1
|
Xiao M, Lai D, Yu Y, Wu Q, Zhang C. Pathogenesis of pulmonary hypertension caused by left heart disease. Front Cardiovasc Med 2023; 10:1079142. [PMID: 36937903 PMCID: PMC10020203 DOI: 10.3389/fcvm.2023.1079142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Pulmonary hypertension has high disability and mortality rates. Among them, pulmonary hypertension caused by left heart disease (PH-LHD) is the most common type. According to the 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension, PH-LHD is classified as group 2 pulmonary hypertension. PH-LHD belongs to postcapillary pulmonary hypertension, which is distinguished from other types of pulmonary hypertension because of its elevated pulmonary artery wedge pressure. PH-LHD includes PH due to systolic or diastolic left ventricular dysfunction, mitral or aortic valve disease and congenital left heart disease. The primary strategy in managing PH-LHD is optimizing treatment of the underlying cardiac disease. Recent clinical studies have found that mechanical unloading of left ventricle by an implantable non-pulsatile left ventricular assist device with continuous flow properties can reverse pulmonary hypertension in patients with heart failure. However, the specific therapies for PH in LHD have not yet been identified. Treatments that specifically target PH in LHD could slow its progression and potentially improve disease severity, leading to far better clinical outcomes. Therefore, exploring the current research on the pathogenesis of PH-LHD is important. This paper summarizes and classifies the research articles on the pathogenesis of PH-LHD to provide references for the mechanism research and clinical treatment of PH-LHD, particularly molecular targeted therapy.
Collapse
Affiliation(s)
- Mingzhu Xiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Disheng Lai
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yumin Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingqing Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Kadhim TJ, khalf OAA. A review search of sildenafil uses in human and in the veterinary medicine. 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021 2023. [DOI: 10.1063/5.0103025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Ovchinnikov A, Potekhina A, Belyavskiy E, Ageev F. Heart Failure with Preserved Ejection Fraction and Pulmonary Hypertension: Focus on Phosphodiesterase Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15081024. [PMID: 36015172 PMCID: PMC9414416 DOI: 10.3390/ph15081024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary hypertension (PH) is common in patients with heart failure with preserved ejection fraction (HFpEF). A chronic increase in mean left atrial pressure leads to passive remodeling in pulmonary veins and capillaries and modest PH (isolated postcapillary PH, Ipc-PH) and is not associated with significant right ventricular dysfunction. In approximately 20% of patients with HFpEF, "precapillary" alterations of pulmonary vasculature occur with the development of the combined pre- and post-capillary PH (Cpc-PH), pertaining to a poor prognosis. Current data indicate that pulmonary vasculopathy may be at least partially reversible and thus serves as a therapeutic target in HFpEF. Pulmonary vascular targeted therapies, including phosphodiesterase (PDE) inhibitors, may have a valuable role in the management of patients with PH-HFpEF. In studies of Cpc-PH and HFpEF, PDE type 5 inhibitors were effective in long-term follow-up, decreasing pulmonary artery pressure and improving RV contractility, whereas studies of Ipc-PH did not show any benefit. Randomized trials are essential to elucidate the actual value of PDE inhibition in selected patients with PH-HFpEF, especially in those with invasively confirmed Cpc-PH who are most likely to benefit from such treatment.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-414-66-12 or +7-(916)-505-79-58; Fax: +7-(495)-414-66-12
| | - Alexandra Potekhina
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| | - Evgeny Belyavskiy
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Augustenburger Platz, 13353 Berlin, Germany
| | - Fail Ageev
- Out-Patient Department, Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, 3-d Cherepkovskaya St., 15a, 121552 Moscow, Russia
| |
Collapse
|
4
|
Basile C, Fucile I, Lembo M, Manzi MV, Ilardi F, Franzone A, Mancusi C. Arterial Hypertension in Aortic Valve Stenosis: A Critical Update. J Clin Med 2021; 10:5553. [PMID: 34884254 PMCID: PMC8658702 DOI: 10.3390/jcm10235553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Aortic stenosis (AS) is a very common valve disease and is associated with high mortality once it becomes symptomatic. Arterial hypertension (HT) has a high prevalence among patients with AS leading to worse left ventricle remodeling and faster degeneration of the valve. HT also interferes with the assessment of the severity of AS, leading to an underestimation of the real degree of stenosis. Treatment of HT in AS has not historically been pursued due to the fear of excess reduction in afterload without a possibility of increasing stroke volume due to the fixed aortic valve, but most recent evidence shows that several drugs are safe and effective in reducing BP in patients with HT and AS. RAAS inhibitors and beta-blockers provide benefit in selected populations based on their profile of pharmacokinetics and pharmacodynamics. Different drugs, on the other hand, have proved to be unsafe, such as calcium channel blockers, or simply not easy enough to handle to be recommended in clinical practice, such as PDE5i, MRA or sodium nitroprusside. The present review highlights all available studies on HT and AS to guide antihypertensive treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University of Naples, 80131 Naples, Italy; (C.B.); (I.F.); (M.L.); (M.V.M.); (F.I.); (A.F.)
| |
Collapse
|
5
|
Abstract
Pulmonary hypertension is common in left heart disease and is related most commonly to passive back transmission of elevated left atrial pressures. Some patients, however, may develop pulmonary vascular remodeling superimposed on their left-sided heart disease. This review provides a contemporary appraisal of existing criteria to diagnose a precapillary component to pulmonary hypertension in left heart disease as well as discusses etiologies, management issues, and future directions.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55906, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55906, USA.
| |
Collapse
|
6
|
Abdelaziz SM, Hussein RRS, El Mokadem M, Mahmoud HB. Clinical and hemodynamic effects of oral sildenafil on biventricular function on patients with left ventricular systolic dysfunction. Int J Clin Pract 2021; 75:e14171. [PMID: 33764636 DOI: 10.1111/ijcp.14171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/14/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We explore the dual benefits of sildenafil on bi-ventricular functions in the form of improvement of ejection fraction, pulmonary vascular resistance and functional capacity of systolic heart failure patients either related to dilated or ischemic cardiomyopathy. AIM OF THE WORK To evaluate the effect of oral sildenafil on biventricular function in patients with left ventricular systolic dysfunction. PATIENTS AND METHODS The prospective randomised case-control study included 80 patients with left ventricular systolic dysfunction resulting from dilated or ischemic cardiomyopathy were equally randomised to one of the treatment groups in (1:1) who were collected from the outpatient clinic of cardiac care unit (CCU) of Beni-Suef University hospital; each group contained 40 patients: The first group (control group): received the guideline-recommended treatment of heart failure with reduced ejection fraction which consists of [angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), beta-blockers, aldosterone receptor antagonist, digoxin]. The second group (sildenafil group): received the previously mentioned guideline-recommended treatment in the control group plus sildenafil 25 mg three times per day. All patients were subjected to detailed history taking, baseline transthorathic echocardiography and exercise ECG using the Naughton protocol. Follow-up transthorathic echocardiography and exercise ECG was conducted after 3 months. RESULTS Sildenafil improves heart failure symptoms such as dyspnea or orthopnea or increasing the functional capacity of myocardium which is measured by estimated metabolic equivalents of task (METS) (P = .017), and exercise duration (P = .013). Sildenafil increased cardiac output (P = .033), which is considered one of the desirable targets in heart failure patients. CONCLUSION In patients with left ventricular systolic dysfunction secondary to dilated or ischemic cardiomyopathy, relatively small doses of sildenafil significantly enhances exercise period and functional ability, with substantial improvement in left ventricular systolic function irrespective of the existence of major pulmonary hypertension.
