmonary vascular pathology, it has favourable effects on RV remodelling.
Collapse
Affiliation(s)
- Nina Rol
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel A de Raaf
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Xiaoqing Q Sun
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| | - Vincent P Kuiper
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| | - Denielli da Silva Gonçalves Bos
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Chris Happé
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Kondababu Kurakula
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Dickhoff
- Department of Cardio-Thoracic Surgery, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Raphael Thuillet
- INSERM UMR_S999, Le Plessis-Robinson, France.,Faculté de Médicine, Université Paris-Saclay, Le Kremlin Bicêtre, France; and
| | - Ly Tu
- INSERM UMR_S999, Le Plessis-Robinson, France.,Faculté de Médicine, Université Paris-Saclay, Le Kremlin Bicêtre, France; and
| | - Christophe Guignabert
- INSERM UMR_S999, Le Plessis-Robinson, France.,Faculté de Médicine, Université Paris-Saclay, Le Kremlin Bicêtre, France; and
| | - Ingrid Schalij
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Kirsten Lodder
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoke Pan
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Franziska E Herrmann
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. Biberach, Germany
| | - Geerten P van Nieuw Amerongen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Koolwijk
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| | - Frances S de Man
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lutz Wollin
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. Biberach, Germany
| | - Marie-José Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Szulcek
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Harm J Bogaard
- Department of Pulmonology, VU University Medical Center, De Boelelaan 1117, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Pulmonary Artery Denervation as an Innovative Treatment for Pulmonary Hypertension With and Without Heart Failure. Cardiol Rev 2020; 29:89-95. [PMID: 32032132 DOI: 10.1097/crd.0000000000000299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pulmonary hypertension (PH) is categorized into 5 groups based on etiology. The 2 most prevalent forms are pulmonary arterial hypertension (PAH) and PH due to left heart disease (PH-LHD). Therapeutic options do exist for PAH to decrease symptoms and improve functional capacity; however, the mortality rate remains high and clinical improvements are limited. PH-LHD is the most common cause of PH; however, no treatment exists and the use of PAH-therapies is discouraged. Pulmonary artery denervation (PADN) is an innovative catheter-based ablation technique targeting the afferent and efferent fibers of a baroreceptor reflex in the main pulmonary artery (PA) trunk and its bifurcation. This reflex is involved in the elevation of the PA pressure seen in PH. Since 2013, both animal trials and human trials have shown the efficacy of PADN in improving PAH, including improved hemodynamic parameters, increased functional capacity, decreased PA remodeling, and much more. PADN has been shown to decrease the rate of rehospitalization, PH-related complications, and death, and is an overall safe procedure. PADN has also been shown to be effective for PH-LHD. Additional therapeutic mechanisms and benefits of PADN are discussed along with new PADN techniques. PADN has shown efficacy and safety as a potential treatment option for PH.
Collapse
|
17
|
Felix NS, de Mendonça L, Braga CL, da Silva JS, Samary CDS, Vieira JB, Cruz F, Rocha NDN, Zapata-Sudo G, Rocco PRM, Silva PL. Effects of the FGF receptor-1 inhibitor, infigratinib, with or without sildenafil, in experimental pulmonary arterial hypertension. Br J Pharmacol 2019; 176:4462-4473. [PMID: 31351013 DOI: 10.1111/bph.14807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/06/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH) is a progressive disease associated with high morbidity and mortality, despite advances in medical therapy. We compared the effects of infigratinib (NVP-BGJ398), a new FGF receptor-1 inhibitor, with or without the PDE-5 inhibitor sildenafil, on vascular function and remodelling as well as on gene expression of signal transducers for receptors of TGF-β (Smads-1/2/4) and transcription factor of endothelial-mesenchymal transition (Twist-1) in established experimental PAH. Types I and III pro-collagen and TGF-β expressions in lung fibroblasts were analysed in vitro after the different treatments. EXPERIMENTAL APPROACH PAH was induced in male Wistar rats with monocrotaline. 14 days later, treatments [sildenafil (SIL), infigratinib (INF) or their combination (SIL+INF)] were given for another 14 days. On Day 28, echocardiography and haemodynamic assays were performed, and lungs and pulmonary vessels were removed for analysis by histology, immunohistochemistry and RT-PCR. Fibroblasts prepared from PAH lungs were also analysed for TGF-β and pro-collagen. KEY RESULTS Only the combination of infigratinib and sildenafil significantly improved right ventricular systolic pressure and vascular remodelling parameters (right ventricular hypertrophy, smooth muscle α-actin, vessel wall thickness, and vascular collagen content). Infigratinib may act by reducing gene expression of Smads-1/4 and Twist-1 in lung tissue, as well as TGF-β and types I and III pro-collagen in lung fibroblasts. CONCLUSIONS AND IMPLICATIONS In this model of monocrotaline-induced PAH, the combination of the new inhibitor of FGF receptor-1, infigratinib, and sildenafil effectively improved haemodynamics and decreased vascular remodelling.
