1
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
2
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
3
|
Rogula S, Pomirski B, Czyżak N, Eyileten C, Postuła M, Szarpak Ł, Filipiak KJ, Kurzyna M, Jaguszewski M, Mazurek T, Grabowski M, Gąsecka A. Biomarker-based approach to determine etiology and severity of pulmonary hypertension: Focus on microRNA. Front Cardiovasc Med 2022; 9:980718. [PMID: 36277769 PMCID: PMC9582157 DOI: 10.3389/fcvm.2022.980718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by remodeling of the pulmonary arteries, and defined by elevated pulmonary arterial pressure, measured during right heart catheterization. There are three main challenges to the diagnostic and therapeutic process of patients with PAH. First, it is difficult to differentiate particular PAH etiology. Second, invasive diagnostic is required to precisely determine the severity of PAH, and thus to qualify patients for an appropriate treatment. Third, the results of treatment of PAH are unpredictable and remain unsatisfactory. MicroRNAs (miRNAs) are small non-coding RNAs that regulate post transcriptional gene-expression. Their role as a prognostic, and diagnostic biomarkers in many different diseases have been studied in recent years. MiRNAs are promising novel biomarkers in PAH due to their activity in various molecular pathways and processes underlying PAH. Lack of biomarkers to differentiate between particular PAH etiology and evaluate the severity of PAH, as well as paucity of therapeutic targets in PAH open a new field for the possibility to use miRNAs in these applications. In our article, we discuss the potential of miRNAs use as diagnostic tools, prognostic biomarkers and therapeutic targets in PAH.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland,*Correspondence: Sylwester Rogula,
| | - Bartosz Pomirski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Norbert Czyżak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland,Genomics Core Facility, Center of New Technologies (CeNT), University of Warsaw, Warsaw, Poland
| | - Marek Postuła
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Szarpak
- Department of Outcomes Research, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Krzysztof J. Filipiak
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy in Warsaw, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre Otwock, Otwock, Poland
| | - Miłosz Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Sánchez-Gloria JL, Carbó R, Buelna-Chontal M, Osorio-Alonso H, Henández-Díazcouder A, de la Fuente-León RL, Sandoval J, Sánchez F, Rubio-Gayosso I, Sánchez-Muñoz F. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α, IL-1β, and IL-6. Life Sci 2021; 287:120091. [PMID: 34717910 DOI: 10.1016/j.lfs.2021.120091] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cold temperatures can aggravate pulmonary diseases and promote pulmonary arterial hypertension (PAH); however, the underlying mechanism has not been fully explored. AIM To explore the effect of chronic cold exposure on the production of inflammatory cytokines and microRNAs (miRNAs) in a monocrotaline (MCT)-induced PAH model. METHODS Male Sprague Dawley rats were divided into a Control (23.5 ± 2 °C), Cold (5.0 ± 1 °C for ten days), MCT (60 mg/kg body weight i.p.), and MCT + Cold (ten days of cold exposure after 3 weeks of MCT injection). Hemodynamic parameters, right ventricle (RV) hypertrophy, and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, and TNF-α levels were determined using western blotting. miR-21-5p and -3p, miR-146a-5p and -3p, and miR-155-5p and -3p and plasma extracellular vesicles (EVs) and mRNA expression of Cd68, Cd163, Bmpr2, Smad5, Tgfbr2, and Smad3 were determined using RT-qPCR. RESULTS The MCT + Cold group had aggravated RV hypertrophy hemodynamic parameters, and pulmonary arterial medial wall thickness. In lungs of the MCT + Cold, group the protein levels of TNF-α, IL-1β, and IL-6 were higher than those in the MCT group. The mRNA expression of Cd68 and Cd163 were higher in the MCT + Cold group. miR-146a-5p and miR-155-5p levels were higher in the plasma EVs and lungs of the MCT + Cold group. Cold exposure promoted a greater decrease in miR-21-5p, Bmpr2, Smad5, Tgfbr2, and Smad3 mRNA expression in lungs of the MCT + Cold group. CONCLUSION Cold exposure aggravates MCT-induced PAH with an increase in inflammatory marker and miRNA levels in the plasma EVs and lungs.