Collapse
Affiliation(s)
- Sarah M Abdelaziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa El Mokadem
- Department of Cardiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hesham B Mahmoud
- Department of Cardiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Reinero M, Beghetti M, Tozzi P, Segesser LKV, Samaja M, Milano G. Nitric Oxide-cGMP Pathway Modulation in an Experimental Model of Hypoxic Pulmonary Hypertension. J Cardiovasc Pharmacol Ther 2021; 26:665-676. [PMID: 33969747 PMCID: PMC8547238 DOI: 10.1177/10742484211014162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Manipulation of nitric oxide (NO) may enable control of progression and treatment of pulmonary hypertension (PH). Several approaches may modulate the NO-cGMP pathway in vivo. Here, we investigate the effectiveness of 3 modulatory sites: (i) the amount of l-arginine; (ii) the size of plasma NO stores that stimulate soluble guanylate cyclase; (iii) the conversion of cGMP into inactive 5′-GMP, with respect to hypoxia, to test the effectiveness of the treatments with respect to hypoxia-induced PH. Male rats (n = 80; 10/group) maintained in normoxic (21% O2) or hypoxic chambers (10% O2) for 14 days were subdivided in 4 sub-groups: placebo, l-arginine (20 mg/ml), the NO donor molsidomine (15 mg/kg in drinking water), and phoshodiesterase-5 inhibitor sildenafil (1.4 mg/kg in 0.3 ml saline, i.p.). Hypoxia depressed homeostasis and increased erythropoiesis, heart and right ventricle hypertrophy, myocardial fibrosis and apoptosis inducing pulmonary remodeling. Stimulating anyone of the 3 mechanisms that enhance the NO-cGMP pathway helped rescuing the functional and morphological changes in the cardiopulmonary system leading to improvement, sometimes normalization, of the pressures. None of the treatments affected the observed parameters in normoxia. Thus, the 3 modulatory sites are essentially similar in enhancing the NO-cGMP pathway, thereby attenuating the hypoxia-related effects that lead to pulmonary hypertension.
Collapse
Affiliation(s)
- Melanie Reinero
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| | - Maurice Beghetti
- Unité de Cardiologie Pédiatrique, 30538University Hospital of Geneva and Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique University of Geneva and Lausanne, Switzerland
| | - Piergiorgio Tozzi
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| | - Ludwig K von Segesser
- Department of Surgery and Anesthesiology, Cardio-Vascular Research, Lausanne, Switzerland
| | - Michele Samaja
- Department of Health Science, 9304University of Milano, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery Center, 30635University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Combined Intravenous Sildenafil and L-Arginine Administration in a Porcine Animal Model: Hemodynamic Safety Profile and Effects on Coronary Blood Flow. Drugs R D 2020; 20:279-290. [PMID: 32720006 PMCID: PMC7419398 DOI: 10.1007/s40268-020-00318-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Endothelial dysfunction in the nitric oxide-cyclic guanosine monophosphate pathway is a potential contributor to perioperative myocardial ischemia. The nitric oxide precursor, l-arginine, and the cyclic guanosine monophosphate degradation blocker, sildenafil, have vasodilatory effects under high dosage. Objective This study examined the hemodynamic safety and effect profiles of the combined administration of l-arginine and sildenafil using an in-vivo pig model. Methods Hemodynamic safety including mean arterial pressure, central venous pressure, heart rate, coronary vascular resistance, and systemic vascular resistance, as well as effect profiles including cardiac output and left anterior descending blood flow were measured in ten female swine after administrations of l-arginine, sildenafil, as well as combined l-arginine and sildenafil. Measurements were compared using repeated-measures analysis of variance and linear mixed models. Results The combination of l-arginine and sildenafil produced a significant dose-dependent increase in left anterior descending flow and cardiac output. In contrast, mean arterial pressure, heart rate, central venous pressure, coronary vascular resistance, and systemic vascular resistance did not show any significant changes. No significant change in serum osmolality was observed after administrations of l-arginine. Conclusions The combined intravenous administration of sildenafil and l-arginine in a porcine animal model was safe, well tolerated, and had at least additive effects on left anterior descending artery blood flow. Simultaneous application of both drugs might have dose-sparing effects leading to desired coronary effects at lower and safer sildenafil and l-arginine plasma concentrations. Hyperosmolality was only a minor factor in l-arginine hemodynamic effects.
Collapse
|
9
|
Li LL, Zhang XJ, Zheng C, Fan MX, Xu HY, Yi JL, Feng Y, Luo X, Li WH, Cheng ZN. Simultaneous determination and determination of sildenafil and its active metabolite in human plasma using LC-MS/MS method. Biomed Chromatogr 2020; 34:e4927. [PMID: 32562289 DOI: 10.1002/bmc.4927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/06/2020] [Accepted: 06/14/2020] [Indexed: 11/11/2022]
Abstract
A sensitive and selective high-performance liquid chromatography-tandam mass spectrometry (LC-MS/MS) method was developed and validated for the simultaneous quantification of sildenafil and its metabolite N-desmethyl sildenafil in human plasma. Sildenafil-d8 was used as an internal standard. The analytes were extracted by precipitation extraction and chromatographed on a C18 column using mobile phase A of water (containing 0.1% formic acid) and mobile phase B of acetonitrile (containing 0.1% formic acid) with gradient elution. Quantification was done using multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 475.4 → m/z 283.3 for sildenafil, m/z 461.4 → m/z 283.2 for N-desmethyl sildenafil and m/z 483.3 → m/z 108.1 for IS in positive ionization mode. The calibration curve was established over the range of 2.00-1,000 ng/ml and the correlation coefficient was >0.99. The intra-day and inter-day relative standard deviations were <6.5% for sildenafil and 6.3% for N-desmethyl sildenafil respectively. Accuracy determinaed at four concentrations was 86.50-105.67% for sildenafil and 96.83-114.40% for N-desmethyl sildenafil. This method was successfully applied to a pharmacokinetic description of sildenafil and the effect of food intake on the pharmacokinetics of sildenafil was also demonstrated in healthy Chinese volunteers.
Collapse
Affiliation(s)
- Lin-Ling Li
- School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xiu-Jin Zhang
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | - Chao Zheng
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | - Ming-Xia Fan
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | - Hao-Yun Xu
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | | | - Yan Feng
- AccuBE PharmaTech, Xiamen, Fujian, China
| | - Xi Luo
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | - Wei-Hua Li
- The First affiliated hospital, School of Medicine, Xiamen university, Xiamen, Fujian, China
| | - Ze-Neng Cheng
- School of Xiangya Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Papathanasiou M, Ruhparwar A, Kamler M, Rassaf T, Luedike P. Off-label use of pulmonary vasodilators after left ventricular assist device implantation: Calling in the evidence. Pharmacol Ther 2020; 214:107619. [PMID: 32599009 DOI: 10.1016/j.pharmthera.2020.107619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
Left ventricular assist devices (LVAD) are increasingly implanted in advanced heart failure patients to improve survival and quality of life either as a bridge to transplant, bridge to recovery or as destination therapy. LVAD therapy is often accompanied by a profound lowering of pulmonary artery pressure due to mechanical unloading of the left ventricle. Persistent pulmonary hypertension (PH) after LVAD implantation increases the risk of right ventricular failure (RVF). In this context pulmonary vasodilators have been implemented: a) as a strategy to reduce afterload and wean patients with RVF from inotropes in the early postoperative period, b) as long-term therapy aiming to optimize right heart hemodynamics and prevent late RVF and c) in order to lower persistently elevated pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR) after LVAD and enable candidacy for heart transplantation. However, considerable uncertainty exists regarding the risks and benefits of these strategies and practices vary widely among institutions. This article provides an overview of the available evidence and existing recommendations regarding the use of pulmonary vasodilators in LVAD recipients.
Collapse
Affiliation(s)
- Maria Papathanasiou
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic- and Cardiovascular Surgery, West German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Markus Kamler
- Department of Thoracic- and Cardiovascular Surgery, West German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Peter Luedike
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| |
Collapse
|
11
|
Nydegger C, Corno AF, von Segesser LK, Beghetti M, Samaja M, Milano G. Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia. Cardiovasc Drugs Ther 2020; 33:407-414. [PMID: 31264002 PMCID: PMC6689028 DOI: 10.1007/s10557-019-06887-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Purpose In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation. We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition. Methods Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O2) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day). Results Two-week hypoxia changed the body weight (− 31% vs. − 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration. Conclusions Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease.