Collapse
Affiliation(s)
- Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Lucas de Mendonça
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Cassia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Jaqueline Soares da Silva
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia Dos Santos Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Juliana Borges Vieira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Physiology and Pharmacology Department, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Institute of Public Health Studies, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Tsutsumi T, Nagaoka T, Yoshida T, Wang L, Kuriyama S, Suzuki Y, Nagata Y, Harada N, Kodama Y, Takahashi F, Morio Y, Takahashi K. Nintedanib ameliorates experimental pulmonary arterial hypertension via inhibition of endothelial mesenchymal transition and smooth muscle cell proliferation. PLoS One 2019; 14:e0214697. [PMID: 31339889 PMCID: PMC6656344 DOI: 10.1371/journal.pone.0214697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neointimal lesion and medial wall thickness of pulmonary arteries (PAs) are common pathological findings in pulmonary arterial hypertension (PAH). Platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) signaling contribute to intimal and medial vascular remodeling in PAH. Nintedanib is a tyrosine kinase inhibitor whose targets include PDGF and FGF receptors. Although the beneficial effects of nintedanib were demonstrated for human idiopathic pulmonary fibrosis, its efficacy for PAH is still unclear. Thus, we hypothesized that nintedanib is a novel treatment for PAH to inhibit the progression of vascular remodeling in PAs. We evaluated the inhibitory effects of nintedanib both in endothelial mesenchymal transition (EndMT)-induced human pulmonary microvascular endothelial cells (HPMVECs) and human pulmonary arterial smooth muscle cells (HPASMCs) stimulated by growth factors. We also tested the effect of chronic nintedanib administration on a PAH rat model induced by Sugen5416 (a VEGF receptor inhibitor) combined with chronic hypoxia. Nintedanib was administered from weeks 3 to 5 after Sugen5416 injection, and we evaluated pulmonary hemodynamics and PAs pathology. Nintedanib attenuated the expression of mesenchymal markers in EndMT-induced HPMVECs and HPASMCs proliferation. Phosphorylation of PDGF and FGF receptors was augmented in both intimal and medial lesions of PAs. Nintedanib blocked these phosphorylation, improved hemodynamics and reduced vascular remodeling involving neointimal lesions and medial wall thickening in PAs. Additionally, expressions Twist1, transcription factors associated with EndMT, in lung tissue was significantly reduced by nintedanib. These results suggest that nintedanib may be a novel treatment for PAH with anti-vascular remodeling effects.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- HEK293 Cells
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Indoles/pharmacology
- Muscle, Smooth/metabolism
- Muscle, Smooth/pathology
- Muscle, Smooth/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Takeo Tsutsumi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Tetsutaro Nagaoka
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takashi Yoshida
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Lei Wang
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Sachiko Kuriyama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshifumi Suzuki
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Nagata
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Harada
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yuzo Kodama
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Morio
- Department of Respiratory Medicine, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Diagnosis and Pathophysiological Mechanisms of Group 3 Hypoxia-Induced Pulmonary Hypertension. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2019; 21:16. [PMID: 30903302 DOI: 10.1007/s11936-019-0718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Group 3 hypoxia-induced pulmonary hypertension (PH) is an important and increasingly diagnosed condition in both the pediatric and adult population. The majority of pulmonary hypertension studies to date and all three classes of drug therapies were designed to focus on group 1 PH. There is a clear unmet medical need for understanding the molecular mechanisms of group 3 PH and a need for novel non-invasive methods of assessing PH in neonates. RECENT FINDINGS Several growth factors are expressed in patients and in animal models of group 3 PH and are thought to contribute to the pathophysiology of this disease. Here, we review some of the findings on the roles of vascular endothelial growth factor A (VEGFA), platelet-derived growth factor B (PDGFB), transforming growth factor-beta (TGFB1), and fibroblast growth factors (FGF) in PH. Additionally, we discuss novel uses of echocardiographic parameters in assessing right ventricular form and function. FGF2, TGFB, PDGFB, and VEGFA may serve as biomarkers in group 3 PH along with echocardiographic methods to diagnose and follow right ventricle function. FGFs and VEGFs may also function in the pathophysiology of group 3 PH.
Collapse
|
20
|
Bouzina H, Rådegran G. Low plasma stem cell factor combined with high transforming growth factor-α identifies high-risk patients in pulmonary arterial hypertension. ERJ Open Res 2018; 4:00035-2018. [PMID: 30443557 PMCID: PMC6230818 DOI: 10.1183/23120541.00035-2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
In pulmonary arterial hypertension (PAH), severe vasoconstriction and remodelling of small pulmonary arteries result in high mortality. Receptor tyrosine kinases and their ligands, such as transforming growth factor (TGF)-α, modulate proliferation in PAH. Although the receptor tyrosine kinase c-Kit has been shown to be overexpressed in PAH, the expression and role of its ligand stem cell factor (SCF) remain unknown. However, low plasma SCF levels are known to be linked to higher cardiovascular mortality risk. Using proximity extension assays, we measured SCF and TGF-α in venous plasma from treatment-naïve PAH patients and healthy controls. Patients were stratified into risk classes based on PAH guidelines. Plasma SCF was decreased (p=0.013) and TGF-α was increased (p<0.0001) in PAH patients compared to controls. SCF correlated to pulmonary vascular resistance (r=−0.66, p<0.0001), cardiac index (r=0.66, p<0.0001), venous oxygen saturation (r=0.47, p<0.0008), mean right atrial pressure (r=−0.44, p<0.002) and N-terminal pro-brain natriuretic protein (r=−0.39, p<0.006). SCF was lower in “high-risk” compared to “intermediate-risk” (p=0.0015) or “low-risk” (p=0.0009) PAH patients. SCF and TGF-α levels combined (SCF/TGF-α) resulted in 85.7% sensitivity and 81.5% specificity for detecting high-risk patients (p<0.0001). Finally, REVEAL (Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management) risk scores in PAH patients correlated to SCF/TGF-α levels (r=−0.50, p=0.0003). In conclusion, low plasma SCF combined with high TGF-α identifies high-risk PAH patients at baseline. Lower circulating SCF levels, which are associated with worse haemodynamics, may be related to the c-Kit accumulation previously observed in PAH. Plasma stem cell factor and transforming growth factor-α are related to pulmonary arterial hypertension severity and risk assessmenthttp://ow.ly/s5O330lDjN9
Collapse
Affiliation(s)
- Habib Bouzina
- Lund University, Dept of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| | - Göran Rådegran
- Lund University, Dept of Clinical Sciences Lund, Cardiology, Faculty of Medicine, Lund, Sweden.,The Hemodynamic Lab, The Section for Heart Failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
21
|
Chen J, Cui X, Li L, Qu J, Raj JU, Gou D. MiR-339 inhibits proliferation of pulmonary artery smooth muscle cell by targeting FGF signaling. Physiol Rep 2018; 5:5/18/e13441. [PMID: 28947594 PMCID: PMC5617928 DOI: 10.14814/phy2.13441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 12/02/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a fatal disorder. Recent studies suggest that microRNA (miRNA) plays an important role in regulating proliferation of pulmonary artery smooth muscle cells (PASMC), which underlies the pathology of PAH. However, the exact mechanism of action of miRNAs remains elusive. In this study, we found that miR‐339 was highly expressed in the cardiovascular system and was downregulated by a group of cytokines and growth factors, especially PDGF‐BB and FGF2. Functional analyses revealed that miR‐339 can inhibit proliferation of PASMC. Also, miR‐339 inhibited FGF2‐induced proliferation, but had no effect on proliferation induced by PDGF‐BB. The fibroblast growth factor receptor substrate 2 (FRS2) was identified as a potential direct target of miR‐339. Consistent with the actions of miR‐339, knockdown of FRS2 only inhibited FGF2‐ but not PDGF‐BB‐induced proliferation of PASMC. In addition, our results showed that inhibition of ERK and PI3K abrogated the downregulation of miR‐339 induced by PDGF‐BB. Finally, miR‐339 expression was found to be decreased in the pulmonary arteries of rats with MCT‐induced PAH. Our study is the first report on the biological role of miR‐339 in regulating proliferation of PASMC by targeting FGF signaling, providing new mechanistic insights into PASMC proliferation and pathogenesis of PAH.
Collapse
Affiliation(s)
- Jidong Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China.,Key Laboratory of Optoelectronic Devices, Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolei Cui
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Li Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices, Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Deming Gou
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats. Vascul Pharmacol 2018; 100:41-50. [DOI: 10.1016/j.vph.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/21/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
|
23
|
Hemnes AR, Humbert M. Pathobiology of pulmonary arterial hypertension: understanding the roads less travelled. Eur Respir Rev 2017; 26:26/146/170093. [DOI: 10.1183/16000617.0093-2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
The pathobiology of pulmonary arterial hypertension (PAH) is complex and incompletely understood. Although three pathogenic pathways have been relatively well characterised, it is widely accepted that dysfunction in a multitude of other cellular processes is likely to play a critical role in driving the development of PAH. Currently available therapies, which all target one of the three well-characterised pathways, provide significant benefits for patients; however, PAH remains a progressive and ultimately fatal disease. The development of drugs to target alternative pathogenic pathways is, therefore, an attractive proposition and one that may complement existing treatment regimens to improve outcomes for patients. Considerable research has been undertaken to identify the role of the less well-understood pathways and in this review we will highlight some of the key discoveries and the potential for utility as therapeutic targets.
Collapse
|
24
|
El Agha E, Seeger W, Bellusci S. Therapeutic and pathological roles of fibroblast growth factors in pulmonary diseases. Dev Dyn 2016; 246:235-244. [PMID: 27783451 DOI: 10.1002/dvdy.24468] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Fibroblast growth factors (FGFs) constitute a large family of polypeptides that are involved in many biological processes, ranging from prenatal cell-fate specification and organogenesis to hormonal and metabolic regulation in postnatal life. During embryonic development, these growth factors are important mediators of the crosstalk among ectoderm-, mesoderm-, and endoderm-derived cells, and they instruct the spatial and temporal growth of organs and tissues such as the brain, bone, lung, gut, and others. The involvement of FGFs in postnatal lung homeostasis is a growing field, and there is emerging literature about their roles in lung pathophysiology. In this review, the involvement of FGF signaling in a wide array of lung diseases will be summarized. Developmental Dynamics 246:235-244, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elie El Agha
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Saverio Bellusci
- Excellence Cluster Cardio-Pulmonary System (ECCPS), member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, Giessen, Germany.,College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
25
|
Huston JH, Ryan JJ. The emerging role of epigenetics in pulmonary arterial hypertension: an important avenue for clinical trials (2015 Grover Conference Series). Pulm Circ 2016; 6:274-84. [PMID: 27683604 DOI: 10.1086/687765] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Epigenetics is an emerging field of research and clinical trials in cancer therapy that also has applications for pulmonary arterial hypertension (PAH), as there is evidence that epigenetic control of gene expression plays a significant role in PAH. The three types of epigenetic modification include DNA methylation, histone modification, and RNA interference. All three have been shown to be involved in the development of PAH. Currently, the enzymes that perform these modifications are the primary targets of neoplastic therapy. These targets are starting to be explored for therapies in PAH, mostly in animal models. In this review we summarize the basics of each type of epigenetic modification and the known sites and molecules involved in PAH, as well as current targets and prospects for clinical trials.