Collapse
Affiliation(s)
- Coline Nydegger
- Department Cœur-Vaisseaux, Cardiac Surgery center, University Hospital of Lausanne, Lausanne, Switzerland
| | - Antonio F Corno
- Cardiovascular Research Center, University of Leicester, Leicester, UK
| | - Ludwig K von Segesser
- Cardiovascular Research Unit, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maurice Beghetti
- Pediatric Cardiology Unit, University of Geneva, Geneva, Switzerland
- Centre Universitaire Romand de Cardiologie et Chirurgie Cardiaque Pédiatrique, Children's University Hospitals, Geneva and Lausanne, Lausanne, Switzerland
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Giuseppina Milano
- Department Cœur-Vaisseaux, Cardiac Surgery center, University Hospital of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Strong C, Raposo L, Castro M, Madeira S, Tralhão A, Ventosa A, Rebocho MJ, Almeida M, Aguiar C, Neves JP, Mendes M. Haemodynamic effects and potential clinical implications of inhaled nitric oxide during right heart catheterization in heart transplant candidates. ESC Heart Fail 2020; 7:673-681. [PMID: 32045139 PMCID: PMC7160504 DOI: 10.1002/ehf2.12639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/22/2023] Open
Abstract
AIMS Right heart catheterization (RHC) is indicated in all candidates for heart transplantation (HT). An acute vasodilator challenge is recommended for those with pulmonary hypertension (PH) to assess its reversibility. The effects of inhaled nitric oxide (iNO) on pulmonary and systemic haemodynamics have been reported only in small series. Our purpose was to describe the response to iNO in a larger population and its potential clinical implications. METHODS AND RESULTS From 210 RHC procedures performed between 2010 and 2019, vasodilator challenge with iNO was used in 108 patients, of which 66 had advanced heart failure undergoing assessment for HT (55±11 years old; 74.2% male gender; 43.9% ischaemic cardiomyopathy; left ventricular ejection fraction 28.4 ± 11,4%; and peak VO2 12.1 ± 3.0 mL/kg/min). iNO was administered through a tight-fitting facial mask regardless of baseline pulmonary pressures. Clinical endpoints (all-cause mortality and acute right heart failure) were assessed according to baseline haemodynamic findings over the available follow-up period. There were no side effects from iNO administration. Typical response consisted of a reduction in pulmonary vascular resistance, consequent to an increase in left ventricular filling pressures, no significant change in mean pulmonary artery pressure (resulting in a lower mean transpulmonary gradient) and a mild increase in cardiac ouput. Pulmonary arterial compliance increased significantly, whereas systemic vascular resistance was only mildly affected. In five cases (7.6%), pulmonary vascular resistance increased paradoxically. All-cause mortality and post-HT right heart failure events were overall low and similar in patients without PH or reversible PH. CONCLUSIONS Vasodilator challenge with iNO is safe in advanced heart failure patients undergoing RHC prior to HT listing. It produces a reasonably predictable haemodynamic response, which occurs predominantly at the pulmonary circulation level. Clinical implications of iNO-induced reversibility may be relevant, but further systematic validation is warranted in larger cohorts.
Collapse
Affiliation(s)
- Christopher Strong
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - Luís Raposo
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - Mariana Castro
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - Sérgio Madeira
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - António Tralhão
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - António Ventosa
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - Maria José Rebocho
- Cardiac Surgery Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Manuel Almeida
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - Carlos Aguiar
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| | - José Pedro Neves
- Cardiac Surgery Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Miguel Mendes
- Cardiology Deparment, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, Av. Prof. Dr. Reinaldo dos Santos, Carnaxide, 2790-134, Portugal
| |
Collapse
|
13
|
Abstract
Introduction: Pulmonary hypertension (PH) secondary to left-sided heart disease (Group 2 PH) is a frequent complication of heart failure (HF) and is a heterogeneous phenotypic disorder that worsens exercise capacity, increases risk for hospitalization and survival independent of left ventricular ejection fraction (LVEF) or stage of HF. Areas covered: In this review, an update of the current knowledge and some potential challenges about the pathophysiology and treatments of group 2 PH in patients with HF of either preserved or reduced ejection fraction are provided. Also, this review discusses the epidemiology and provides hints for the optimal evaluation and diagnosis of these patients to prevent misclassification of their pulmonary hypertension. Expert opinion: There are many of areas lacking knowledge and understanding in the field of pulmonary hypertension associated to left heart disease (PH-LHD) that should be addressed in the future. Further research should be performed, in terms of pathobiology, and understanding the predisposition (genetic susceptibility and contributing factors) of the different phenotypes of this disorder. More clinical trials targeting new therapeutic options and specific PH therapies are warranted to help this increasing important patient group as the current guidelines recommend to only treat the underlying left-sided heart disease.
Collapse
Affiliation(s)
- Ronald Zolty
- a Medical Center College of Medicine , University of Nebraska , Omaha , NE , USA
| |
Collapse
|
14
|
Sparrow CT, LaRue SJ, Schilling JD. Intersection of Pulmonary Hypertension and Right Ventricular Dysfunction in Patients on Left Ventricular Assist Device Support: Is There a Role for Pulmonary Vasodilators? Circ Heart Fail 2019; 11:e004255. [PMID: 29321132 DOI: 10.1161/circheartfailure.117.004255] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Left ventricular assist devices (LVADs) improve survival and quality of life in patients with advanced heart failure. Despite these benefits, combined post- and precapillary pulmonary hypertension can be particularly problematic in patients on LVAD support, often exacerbating right ventricular (RV) dysfunction. Both persistently elevated pulmonary vascular resistance and RV dysfunction are associated with adverse outcomes, including death after LVAD. These observations have led to significant interest in the use of pulmonary vasodilators to treat pulmonary hypertension and preserve RV function among LVAD-supported patients. Although pulmonary vasodilators are commonly used for the treatment of pulmonary hypertension and RV dysfunction in LVADs, the benefits of this practice remain unclear. The purpose of this review is to highlight the current challenges in managing pulmonary vascular disease and RV dysfunction in patients with heart failure on LVAD support.
Collapse
Affiliation(s)
- Christopher T Sparrow
- From the Division of Cardiology, Department of Medicine (C.T.S., S.J.L., J.D.S.) and Department of Pathology and Immunology (J.D.S.), Washington University School of Medicine, St. Louis, MO
| | - Shane J LaRue
- From the Division of Cardiology, Department of Medicine (C.T.S., S.J.L., J.D.S.) and Department of Pathology and Immunology (J.D.S.), Washington University School of Medicine, St. Louis, MO
| | - Joel D Schilling
- From the Division of Cardiology, Department of Medicine (C.T.S., S.J.L., J.D.S.) and Department of Pathology and Immunology (J.D.S.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
15
|
Mehra P, Mehta V, Sukhija R, Sinha AK, Gupta M, Girish M, Aronow WS. Pulmonary hypertension in left heart disease. Arch Med Sci 2019; 15:262-273. [PMID: 30697278 PMCID: PMC6348356 DOI: 10.5114/aoms.2017.68938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pratishtha Mehra
- Department of Cardiology, Maulana Azad Medical College and G.B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Vimal Mehta
- Department of Cardiology, Maulana Azad Medical College and G.B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Rishi Sukhija
- Division of Cardiology, Indiana University La Porte Hospital, La Porte, Indiana, USA
| | - Anjan K. Sinha
- Division of Cardiology, Indiana University Health, Indianapolis, Indiana, USA
| | - Mohit Gupta
- Department of Cardiology, Maulana Azad Medical College and G.B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - M.P. Girish
- Department of Cardiology, Maulana Azad Medical College and G.B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | | |
Collapse
|
16
|
Zayat R, Ahmad U, Stoppe C, Khattab MA, Arab F, Moza A, Tewarie L, Goetzenich A, Autschbach R, Schnoering H. Sildenafil Reduces the Risk of Thromboembolic Events in HeartMate II Patients with Low-Level Hemolysis and Significantly Improves the Pulmonary Circulation. Int Heart J 2018; 59:1227-1236. [DOI: 10.1536/ihj.18-001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rashad Zayat
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Usaama Ahmad
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | | | | | - Fateh Arab
- Department of Cardiovascular Medicine, Dr. Hamid Center, Dubai Health City
| | - Ajay Moza
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | | | - Andreas Goetzenich
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Rüdiger Autschbach
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| | - Heike Schnoering
- Department of Thoracic and Cardiovascular Surgery, RWTH University Hospital
| |
Collapse
|
17
|
Abstract
Pulmonary hypertension (PH) is a common hemodynamic evolution of heart failure (HF) with preserved or reduced ejection fraction, responsible for congestion, symptoms worsening, exercise limitation, and negative outcome. In HF of any origin, PH develops in response to a passive backward pressure transmission as result of increased left atrial pressure. Sustained pressure injury and chronic venous congestion can trigger pulmonary vasoconstriction and vascular remodeling, leading to irreversible pulmonary vascular disease, right ventricular hypertrophy, and failure. In this article, the key determinants of this "dangerous liaison" are analyzed with some digressions on related "leitmotiv" at the horizon.