Collapse
Affiliation(s)
- Jessica H Huston
- Department of Medicine, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
26
|
Zheng Y, Ma H, Hu E, Huang Z, Cheng X, Xiong C. Inhibition of FGFR Signaling With PD173074 Ameliorates Monocrotaline-induced Pulmonary Arterial Hypertension and Rescues BMPR-II Expression. J Cardiovasc Pharmacol 2015; 66:504-14. [DOI: 10.1097/fjc.0000000000000302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Sardana M, Moll M, Farber HW. Novel investigational therapies for treating pulmonary arterial hypertension. Expert Opin Investig Drugs 2015; 24:1571-96. [DOI: 10.1517/13543784.2015.1098616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
El Agha E, Kosanovic D, Schermuly RT, Bellusci S. Role of fibroblast growth factors in organ regeneration and repair. Semin Cell Dev Biol 2015; 53:76-84. [PMID: 26459973 DOI: 10.1016/j.semcdb.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.
Collapse
Affiliation(s)
- Elie El Agha
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Djuro Kosanovic
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System (ECCPS), Justus-Liebig-University, Giessen, Hessen, Germany; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
29
|
Zhang YF, Zheng Y. The effects of mycophenolate mofetil on cytokines and their receptors in pulmonary arterial hypertension in rats. Scand J Rheumatol 2015; 44:412-5. [DOI: 10.3109/03009742.2015.1023829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Chang YT, Tseng CN, Tannenberg P, Eriksson L, Yuan K, de Jesus Perez VA, Lundberg J, Lengquist M, Botusan IR, Catrina SB, Tran PK, Hedin U, Tran-Lundmark K. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc Res 2015; 107:20-31. [PMID: 25952902 DOI: 10.1093/cvr/cvv143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
AIMS Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. METHODS AND RESULTS In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type. CONCLUSIONS Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chi-Nan Tseng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Cardiothoracic Surgery, Uppsala University, Uppsala, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
31
|
Shirai Y, Okazaki Y, Inoue Y, Tamura Y, Yasuoka H, Takeuchi T, Kuwana M. Elevated levels of pentraxin 3 in systemic sclerosis: associations with vascular manifestations and defective vasculogenesis. Arthritis Rheumatol 2015; 67:498-507. [PMID: 25385504 DOI: 10.1002/art.38953] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 11/06/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To clarify the role of pentraxin 3 (PTX3), a multifunctional pattern recognition protein that can suppress fibroblast growth factor 2 (FGF-2), in systemic sclerosis (SSc)-related vasculopathy. METHODS We assessed 171 SSc patients and 19 age- and sex-matched healthy control subjects. Circulating PTX3 and FGF-2 levels were measured by enzyme immunoassay, and CD34+CD133+CD309+ endothelial progenitor cells (EPCs) were counted by flow cytometry. Correlations between PTX3 and FGF-2 and the presence or future development of vascular manifestations, including digital ulcers and pulmonary arterial hypertension (PAH), were identified by univariate and multivariate analysis. The effect of PTX3 on EPC differentiation was evaluated in proangiogenic cultures of mouse bone marrow cells in combination with colony formation assay. RESULTS Circulating PTX3 and FGF-2 levels were significantly higher in SSc patients than in healthy control subjects. PTX3 was elevated in SSc patients who had digital ulcers or PAH, while FGF-2 was reduced in SSc patients with PAH. Multivariate analysis identified elevated PTX3 as an independent parameter associated with the presence of digital ulcers and PAH, and PTX3 levels were a useful predictor of future occurrences of digital ulcers. Reduced FGF-2 was independently associated with the presence of PAH. EPC counts were significantly lower in patients with digital ulcers or PAH and correlated negatively with circulating PTX3 concentrations. Finally, PTX3 inhibited EPC differentiation in vitro. CONCLUSION In SSc patients, exposure to high concentrations of PTX3 may suppress EPC-mediated vasculogenesis and promote vascular manifestations such as digital ulcers and PAH.