Collapse
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit, IRCCS Policlinico San Donato, Piazza E. Malan 2, San Donato Milanese, Milano 20097, Italy.
| |
Collapse
|
18
|
Comparative single-dose pharmacokinetics of sildenafil after oral and rectal administration in healthy beagle dogs. BMC Vet Res 2018; 14:291. [PMID: 30249242 PMCID: PMC6154896 DOI: 10.1186/s12917-018-1617-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sildenafil citrate, a highly selective phosphodiesterase type 5 inhibitor, is used to treat pulmonary hypertension (PH) in veterinary medicine. The objective of this study was to investigate pharmacokinetic profiles by oral administration of orally disintegrating film (ODF) and film coated tablet (FCT) formulations and rectal administration of ODF formulation in healthy dogs. Twelve healthy beagle dogs were administered four separate doses of sildenafil: FCT formulation 2 mg/kg orally, ODF formulation 2 mg/kg orally, ODF formulation 2 mg/kg rectally, and ODF formulation 10 mg/kg rectally. For 24 hours following administration, blood samples were collected and the plasma concentrations of sildenafil were assayed by liquid chromatography-tandem mass spectrometry. RESULTS There were no significant differences in all the pharmacokinetic parameters between FCT and ODF formulations when administrated orally. Cmax at the time of rectal administration was lower when the same dose was given as that orally administered. No serious systemic adverse events (AEs) were observed. CONCLUSIONS These findings suggest that sildenafil ODF formulation can be used as an alternative to FCT formulation in the treatment of canine PH patients; additionally, rectal administration of sildenafil ODF may be a beneficial treatment option for canine patients who are unable to receive medication orally.
Collapse
|
19
|
Yu B, Ferrari M, Schleifer G, Blaesi AH, Wepler M, Zapol WM, Bloch DB. Development of a portable mini-generator to safely produce nitric oxide for the treatment of infants with pulmonary hypertension. Nitric Oxide 2018; 75:70-76. [PMID: 29486304 DOI: 10.1016/j.niox.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/13/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To test the safety of a novel miniaturized device that produces nitric oxide (NO) from air by pulsed electrical discharge, and to demonstrate that the generated NO can be used to vasodilate the pulmonary vasculature in rabbits with chemically-induced pulmonary hypertension. STUDY DESIGN A miniature NO (mini-NO) generator was tested for its ability to produce therapeutic levels (20-80 parts per million (ppm)) of NO, while removing potentially toxic gases and metal particles. We studied healthy 6-month-old New Zealand rabbits weighing 3.4 ± 0.4 kg (mean ± SD, n = 8). Pulmonary hypertension was induced by chemically increasing right ventricular systolic pressure to 28-30 mmHg. The mini-NO generator was placed near the endotracheal tube. Production of NO was triggered by a pediatric airway flowmeter during the first 0.5 s of inspiration. RESULTS In rabbits with acute pulmonary hypertension, the mini-NO generator produced sufficient NO to induce pulmonary vasodilation. Potentially toxic nitrogen dioxide (NO2) and ozone (O3) were removed by the Ca(OH)2 scavenger. Metallic particles, released from the electrodes by the electric plasma, were removed by a 0.22 μm filter. While producing 40 ppm NO, the mini-NO generator was cooled by a flow of air (70 ml/min) and the external temperature of the housing did not exceed 31 °C. CONCLUSIONS The mini-NO generator safely produced therapeutic levels of NO from air. The mini-NO generator is an effective and economical approach to producing NO for treating neonatal pulmonary hypertension and will increase the accessibility and therapeutic uses of life-saving NO therapy worldwide.
Collapse
Affiliation(s)
- Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Michele Ferrari
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Grigorij Schleifer
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Aron H Blaesi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Martin Wepler
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
20
|
Acute Right Ventricular Dysfunction in Intensive Care Unit. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8217105. [PMID: 29201914 PMCID: PMC5671685 DOI: 10.1155/2017/8217105] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/13/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023]
Abstract
The role of the left ventricle in ICU patients with circulatory shock has long been considered. However, acute right ventricle (RV) dysfunction causes and aggravates many common critical diseases (acute respiratory distress syndrome, pulmonary embolism, acute myocardial infarction, and postoperative cardiac surgery). Several supportive therapies, including mechanical ventilation and fluid management, can make RV dysfunction worse, potentially exacerbating shock. We briefly review the epidemiology, pathophysiology, diagnosis, and recommendations to guide management of acute RV dysfunction in ICU patients. Our aim is to clarify the complex effects of mechanical ventilation, fluid therapy, vasoactive drug infusions, and other therapies to resuscitate the critical patient optimally.
Collapse
|
21
|
Sahay S, Khirfan G, Tonelli AR. Management of combined pre- and post-capillary pulmonary hypertension in advanced heart failure with reduced ejection fraction. Respir Med 2017; 131:94-100. [PMID: 28947049 DOI: 10.1016/j.rmed.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Management of pulmonary hypertension (PH) has remained an unmet need in advanced left heart failure with reduced ejection fraction. In fact, patients are frequently denied heart transplant due to untreated pulmonary hypertension. The availability of mechanically circulatory devices and PH therapies has provided a ray of hope. PH specific therapies are currently not FDA approved for patients with left heart failure with reduced ejection fraction. However, clinicians have used these medications in anecdotal manner. With this review, we want to highlight the expanding use of PH specific therapy and mechanical circulatory devices in the management of PH in the setting of advanced heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Sandeep Sahay
- Weill Cornell Medical College, Institute of Academic Medicine, Houston Methodist Lung Center, Houston Methodist Hospital, Houston, TX, USA.
| | - Ghaleb Khirfan
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
22
|
Abstract
Untreated, severe, symptomatic aortic stenosis is associated with a dismal prognosis. The only treatment shown to improve survival is aortic valve replacement; however, before symptoms occur, aortic stenosis is preceded by a silent, latent phase characterized by a slow progression at the molecular, cellular, and tissue levels. In theory, specific medical therapy should halt aortic stenosis progression, reduce its hemodynamic repercussions on left ventricular function and remodeling, and improve clinical outcomes. In the present report, we performed a systematic review of studies focusing on the medical treatment of patients with aortic stenosis. Lipid-lowering therapy, antihypertensive drugs, and anticalcific therapy have been the main drug classes studied in this setting and are reviewed in depth. A critical appraisal of the preclinical and clinical evidence is provided, and future research avenues are presented.