Collapse
|
32
|
Zhou S, Li M, Zeng D, Sun G, Zhou J, Wang R. Effects of basic fibroblast growth factor and cyclin D1 on cigarette smoke-induced pulmonary vascular remodeling in rats. Exp Ther Med 2014; 9:33-38. [PMID: 25452772 PMCID: PMC4247281 DOI: 10.3892/etm.2014.2044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 07/31/2014] [Indexed: 01/10/2023] Open
Abstract
Cigarette smoking may contribute to pulmonary hypertension in chronic obstructive pulmonary disease by resulting in pulmonary vascular remodeling that involves pulmonary artery smooth muscle cell proliferation. This study investigated the effects of basic fibroblast growth factor (bFGF) and cyclin D1 on the pulmonary vascular remodeling in smoking-exposed rats. Twenty-four male Wistar rats were randomly divided into four groups. Three tobacco-exposed groups were exposed to the smoke produced by 20 cigarettes for 60 min, twice a day for two, four or eight weeks, and the control group were exposed to fresh air. The expression of bFGF and cyclin D1 in the pulmonary arterial smooth muscle cells were determined using immunohistochemistry. Quantitative polymerase chain reaction was conducted to determine the expression levels of bFGF and cyclin D1 mRNA. In addition, the expression of bFGF and cyclin D1 proteins was evaluated by western blotting. The expression of bFGF and cyclin D1 at the mRNA and protein levels was shown to increase with the duration of smoke exposure (P<0.05). The correlation analysis indicated the expression of bFGF and cyclin D1 was positively associated with the pulmonary vessel wall thickness. The expression of bFGF was positively associated with that of cyclin D1. Collectively, the data demonstrated that the upregulation of bFGF and cyclin D1 occurred in rats subjected to smoke exposure, which may be associated with the abnormal proliferation of the smooth muscle cells in the pulmonary arteries.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China ; Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Daxiong Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gengyun Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Junsheng Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ran Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
33
|
Pako J, Bikov A, Karlocai K, Csosza G, Kunos L, Losonczy G, Horvath I. Plasma VEGF levels and their relation to right ventricular function in pulmonary hypertension. Clin Exp Hypertens 2014; 37:340-4. [DOI: 10.3109/10641963.2014.972561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Kim J, Hwangbo C, Hu X, Kang Y, Papangeli I, Mehrotra D, Park H, Ju H, McLean DL, Comhair SA, Erzurum SC, Chun HJ. Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension. Circulation 2014; 131:190-9. [PMID: 25336633 DOI: 10.1161/circulationaha.114.013339] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease of the pulmonary arterioles, characterized by increased pulmonary arterial pressure and right ventricular failure. The cause of PAH is complex, but aberrant proliferation of the pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells is thought to play an important role in its pathogenesis. Understanding the mechanisms of transcriptional gene regulation involved in pulmonary vascular homeostasis can provide key insights into potential therapeutic strategies. METHODS AND RESULTS We demonstrate that the activity of the transcription factor myocyte enhancer factor 2 (MEF2) is significantly impaired in the PAECs derived from subjects with PAH. We identified MEF2 as the key cis-acting factor that regulates expression of a number of transcriptional targets involved in pulmonary vascular homeostasis, including microRNAs 424 and 503, connexins 37, and 40, and Krűppel Like Factors 2 and 4, which were found to be significantly decreased in PAH PAECs. The impaired MEF2 activity in PAH PAECs was mediated by excess nuclear accumulation of 2 class IIa histone deacetylases (HDACs) that inhibit its function, namely HDAC4 and HDAC5. Selective, pharmacological inhibition of class IIa HDACs led to restoration of MEF2 activity in PAECs, as demonstrated by increased expression of its transcriptional targets, decreased cell migration and proliferation, and rescue of experimental pulmonary hypertension models. CONCLUSIONS Our results demonstrate that strategies to augment MEF2 activity hold potential therapeutic value in PAH. Moreover, we identify selective HDAC IIa inhibition as a viable alternative approach to avoid the potential adverse effects of broad spectrum HDAC inhibition in PAH.
Collapse
Affiliation(s)
- Jongmin Kim
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Cheol Hwangbo
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Xiaoyue Hu
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Yujung Kang
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Irinna Papangeli
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Devi Mehrotra
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Hyekyung Park
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Hyekyung Ju
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Danielle L McLean
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Suzy A Comhair
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Serpil C Erzurum
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.)
| | - Hyung J Chun
- From the Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT (J.K., C.H., X.H., Y.K., I.P., D.M., H.P., H.J., D.L.M., H.J.C.); the Department of Life Systems, Sookmyung Women's University, Seoul, Korea (J.K.); and the Department of Pathobiology, The Lerner Institute, The Cleveland Clinic Foundation, Cleveland, OH (S.A.C., S.C.E.).
| |
Collapse
|
35
|
Blood biomarkers and their potential role in pulmonary arterial hypertension associated with congenital heart disease. A systematic review. Int J Cardiol 2014; 174:618-23. [DOI: 10.1016/j.ijcard.2014.04.156] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/13/2014] [Indexed: 11/19/2022]
|
36
|
Kim J. Apelin-APJ signaling: a potential therapeutic target for pulmonary arterial hypertension. Mol Cells 2014; 37:196-201. [PMID: 24608803 PMCID: PMC3969039 DOI: 10.14348/molcells.2014.2308] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by the vascular remodeling of the pulmonary arterioles, including formation of plexiform and concentric lesions comprised of proliferative vascular cells. Clinically, PAH leads to increased pulmonary arterial pressure and subsequent right ventricular failure. Existing therapies have improved the outcome but mortality still remains exceedingly high. There is emerging evidence that the seven-transmembrane G-protein coupled receptor APJ and its cognate endogenous ligand apelin are important in the maintenance of pulmonary vascular homeostasis through the targeting of critical mediators, such as Krűppel-like factor 2 (KLF2), endothelial nitric oxide synthase (eNOS), and microRNAs (miRNAs). Disruption of this pathway plays a major part in the pathogenesis of PAH. Given its role in the maintenance of pulmonary vascular homeostasis, the apelin-APJ pathway is a potential target for PAH therapy. This review highlights the current state in the understanding of the apelin-APJ axis related to PAH and discusses the therapeutic potential of this signaling pathway as a novel paradigm of PAH therapy.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Life Systems Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
37
|
Zhang H, Xu M, Xia J, Qin RY. Association between serotonin transporter (SERT) gene polymorphism and idiopathic pulmonary arterial hypertension: a meta-analysis and review of the literature. Metabolism 2013; 62:1867-75. [PMID: 24075737 DOI: 10.1016/j.metabol.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Idiopathic pulmonary arterial hypertension (IPAH) is a rare and often fatal disease of unknown etiology. Serotonin transporter (SERT) protein, whose genes can have two allelic forms, namely long (L) and short (S), is suspected to be related to IPAH risk. Several studies have investigated the association between SERT's different allelic forms and IPAH but showed conflicting results. A meta-analysis of published studies was performed to allow a more reliable estimate of this association. METHODS Relevant databases were searched to identify eligible studies published from 2000 to 2013. Odds ratios (OR) and 95% confidence intervals (CI) were determined for the gene-disease association using fixed or random effects models. RESULTS A total of 6 studies with 451 IPAH subjects and 664 controls were included in this meta-analysis. A significant difference was found in the comparison between IPAH subjects and controls with LL vs. SS genotypes, and the pooled odds ratio (OR) with the fixed effects model was 1.446 (95% CI=1.036-2.018, p=0.030, I(2)=38.8%). However, no statistically significant differences were observed for LL vs. LS or LL vs. LS+SS. The pooled OR indicated no significant differences in IPAH risk between carriers of SERT L and S alleles (ORL VS. S=1.327, 95% CI=0.933-1.886, p=0.115). CONCLUSION This meta-analysis provides evidence suggesting an association between the SERT L/S polymorphism and IPAH. Individuals with the LL genotype have an obviously higher risk of developing IPAH than those with the SS genotype.