Collapse
Affiliation(s)
- Guillaume Marquis-Gravel
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Björn Redfors
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Martin B Leon
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.)
| | - Philippe Généreux
- From Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Montréal, QC, Canada (G.M.-G., P.G.); Cardiovascular Research Foundation, New York, NY (B.R., M.B.L., P.G.); Sahlgrenska University Hospital, Gothenburg, Sweden (B.R.); Columbia University Medical Center, New York, NY (M.B.L., P.G.); and Morristown Medical Center, Morristown, NJ (P.G.).
| |
Collapse
|
23
|
Rezoagli E, Ichinose F, Strelow S, Roy N, Shelton K, Matsumine R, Chen L, Bittner EA, Bloch DB, Zapol WM, Berra L. Pulmonary and Systemic Vascular Resistances After Cardiopulmonary Bypass: Role of Hemolysis. J Cardiothorac Vasc Anesth 2017; 31:505-515. [PMID: 27590461 DOI: 10.1053/j.jvca.2016.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Prolonged cardiopulmonary bypass (CPB) is associated with hemolysis, resulting in increased plasma oxyhemoglobin and vascular nitric oxide depletion. The authors hypothesized that hemolysis associated with CPB would reduce nitric oxide bioavailability, resulting in high pulmonary and systemic vascular resistances that after CPB would normalize gradually over time, due to clearance of plasma oxyhemoglobin. The authors also investigated whether prolonged CPB (≥140 min) produced increased levels of hemolysis and greater pulmonary and systemic vasoconstriction. DESIGN Prospective cohort study. SETTING Single-center university hospital. PATIENTS The study comprised 50 patients undergoing elective cardiac surgery requiring CPB. INTERVENTIONS Plasma hemoglobin and plasma nitric oxide consumption were measured before surgery and after CPB. Pulmonary and systemic hemodynamics were measured after CPB. The effects of short (<140 min) and prolonged (≥140 min) CPB on these parameters were considered. MEASUREMENTS AND MAIN RESULTS Pulmonary and systemic vascular resistances and plasma hemoglobin and nitric oxide consumption were highest at 15 minutes after CPB and then decreased over time. Pulmonary and systemic vascular resistances and plasma hemoglobin and plasma nitric oxide consumption were higher in patients requiring prolonged CPB. The reduction in plasma nitric oxide consumption from 15 minutes to 4 hours after CPB was correlated independently with the reductions in pulmonary and systemic vascular resistances. CONCLUSIONS Prolonged CPB was associated with increased plasma hemoglobin and plasma nitric oxide consumption and pulmonary and systemic vascular resistances. The reduction in plasma nitric oxide consumption at 4 hours after CPB was an independent predictor of the concomitant reductions in pulmonary and systemic vascular resistances.
Collapse
|
24
|
Estrada VHN, Franco DLM, Moreno AAV, Gambasica JAR, Nunez CCC. Postoperative Right Ventricular Failure in Cardiac Surgery. Cardiol Res 2016; 7:185-195. [PMID: 28197291 PMCID: PMC5295509 DOI: 10.14740/cr500e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
Two cases of patients that developed right ventricular failure (RVF) after cardiac valve surgery are presented with a narrative revision of the literature. RVF involves a great challenge due to the severity of this condition; it has a low incidence among non-congenital cardiac surgery patients, is more likely associated with cardiovascular and pulmonary complications related to cardiopulmonary bypass (CPB), and is a cause of acute graft failure and of a higher early mortality in cardiac transplant. The morphologic and hemodynamic characteristics of the right ventricle and some specific factors that breed pulmonary hypertension after cardiac surgery are in favor of the onset of RVF. Due to the possibility of complications after cardiac valve repair or replacement, measures as appropriate hemodynamic monitoring, to manage oxygenation, ventilation, sedation, acid base equilibrium and perfusion goals are a requirement, as well as a normal circulating volume, and the prevention of a disproportionate rise in the afterload, to preserve the free wall of the right ventricle (RV) and the septum's contribution to the right ventricular global function and geometry. If there is no response to these basic measures, the use of advanced therapy with inotropics, intravenous or inhaled pulmonary vasodilation agents is recommended; the use of mechanical ventricular assistance stands as a last resource.
Collapse
|
25
|
|
26
|
Bae HK, Lee H, Kim KC, Hong YM. The effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline-induced right ventricular failure. KOREAN JOURNAL OF PEDIATRICS 2016; 59:262-70. [PMID: 27462355 PMCID: PMC4958704 DOI: 10.3345/kjp.2016.59.6.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 11/29/2022]
Abstract
Purpose Pulmonary arterial hypertension (PAH) leads to right ventricular failure (RVF) as well as an increase in pulmonary vascular resistance. Our purpose was to study the effect of sildenafil on right ventricular remodeling in a rat model of monocrotaline (MCT)-induced RVF. Methods The rats were distributed randomly into 3 groups. The control (C) group, the monocrotaline (M) group (MCT 60 mg/kg) and the sildenafil (S) group (MCT 60 mg/kg+ sildenafil 30 mg/kg/day for 28 days). Masson Trichrome staining was used for heart tissues. Western blot analysis and immunohistochemical staining were performed. Results The mean right ventricular pressure (RVP) was significantly lower in the S group at weeks 1, 2, and 4. The number of intra-acinar arteries and the medial wall thickness of the pulmonary arterioles significantly lessened in the S group at week 4. The collagen content also decreased in heart tissues in the S group at week 4. Protein expression levels of B-cell lymphoma-2 (Bcl-2)-associated X, caspase-3, Bcl-2, interleukin (IL)-6, matrix metalloproteinase (MMP)-2, endothelial nitric oxide synthase (eNOS), endothelin (ET)-1 and ET receptor A (ERA) in lung tissues greatly decreased in the S group at week 4 according to immunohistochemical staining. According to Western blotting, protein expression levels of troponin I, brain natriuretic peptide, caspase-3, Bcl-2, tumor necrosis factor-α, IL-6, MMP-2, eNOS, ET-1, and ERA in heart tissues greatly diminished in the S group at week 4. Conclusion Sildenafil alleviated right ventricular hypertrophy and mean RVP. These data suggest that sildenafil improves right ventricular function.
Collapse
Affiliation(s)
- Hyun Kyung Bae
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyeryon Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwan Chang Kim
- Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Young Mi Hong
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Guglin M, Rajagopalan N, Anaya P, Charnigo R. Sildenafil in heart failure with reactive pulmonary hypertension (Sildenafil HF) clinical trial (rationale and design). Pulm Circ 2016; 6:161-7. [PMID: 27252841 DOI: 10.1086/685548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this article, we present the rationale and design of the Sildenafil HF trial (ClinicalTrials.gov identifier: NCT02304705). We will randomize patients with heart failure and reactive pulmonary hypertension (pulmonary capillary wedge pressure > 15 mmHg, pulmonary vascular resistance > 3 Wood units) into two groups: the treatment group receiving sildenafil 20 mg 3 times a day and a matching placebo group. The duration of intervention will be 3 months. The primary outcome is 6-minute walk distance. Key features of this trial include (1) that reactive pulmonary hypertension is an inclusion criterion, (2) that patients will be enrolled regardless of left ventricular ejection fraction, and (3) that clinical stability in the 3 months preceding enrollment is not required.