Collapse
Affiliation(s)
- Hang Zhang
- Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Qiaokou district, Wuhan City, Hubei Province 430030, China.
| | | | | | | |
Collapse
|
38
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
39
|
Hosokawa S, Haraguchi G, Sasaki A, Arai H, Muto S, Itai A, Doi S, Mizutani S, Isobe M. Pathophysiological roles of nuclear factor kappaB (NF-kB) in pulmonary arterial hypertension: effects of synthetic selective NF-kB inhibitor IMD-0354. Cardiovasc Res 2013; 99:35-43. [DOI: 10.1093/cvr/cvt105] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Goncharova EA. mTOR and vascular remodeling in lung diseases: current challenges and therapeutic prospects. FASEB J 2013; 27:1796-807. [PMID: 23355268 DOI: 10.1096/fj.12-222224] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a major regulator of cellular metabolism, proliferation, and survival that is implicated in various proliferative and metabolic diseases, including obesity, type 2 diabetes, hamartoma syndromes, and cancer. Emerging evidence suggests a potential critical role of mTOR signaling in pulmonary vascular remodeling. Remodeling of small pulmonary arteries due to increased proliferation, resistance to apoptosis, and altered metabolism of cells forming the pulmonary vascular wall is a key currently irreversible pathological feature of pulmonary hypertension, a progressive pulmonary vascular disorder with high morbidity and mortality. In addition to rare familial and idiopathic forms, pulmonary hypertension is also a life-threatening complication of several lung diseases associated with hypoxia. This review aims to summarize our current knowledge and recent advances in understanding the role of the mTOR pathway in pulmonary vascular remodeling, with a specific focus on the hypoxia component, a confirmed shared trigger of pulmonary hypertension in lung diseases. We also discuss the emerging role of mTOR as a promising therapeutic target and mTOR inhibitors as potential pharmacological approaches to treat pulmonary vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Elena A Goncharova
- University of Pennsylvania Perelman School of Medicine, Translational Research Laboratories, Rm. 1214, 125 South 31st St., Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM, Erzurum SC, Chun HJ. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 2012; 19:74-82. [PMID: 23263626 PMCID: PMC3540168 DOI: 10.1038/nm.3040] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/16/2012] [Indexed: 01/08/2023]
Abstract
Pulmonary arterial hypertension is characterized by vascular remodeling associated with obliteration of pulmonary arterioles and formation of plexiform lesions comprised of hyperproliferative endothelial and vascular smooth muscle cells. Here, we describe a novel, microRNA-dependent association between APLN and FGF2 pathways in the pulmonary artery endothelial cells (PAECs), where disruption of APLN signaling results in a robust increase in FGF2 expression. We show that this link is mediated by two microRNAs, miR-424 and miR-503, that are regulated by APLN and significantly downregulated in PAH. MiR-424 and miR-503 exert anti-proliferative effects by targeting FGF2 and FGFR1. Overexpression of miR-424 and miR-503 in PAECs promoted cellular quiescence and inhibited the capacity of PAEC conditioned media to induce proliferation of pulmonary artery smooth muscle cells. We show that reconstitution of miR-424 and miR-503 can ameliorate pulmonary hypertension in experimental models. These studies demonstrate the importance of APLN-miR-424/503-FGF axis in maintaining pulmonary vascular homeostasis.
Collapse
Affiliation(s)
- Jongmin Kim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kwapiszewska G, Chwalek K, Marsh LM, Wygrecka M, Wilhelm J, Best J, Egemnazarov B, Weisel FC, Osswald SL, Schermuly RT, Olschewski A, Seeger W, Weissmann N, Eickelberg O, Fink L. BDNF/TrkB Signaling Augments Smooth Muscle Cell Proliferation in Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2018-29. [DOI: 10.1016/j.ajpath.2012.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/30/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
43
|
Hameed AG, Arnold ND, Chamberlain J, Pickworth JA, Paiva C, Dawson S, Cross S, Long L, Zhao L, Morrell NW, Crossman DC, Newman CMH, Kiely DG, Francis SE, Lawrie A. Inhibition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. ACTA ACUST UNITED AC 2012; 209:1919-35. [PMID: 23071256 PMCID: PMC3478928 DOI: 10.1084/jem.20112716] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetic deletion of TRAIL or antibody blockade prevents the development of pulmonary arterial hypertension and can reverse vascular remodeling in established disease. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by the progressive narrowing and occlusion of small pulmonary arteries. Current therapies fail to fully reverse this vascular remodeling. Identifying key pathways in disease pathogenesis is therefore required for the development of new-targeted therapeutics. We have previously reported tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) immunoreactivity within pulmonary vascular lesions from patients with idiopathic PAH and animal models. Because TRAIL can induce both endothelial cell apoptosis and smooth muscle cell proliferation in the systemic circulation, we hypothesized that TRAIL is an important mediator in the pathogenesis of PAH. We demonstrate for the first time that TRAIL is a potent stimulus for pulmonary vascular remodeling in human cells and rodent models. Furthermore, antibody blockade or genetic deletion of TRAIL prevents the development of PAH in three independent rodent models. Finally, anti-TRAIL antibody treatment of rodents with established PAH reverses pulmonary vascular remodeling by reducing proliferation and inducing apoptosis, improves hemodynamic indices, and significantly increases survival. These preclinical investigations are the first to demonstrate the importance of TRAIL in PAH pathogenesis and highlight its potential as a novel therapeutic target to direct future translational therapies.
Collapse
Affiliation(s)
- Abdul G Hameed
- Department of Cardiovascular Science, 2 Department of Neuroscience, University of Sheffield, S10 2RX Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Aggarwal S, Gross C, Fineman JR, Black SM. Oxidative stress and the development of endothelial dysfunction in congenital heart disease with increased pulmonary blood flow: lessons from the neonatal lamb. Trends Cardiovasc Med 2012; 20:238-46. [PMID: 22293025 DOI: 10.1016/j.tcm.2011.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Congenital heart diseases associated with increased pulmonary blood flow commonly leads to the development of pulmonary hypertension. However, most patients who undergo histological evaluation have advanced pulmonary hypertension, and therefore it has been difficult to investigate aberrations in signaling cascades that precede the development of overt vascular remodeling. This review discusses the role played by both oxidative and nitrosative stress in the lung and their impact on the signaling pathways that regulate vasodilation, vessel growth, and vascular remodeling in the neonatal lung exposed to increased pulmonary blood flow.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- Pulmonary Disease Program, Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
45
|
Dunne JV, Keen KJ, Van Eeden SF. Circulating angiopoietin and Tie-2 levels in systemic sclerosis. Rheumatol Int 2012; 33:475-84. [DOI: 10.1007/s00296-012-2378-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 03/11/2012] [Indexed: 02/04/2023]
|
46
|
Transgenic expression of human matrix metalloproteinase-1 attenuates pulmonary arterial hypertension in mice. Clin Sci (Lond) 2011; 122:83-92. [PMID: 21793800 DOI: 10.1042/cs20110295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PAH (pulmonary arterial hypertension) is a debilitating and life-threatening disease, often affecting young people. We specifically expressed human MMP-1 (matrix metalloproteinase-1) in mouse macrophages and examined its effects in attenuating the decompensating features of MCT (monocrotaline)-induced PAH. Measurement of RV (right ventricular) pressure revealed a 2.5-fold increase after treatment with MCT, which was reduced to 1.5-fold in MMP-1 transgenic mice. There was conspicuous pulmonary inflammation with chronic infiltration of mononuclear cells after the administration of MCT, which was significantly diminished in transgenic mice. Furthermore, transgenic mice showed decreased collagen deposition compared with WT (wild-type). Staining for Mac-3 (macrophage-3) and α-SMA (α-smooth muscle actin) revealed extensive infiltration of macrophages and medial hypertrophy of large pulmonary vessels with complete occlusion of small arteries respectively. These changes were markedly reduced in MMP-1 transgenic mice compared with WT. Western blotting for molecules involved in cell multiplication and proliferation depicted a significant decrease in the lung tissue of transgenic mice after the treatment with MCT. In conclusion, the present study demonstrated that transgenic expression of human MMP-1 decreased proliferation of smooth muscle cells and prevented excessive deposition of collagen in the pulmonary arterial tree. Our results indicate that up-regulation of MMP-1 could attenuate the debilitation of human PAH and provide an option for therapeutic intervention.