Collapse
Affiliation(s)
- Maya Guglin
- Gill Heart institute, University of Kentucky, Lexington, Kentucky, USA
| | - Navin Rajagopalan
- Gill Heart institute, University of Kentucky, Lexington, Kentucky, USA
| | - Paul Anaya
- Gill Heart institute, University of Kentucky, Lexington, Kentucky, USA
| | - Richard Charnigo
- Gill Heart institute, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
28
|
Hoeper MM, McLaughlin VV, Dalaan AMA, Satoh T, Galiè N. Treatment of pulmonary hypertension. THE LANCET RESPIRATORY MEDICINE 2016; 4:323-36. [DOI: 10.1016/s2213-2600(15)00542-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 01/15/2023]
|
29
|
Yu B, Muenster S, Blaesi AH, Bloch DB, Zapol WM. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy. Sci Transl Med 2016; 7:294ra107. [PMID: 26136478 DOI: 10.1126/scitranslmed.aaa3097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Binglan Yu
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stefan Muenster
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aron H Blaesi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Donald B Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Warren M Zapol
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
Effects of Single Drug and Combined Short-term Administration of Sildenafil, Pimobendan, and Nicorandil on Right Ventricular Function in Rats With Monocrotaline-induced Pulmonary Hypertension. J Cardiovasc Pharmacol 2016; 65:640-8. [PMID: 25806612 PMCID: PMC4461396 DOI: 10.1097/fjc.0000000000000236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was designed to assess the progression of pulmonary arterial hypertension (PAH) and the effectiveness of therapy using recently investigated echocardiographic parameters. PAH is characterized by the progressive elevation of pulmonary artery pressure and right ventricular hypertrophy and dysfunction, which ultimately results in right-sided heart failure and death. Echocardiography results and invasive measurements of right and left ventricular systolic pressures were compared after 3-week administrations of sildenafil (S group), pimobendan (P group), nicorandil (N group), and their combinations (SP and SPN groups) in male rats with monocrotaline (MCT)-induced pulmonary hypertension (M group) and without this condition (C group). The groups that received pimobendan alone and in combinations (SP and SPN groups) showed improvement in their echocardiographic parameters of systolic function. A significant improvement of diastolic function was achieved in the SPN group. Invasive measurements showed the most significant decreases of right ventricular systolic pressure in the N and SPN groups, and the use of pimobendan resulted in a comparatively low risk of adverse hemodynamic effects (left ventricular systolic pressure). Although our results suggested the attenuation of PAH severity in all treatment groups, PAH could not be reversed.
Collapse
|
31
|
New Diagnostic and Therapeutic Strategies for Pulmonary Hypertension Associated with Left Heart Disease. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:18. [DOI: 10.1007/s11936-016-0438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Left ventricular vs. biventricular mechanical support: Decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol 2015; 198:241-50. [DOI: 10.1016/j.ijcard.2015.06.103] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/16/2022]
|
33
|
Comparative effectiveness of sildenafil for pulmonary hypertension due to left heart disease with HFrEF. Hypertens Res 2015. [DOI: 10.1038/hr.2015.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Simiele M, Pensi D, Pasero D, Ivaldi F, Rinaldi M, Di Perri G, Ranieri VM, D'Avolio A. Development and validation of an ultra performance liquid chromatography tandem mass method for sildenafil and N-desmethyl sildenafil plasma determination and quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1001:35-40. [PMID: 26253809 DOI: 10.1016/j.jchromb.2015.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
Sildenafil is a selective inhibitor of cGMP-specific type 5 phosphodiesterase (PDE5) used for the treatment of masculine erectile dysfunction and Pulmonary Arterial Hypertension (PAH). Sildenafil causes vasodilatation; relax of the smooth muscle and reduction of pulmonary arterial pressure. In the liver cytocrome P450 metabolizes sildenafil into its active metabolite, N-desmethyl sildenafil. The determination of plasma levels of sildenafil and N-desmethyl sildenafil could be useful for therapy optimization and pharmacokinetic studies. We have developed and validated a new method for the quantification of sildenafil and its metabolite in human plasma by rapid protein precipitation extraction, using an UPLC system, coupled with a tandem mass spectrometric detector (UPLC-MS/MS). The calibration range was fitted at least square model (r(2)≥0.999), with an accuracy and an intra- and inter-day RSD% (Relative Standard Deviation), both for sildenafil and N-desmethyl sildenafil, lower than 15%, as required by the FDA guidelines; LLOQ, LLOD, ULOQ were 3.9ng/mL, 1.95ng/mL and 1000ng/mL, respectively, for both analytes. Matrix effect, expressed as mean percent deviation of peak areas, was in the range between 2.6% and 5.8%, lower than 15% as required by guidelines. The mean recovery was 83.2 % for sildenafil and 84.5% for N-desmethyl sildenafil. This method has successfully been applied to a clinical pharmacokinetic study of sildenafil and N-desmethyl sildenafil in patients with PAH undergoing cardiac surgery.
Collapse
Affiliation(s)
- Marco Simiele
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, (#Laboratory of Clinical Pharmacology and Pharmacogenetic), Turin, Italy
| | - Debora Pensi
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, (#Laboratory of Clinical Pharmacology and Pharmacogenetic), Turin, Italy.
| | - Daniela Pasero
- Department of Anesthesia and Critical Care Medicine, University of Turin, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Francesca Ivaldi
- Department of Anesthesia and Critical Care Medicine, University of Turin, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Mauro Rinaldi
- Department of Anesthesia and Critical Care Medicine, University of Turin, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, (#Laboratory of Clinical Pharmacology and Pharmacogenetic), Turin, Italy
| | - Vito Marco Ranieri
- Department of Anesthesia and Critical Care Medicine, University of Turin, Città della Salute e della Scienza Hospital, Turin, Italy
| | - Antonio D'Avolio
- Unit of Infectious Diseases, University of Turin, Department of Medical Sciences, Amedeo di Savoia Hospital, (#Laboratory of Clinical Pharmacology and Pharmacogenetic), Turin, Italy
| |
Collapse
|
35
|
Kim CH, Olson LJ, Shen WK, Cha YM, Johnson BD. Ventilatory gas exchange and early response to cardiac resynchronization therapy. J Heart Lung Transplant 2015; 34:1430-5. [PMID: 26163155 DOI: 10.1016/j.healun.2015.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/17/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is an accepted intervention for chronic heart failure (HF), although approximately 30% of patients are non-responders. The purpose of this study was to determine whether exercise respiratory gas exchange obtained before CRT implantation predicts early response to CRT. METHODS Before CRT implantation, patients were assigned to either a mild-moderate group (Mod G, n = 33, age 67 ± 10 years) or a moderate-severe group (Sev G, n = 31, age 67 ± 10 years), based on abnormalities in exercise gas exchange. Severity of impaired gas exchange was based on a score from the measures of VE/VCO(2) slope, resting PETCO(2) and change of PETCO(2) from resting to peak. All measurements were performed before and 3 to 4 months after CRT implantation. RESULTS Although Mod G did not have improved gas exchange (p > 0.05), Sev G improved significantly (p < 0.05) post-CRT. In addition, Mod G did not show improved right ventricular systolic pressure (RSVP; pre vs post: 37 ± 14 vs 36 ± 11 mm Hg, p > 0.05), yet Sev G showed significantly improved RVSP, by 23% (50 ± 14 vs 42 ± 12 mm Hg, p < 0.05). Both groups had improved left ventricular ejection fraction (p < 0.05), New York Heart Association class (p < 0.05) and quality of life (p < 0.05), but no significant differences were observed between groups (p > 0.05). No significant changes were observed in brain natriuretic peptide in either group post-CRT. CONCLUSION Based on pre-CRT implantation ventilatory gas exchange, subjects with the most impaired values appeared to have more improvement post-CRT, possibly associated with a decrease in RVSP.