Collapse
|
47
|
Ma C, Li Y, Ma J, Liu Y, Li Q, Niu S, Shen Z, Zhang L, Pan Z, Zhu D. Key Role of 15-Lipoxygenase/15-Hydroxyeicosatetraenoic Acid in Pulmonary Vascular Remodeling and Vascular Angiogenesis Associated With Hypoxic Pulmonary Hypertension. Hypertension 2011; 58:679-88. [DOI: 10.1161/hypertensionaha.111.171561] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have found that 15-hydroxyeicosatetraenoic acid (15-HETE) induced by hypoxia was an important mediator in the regulation of hypoxic pulmonary hypertension, including the pulmonary vasoconstriction and remodeling. However, the underlying mechanisms of the remodeling induced by 15-HETE are poorly understood. In this study, we performed immunohistochemistry, pulmonary artery endothelial cells migration and tube formation, pulmonary artery smooth muscle cells bromodeoxyuridine incorporation, and cell cycle analysis to determine the role of 15-HETE in hypoxia-induced pulmonary vascular remodeling. We found that hypoxia induced pulmonary vascular medial hypertrophy and intimal endothelial cells migration and angiogenesis, which were mediated by 15-HETE. Moreover, 15-HETE regulated the cell cycle progression and made more smooth muscle cells from the G
0
/G
1
phase to the G
2
/M+S phase and enhanced the microtubule formation in cell nucleus. In addition, we found that the Rho-kinase pathway was involved in 15-HETE–induced endothelial cells tube formation and migration and smooth muscle cell proliferation. Together, these results show that 15-HETE mediates hypoxia-induced pulmonary vascular remodeling and stimulates angiogenesis via the Rho-kinase pathway.
Collapse
Affiliation(s)
- Cui Ma
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Yaqian Li
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Jun Ma
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Yun Liu
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Qian Li
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Shengpan Niu
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Zhiying Shen
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Zhenwei Pan
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| | - Daling Zhu
- From the Department of Biopharmaceutical Sciences (C.M., Y. Li, J.M., Y. Liu, Q.L., S.N., L.Z., Z.P., D.Z.), College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, People's Republic of China; Bio-pharmaceutical Key Laboratory of Heilongjiang Province (D.Z.), Harbin, People's Republic of China; Department of Pharmacology (Z.S.), Harbin Medical University-Daqing, Daqing, Heilongjiang Province, People's Republic of China
| |
Collapse
|
48
|
Farkas L, Gauldie J, Voelkel NF, Kolb M. Pulmonary Hypertension and Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2011; 45:1-15. [DOI: 10.1165/rcmb.2010-0365tr] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
49
|
Abstract
Our understanding of, and approach to, pulmonary arterial hypertension has undergone a paradigm shift in the past decade. Once a condition thought to be dominated by increased vasoconstrictor tone and thrombosis, pulmonary arterial hypertension is now seen as a vasculopathy in which structural changes driven by excessive vascular cell growth and inflammation, with recruitment and infiltration of circulating cells, play a major role. Perturbations of a number of molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, that may underlie the pathogenesis of the disease. Elucidating their contribution to the pathophysiology of pulmonary arterial hypertension could offer new drug targets. The role of progenitor cells in vascular repair is also under active investigation. The right ventricular response to increased pressure load is recognized as critical to survival and the molecular mechanisms involved are attracting increasing interest. The challenge now is to integrate this new knowledge and explore how it can be used to categorize patients by molecular phenotype and tailor treatment more effectively.
Collapse
Affiliation(s)
- Ralph T. Schermuly
- Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231 Germany
| | - Hossein A. Ghofrani
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| | - Martin R. Wilkins
- Division of Experimental Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - Friedrich Grimminger
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| |
Collapse
|
50
|
Tian J, Fratz S, Hou Y, Lu Q, Görlach A, Hess J, Schreiber C, Datar SA, Oishi P, Nechtman J, Podolsky R, She JX, Fineman JR, Black SM. Delineating the angiogenic gene expression profile before pulmonary vascular remodeling in a lamb model of congenital heart disease. Physiol Genomics 2011; 43:87-98. [PMID: 20978110 PMCID: PMC3026563 DOI: 10.1152/physiolgenomics.00135.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/20/2010] [Indexed: 01/05/2023] Open
Abstract
Disordered angiogenesis is implicated in pulmonary vascular remodeling secondary to congenital heart diseases (CHD). However, the underlying genes are not well delineated. We showed previously that an ovine model of CHD with increased pulmonary blood flow (PBF, Shunt) has an "angiogenesis burst" between 1 and 4 wk of age. Thus we hypothesized that the increased PBF elicited a proangiogenic gene expression profile before onset of vessel growth. To test this we utilized microarray analysis to identify genes that could be responsible for the angiogenic response. Total RNA was isolated from lungs of Shunt and control lambs at 3 days of age and hybridized to Affymetrix gene chips for microarray analyses (n = 8/group). Eighty-nine angiogenesis-related genes were found to be upregulated and 26 angiogenesis-related genes downregulated in Shunt compared with control lungs (cutting at 1.2-fold difference, P < 0.05). We then confirmed upregulation of proangiogenic genes FGF2, Angiopoietin2 (Angpt2), and Birc5 at mRNA and protein levels and upregulation of ccl2 at mRNA level in 3-day Shunt lungs. Furthermore, we found that pulmonary arterial endothelial cells (PAEC) isolated from fetal lambs exhibited increased expression of FGF2, Angpt2, Birc5, and ccl2 and enhanced angiogenesis when exposed to elevated shear stress (35 dyn/cm²) compared with cells exposed to more physiological shear stress (20 dyn/cm²). Finally, we demonstrated that blocking FGF2, Angpt2, Birc5, or ccl2 signaling with neutralizing antibodies or small interfering RNA (siRNA) significantly decreased the angiogenic response induced by shear stress. In conclusion, we have identified a "proangiogenic" gene expression profile in a lamb model of CHD with increased PBF that precedes onset of pulmonary vascular remodeling. Our data indicate that FGF2, Angpt2, Birc5, and ccl2 may play important roles in the angiogenic response.
Collapse
Affiliation(s)
- Jing Tian
- Vascular Biology Center, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|