Collapse
Affiliation(s)
- Chul-Ho Kim
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
| | - Lyle J Olson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Win K Shen
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Yong-Mei Cha
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Bruce D Johnson
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Jentzer JC, Mathier MA. Pulmonary Hypertension in the Intensive Care Unit. J Intensive Care Med 2015; 31:369-85. [PMID: 25944777 DOI: 10.1177/0885066615583652] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022]
Abstract
Pulmonary hypertension occurs as the result of disease processes increasing pressure within the pulmonary circulation, eventually leading to right ventricular failure. Patients may become critically ill from complications of pulmonary hypertension and right ventricular failure or may develop pulmonary hypertension as the result of critical illness. Diagnostic testing should evaluate for common causes such as left heart failure, hypoxemic lung disease and pulmonary embolism. Relatively few patients with pulmonary hypertension encountered in clinical practice require specific pharmacologic treatment of pulmonary hypertension targeting the pulmonary vasculature. Management of right ventricular failure involves optimization of preload, maintenance of systemic blood pressure and augmentation of inotropy to restore systemic perfusion. Selected patients may require pharmacologic therapy to reduce right ventricular afterload by directly targeting the pulmonary vasculature, but only after excluding elevated left heart filling pressures and confirming increased pulmonary vascular resistance. Critically-ill patients with pulmonary hypertension remain at high risk of adverse outcomes, requiring a diligent and thoughtful approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Jacob C Jentzer
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, USA Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael A Mathier
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Guazzi M, Gomberg-Maitland M, Arena R. Pulmonary hypertension in heart failure with preserved ejection fraction. J Heart Lung Transplant 2014; 34:273-81. [PMID: 25577563 DOI: 10.1016/j.healun.2014.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/18/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022] Open
Abstract
In heart failure with preserved ejection fraction (HFpEF), an entity that remains challenging and difficult to treat, the development of pulmonary hypertension (PH), via an increase in left atrial pressure, is the direct consequence of reduced relaxation and enhanced stiffness of the left ventricle and is now viewed as an important contributor to clinical worsening and increased mortality. PH becomes a relevant clinical phenotype in approximately 50% of patients with HFpEF and represents a true challenge in the clinical follow-up and management of these patients. Along with these epidemiologic insights, there has been increasing recognition of the pathophysiology of PH and its consequences on the right ventricle in patients with HFpEF. Novel and effective therapeutic interventions aimed at preventing and reversing PH are highly relevant in the attempt to modify the poor clinical trajectory and growing health care burden of HFpEF. Many theoretical rationales as well as progressively accumulating evidence support the usefulness of nitric oxide pathway-potentiating compounds in targeting the lung vasculature through phosphodiesterase 5 inhibitors or guanylate cyclase stimulators to produce vasodilation and potentially a biologic effect. These pharmacologic strategies may be clinically effective options for the treatment of PH in patients with HFpEF; however, large controlled trials are necessary to address definitively the safety, tolerability, and potential impact on morbidity and mortality. This review details the pathophysiologic process, prevalence, and consequences of HFpEF-associated PH and discusses current and emerging treatment strategies to prevent or treat this deleterious sequela when present.
Collapse
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit and Cardiopulmonary Laboratory, Cardiology, I.R.C.C.S., Policlinico San Donato University Hospital, Milan, Italy.
| | | | - Ross Arena
- Department of Physical Therapy and Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois Chicago, Chicago, Illinois
| |
Collapse
|
38
|
Dupuis J, Guazzi M. Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases. Can J Cardiol 2014; 31:416-29. [PMID: 25840093 DOI: 10.1016/j.cjca.2014.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022] Open
Abstract
Pulmonary hypertension (PH) in left heart disease, classified as group II, is the most common form of PH that occurs in approximately 60% of cases of reduced and preserved left ventricular ejection fraction. Although relatively much is known about hemodynamic stages (passive or reactive) and their consequences on the right ventricle (RV) there is no consensus on the best hemodynamic definition of group II PH. In addition, the main pathways that lead to lung capillary injury and impaired biology of small artery remodelling processes are largely unknown. Typical lung manifestations of an increased pulmonary pressure and progressive RV-pulmonary circulation uncoupling are an abnormal alveolar capillary gas diffusion, impaired lung mechanics (restriction), and exercise ventilation inefficiency. Of several classes of pulmonary vasodilators currently clinically available, oral phosphodiesterase 5 inhibition, because of its strong selectivity for targeting the cyclic guanosine monophosphate pathway in the pulmonary circulation, is increasingly emerging as an attractive opportunity to reach hemodynamic benefits, reverse capillary injury, and RV remodelling, and improve functional capacity. Guanylate cyclase stimulators offer an additional intriguing opportunity but the lack of selectivity and systemic effects might preclude some of the anticipated benefits on the pulmonary circulation. Future trials will determine whether new routes of pharmacologic strategy aimed at targeting lung structural and vascular remodelling might affect morbidity and mortality in left heart disease populations. We believe that this therapeutic goal rather than a pure hemodynamic effect might ultimately emerge as an important challenge for the clinician.
Collapse
Affiliation(s)
- Jocelyn Dupuis
- Department of Medicine, Université de Montréal and Research Center of the Montreal Heart Institute, Montreal, Québec, Canada
| | - Marco Guazzi
- University of Milano Heart Failure Unit, IRCCS Policlinico San Donato, Milano, Italy.
| |
Collapse
|
39
|
|
40
|
|
41
|
Al-Azem MA, Al-Hazmi MS. Saudi Guidelines on the Diagnosis and Treatment of Pulmonary Hypertension: Intensive care management of pulmonary hypertension. Ann Thorac Med 2014; 9:S121-6. [PMID: 25076990 PMCID: PMC4114270 DOI: 10.4103/1817-1737.134056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/05/2014] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) in the Intensive Care Unit (ICU) may be due to preexisting pulmonary vascular lung disease, liver disease, or cardiac diseases. PH also may be caused by critical illnesses, such as acute respiratory distress syndrome (ARDS), acute left ventricular dysfunction and pulmonary embolism, or may occur after cardiac or thoracic surgery. Regardless of the underlying cause of PH, the final common pathway for hemodynamic deterioration and death is RV failure, which is the most challenging aspect of patient management. Therapy is thus aimed at acutely relieving RV overload by decreasing PVR and reversing RV failure with pulmonary vasodilators and inotropes.
Collapse
Affiliation(s)
- M Ali Al-Azem
- Department of Critical Care Medicine, King Fahd Specialist Hospital, Dammam, Saudi Arabia
| | - Manal S Al-Hazmi
- Department of Pulmonary and Critical Care Medicine, King Fahd Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Abstract
The clinical syndrome comprising heart failure (HF) symptoms but with a left ventricular ejection fraction (EF) that is not diminished, eg, HF with preserved EF, is increasingly the predominant form of HF in the developed world, and soon to reach epidemic proportions. It remains among the most challenging of clinical syndromes for the practicing clinician and scientist alike, with a multitude of proposed mechanisms involving the heart and other organs and complex interplay with common comorbidities. Importantly, its morbidity and mortality are on par with HF with reduced EF, and as the list of failed treatments continues to grow, HF with preserved EF clearly represents a major unmet medical need. The field is greatly in need of a more unified approach to its definition and view of the syndrome that engages integrative and reserve pathophysiology beyond that related to the heart alone. We need to reflect on prior treatment failures and the message this is providing, and redirect our approaches likely with a paradigm shift in how the disease is viewed. Success will require interactions between clinicians, translational researchers, and basic physiologists. Here, we review recent translational and clinical research into HF with preserved EF and give perspectives on its evolving demographics and epidemiology, the role of multiorgan deficiencies, potential mechanisms that involve the heart and other organs, clinical trials, and future directions.
Collapse
Affiliation(s)
- Kavita Sharma
- From the Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - David A Kass
- From the Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
43
|
Lundgren J, Rådegran G. Pathophysiology and potential treatments of pulmonary hypertension due to systolic left heart failure. Acta Physiol (Oxf) 2014; 211:314-33. [PMID: 24703457 DOI: 10.1111/apha.12295] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/03/2014] [Accepted: 03/28/2014] [Indexed: 12/19/2022]
Abstract
Pulmonary hypertension (PH) due to left heart failure is becoming increasingly prevalent and is associated with poor outcome. The precise pathophysiological mechanisms behind PH due to left heart failure are, however, still unclear. In its early course, PH is caused by increased left ventricular filling pressures, without pulmonary vessel abnormalities. Conventional treatment for heart failure may partly reverse such passive PH by optimizing left ventricular function. However, if increased pulmonary pressures persist, endothelial damage, excessive vasoconstriction and structural changes in the pulmonary vasculature may occur. There is, at present, no recommended medical treatment for this active component of PH due to left heart failure. However, as the vascular changes in PH due to left heart failure may be similar to those in pulmonary arterial hypertension (PAH), a selected group of these patients may benefit from PAH treatment targeting the endothelin, nitric oxide or prostacyclin pathways. Such potent pulmonary vasodilators could, however, be detrimental in patients with left heart failure without pulmonary vascular pathology, as selective pulmonary vasodilatation may lead to further congestion in the pulmonary circuit, resulting in pulmonary oedema. The use of PAH therapies is therefore currently not recommended and would require the selection of suitable patients based on the underlying causes of the disease and careful monitoring of their progress. The present review focuses on the following: (i) the pathophysiology behind PH resulting from systolic left heart failure, and (ii) the current evidence for medical treatment of this condition, especially the role of PAH-targeted therapies in systolic left heart failure.
Collapse
Affiliation(s)
- J. Lundgren
- The Haemodynamic Laboratory; The Clinic for Heart Failure and Valvular Disease; Skåne University Hospital; Lund Sweden
- Department of Cardiology, Clinical Sciences; Lund University; Lund Sweden
| | - G. Rådegran
- The Haemodynamic Laboratory; The Clinic for Heart Failure and Valvular Disease; Skåne University Hospital; Lund Sweden
- Department of Cardiology, Clinical Sciences; Lund University; Lund Sweden
| |
Collapse
|
44
|
Rechtsventrikuläre Funktion bei Implantation eines linksventrikulären Unterstützungssystems. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2014. [DOI: 10.1007/s00398-013-1057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Guazzi M. Pulmonary hypertension in heart failure preserved ejection fraction: prevalence, pathophysiology, and clinical perspectives. Circ Heart Fail 2014; 7:367-77. [PMID: 24643889 DOI: 10.1161/circheartfailure.113.000823] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marco Guazzi
- Heart Failure Unit and Cardiopulmonary Laboratory, Cardiology, IRCCS, Policlinico San Donato University Hospital, Milan, Italy
| |
Collapse
|
46
|
Giembycz MA, Maurice DH. Cyclic nucleotide-based therapeutics for chronic obstructive pulmonary disease. Curr Opin Pharmacol 2014; 16:89-107. [PMID: 24810285 DOI: 10.1016/j.coph.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/18/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) defines a group of chronic inflammatory disorders of the airways that are characterised by a progressive and largely irreversible decline in expiratory airflow. Drugs used to treat COPD through actions mediated by cyclic AMP (cAMP) are restricted to long-acting and short-acting β2-adrenoceptor agonists and, in a subset of patients with chronic bronchitis, a phosphodiesterase 4 inhibitor, roflumilast. These agents relax airway smooth muscle and suppress inflammation. At the molecular level, these effects in the airways are mediated by two cAMP effectors, cAMP-dependent protein kinase and exchange proteins activated by cAMP. The pharmacology of newer agents, acting through these systems, is discussed here with an emphasis on their potential to interact and increase therapeutic effectiveness.
Collapse
Affiliation(s)
- Mark A Giembycz
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Donald H Maurice
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
47
|
Guazzi M, Vicenzi M, Arena R. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail 2014; 14:82-90. [DOI: 10.1093/eurjhf/hfr147] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marco Guazzi
- Cardiopulmonary Unit; University of Milano, San Paolo Hospital; Via A. di Rudinì, 8 20142 Milano Italy
| | - Marco Vicenzi
- Cardiopulmonary Unit; University of Milano, San Paolo Hospital; Via A. di Rudinì, 8 20142 Milano Italy
| | - Ross Arena
- Department of Orthopaedics and Rehabilitation-Physical Therapy Program and Department of Internal Medicine-Division of Cardiology; University of New Mexico School of Medicine; Albuquerque NM USA
| |
Collapse
|
48
|
Oral therapies for pulmonary arterial hypertension: endothelin receptor antagonists and phosphodiesterase-5 inhibitors. Clin Chest Med 2014; 34:811-24. [PMID: 24267306 DOI: 10.1016/j.ccm.2013.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of orally active pulmonary vasodilators has been a major breakthrough in the treatment of pulmonary arterial hypertension (PAH). Orally active medications greatly enhanced patient access to PAH treatment and increased an interest in the diagnosis and treatment of this disease that still continues. Four different orally active drugs are currently available for the treatment of PAH and several more are undergoing evaluation. This article discusses the mechanisms by which endothelin receptor antagonists and phosphodiesterase-5 inhibitors mitigate pulmonary hypertensive responses, and reviews the most recent data concerning their efficacy and limitations in the treatment of PAH.
Collapse
|
49
|
Abstract
Pulmonary hypertension is a devastating disorder, characterized by vascular proliferation, intimal hypertrophy and vasoconstriction. In this disorder, alterations in the nitric oxide pathway have borne out to be important in not only vascular proliferation, but also in the maintenance of vascular tone. After synthesis by soluble guanylate cyclase, cGMP effects vasodilation via protein kinase G and other mediators, and is hydrolyzed by phosphodiesterases (PDEs). PDE5 is abundantly expressed in the mammalian lung and its inhibition by sildenafil has been demonstrated to improve pulmonary vascular physiology in vitro and in vivo animal models of pulmonary hypertension. Recent human data has confirmed the efficacy of sildenafil in therapy for humans with pulmonary arterial hypertension. The following review will discuss the underlying basic science supporting the use of sildenafil, as well as human evidence supporting the critical role of this drug in therapy of patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Anna R Hemnes
- Johns Hopkins University, Johns 720 Rutland Avenue, Ross 850, Baltimore, MD 21205, USA.
| | | |
Collapse
|
50
|
Andersen A, Nielsen JM, Rasalingam S, Sloth E, Nielsen-Kudsk JE. Acute effects of sildenafil and dobutamine in the hypertrophic and failing right heart in vivo. Pulm Circ 2013; 3:599-610. [PMID: 24618544 DOI: 10.1086/674327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Abstract The purpose of this study was to investigate whether acute intravenous administration of the phosphodiesterase type 5 (PDE-5) inhibitor sildenafil in a single clinically relevant dose improves the in vivo function of the hypertrophic and failing right ventricle (RV). Wistar rats ([Formula: see text]) were subjected to pulmonary trunk banding (PTB) causing RV hypertrophy and failure. Four weeks after surgery, they were randomized to receive an intravenous bolus dose of sildenafil (1 mg/kg; [Formula: see text]), vehicle ([Formula: see text]), or dobutamine (10 μg/kg; [Formula: see text]). Invasive RV pressures were recorded continuously, and transthoracic echocardiography was performed 1, 5, 15, 25, 35, 50, 70, and 90 minutes after injecting the bolus. Cardiac function was compared to baseline measurements to evaluate the in vivo effects of each specific treatment. The PTB procedure caused significant hypertrophy, cardiac fibrosis, and reduction in RV function evaluated by echocardiography (TAPSE) and invasive pressure measurements. Sildenafil did not improve the function of the hypertrophic failing right heart in vivo, measured by TAPSE, RV systolic pressure (RVsP), and dp/dtmax. Dobutamine improved RV function 1 minute after injection measured by TAPSE ([Formula: see text] vs. [Formula: see text] cm; [Formula: see text]), RVsP ([Formula: see text] vs. [Formula: see text] mmHg; [Formula: see text]), and dp/dtmax ([Formula: see text] vs. [Formula: see text] mmHg/s; [Formula: see text]). Acute administration of the PDE-5 inhibitor sildenafil in a single clinically relevant dose did not modulate the in vivo function of the hypertrophic failing right heart of the rat measured by echocardiography and invasive hemodynamics. In the same model, dobutamine acutely improved RV function.
Collapse
Affiliation(s)
- Asger Andersen
- 1 Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | | | | | | | | |
Collapse
|