Collapse
Affiliation(s)
- José L Sánchez-Gloria
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Adrián Henández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico; Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico city 09340, Mexico
| | | | - Julio Sandoval
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico
| | - Fausto Sánchez
- DPAA, Universidad Autónoma Metropolitana-Xochimilco, Mexico city 04960, Mexico
| | - I Rubio-Gayosso
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| |
Collapse
|
5
|
Abstract
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease, worldwide. The molecular pathogenesis of NAFLD is complex, involving numerous signalling molecules including microRNAs (miRNAs). Dysregulation of miRNA expression is associated with hepatic inflammation, fibrosis and hepatocellular carcinoma. Although miRNAs are also critical to the cellular response to vitamin D, mediating regulation of the vitamin D receptor (VDR) and vitamin D’s anticancer effects, a role for vitamin D regulated miRNAs in NAFLD pathogenesis has been relatively unexplored. Therefore, this review aimed to critically assess the evidence for a potential subset of miRNAs that are both dysregulated in NAFLD and modulated by vitamin D. Comprehensive review of 89 human studies identified 25 miRNAs found dysregulated in more than one NAFLD study. In contrast, only 17 studies, including a protocol for a trial in NAFLD, had examined miRNAs in relation to vitamin D status, response to supplementation, or vitamin D in the context of the liver. This paper summarises these data and reviews the biological roles of six miRNAs (miR-21, miR-30, miR-34, miR-122, miR-146, miR-200) found dysregulated in multiple independent NAFLD studies. While modulation of miRNAs by vitamin D has been understudied, integrating the data suggests seven vitamin D modulated miRNAs (miR-27, miR-125, miR-155, miR-192, miR-223, miR-375, miR-378) potentially relevant to NAFLD pathogenesis. Our summary tables provide a significant resource to underpin future hypothesis-driven research, and we conclude that the measurement of serum and hepatic miRNAs in response to vitamin D supplementation in larger trials is warranted.
Collapse
|
6
|
Li P, Song J, Du H, Lu Y, Dong S, Zhou S, Guo Z, Wu H, Zhao X, Qin Y, Zhu N. MicroRNA-663 prevents monocrotaline-induced pulmonary arterial hypertension by targeting TGF-β1/smad2/3 signaling. J Mol Cell Cardiol 2021; 161:9-22. [PMID: 34339758 DOI: 10.1016/j.yjmcc.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/01/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Pulmonary vascular remodeling due to excessive growth factor production and pulmonary artery smooth muscle cells (PASMCs) proliferation is the hallmark feature of pulmonary arterial hypertension (PAH). Recent studies suggest that miR-663 is a potent modulator for tumorigenesis and atherosclerosis. However, whether miR-663 involves in pulmonary vascular remodeling is still unclear. METHODS AND RESULTS By using quantitative RT-PCR, we found that miR-663 was highly expressed in normal human PASMCs. In contrast, circulating level of miR-663 dramatically reduced in PAH patients. In addition, in situ hybridization showed that expression of miR-663 was decreased in pulmonary vasculature of PAH patients. Furthermore, MTT and cell scratch-wound assay showed that transfection of miR-663 mimics significantly inhibited platelet derived growth factor (PDGF)-induced PASMCs proliferation and migration, while knockdown of miR-663 expression enhanced these effects. Mechanistically, dual-luciferase reporter assay revealed that miR-663 directly targets the 3'UTR of TGF-β1. Moreover, western blots and ELISA results showed that miR-663 decreased PDGF-induced TGF-β1 expression and secretion, which in turn suppressed the downstream smad2/3 phosphorylation and collagen I expression. Finally, intratracheal instillation of adeno-miR-663 efficiently inhibited the development of pulmonary vascular remodeling and right ventricular hypertrophy in monocrotaline (MCT)-induced PAH rat models. CONCLUSION These results indicate that miR-663 is a potential biomarker for PAH. MiR-663 decreases PDGF-BB-induced PASMCs proliferation and prevents pulmonary vascular remodeling and right ventricular hypertrophy in MCT-PAH by targeting TGF-β1/smad2/3 signaling. These findings suggest that miR-663 may represent as an attractive approach for the diagnosis and treatment for PAH.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jingwen Song
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - He Du
- Department of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Yuwen Lu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Shaohua Dong
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Siwei Zhou
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zhifu Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yongwen Qin
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Ni Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
7
|
Galley JD, Mar P, Wang Y, Han R, Rajab A, Besner GE. Urine-derived extracellular vesicle miRNAs as possible biomarkers for and mediators of necrotizing enterocolitis: A proof of concept study. J Pediatr Surg 2021; 56:1966-1975. [PMID: 33785202 PMCID: PMC8410893 DOI: 10.1016/j.jpedsurg.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/28/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Early-stage symptomology of necrotizing enterocolitis (NEC) is similar in presentation to non-NEC sepsis, though the treatment plans differ based on antibiotic administration and withholding of feeds. Improved diagnostics for NEC differentiation would allow clinicians to more rapidly set individual patients on a targeted treatment path. Extracellular vesicle-derived miRNAs, have previously demonstrated efficacy as disease biomarkers. To determine if these miRNAs are differentially-expressed in NEC infants, we performed transcriptomic analysis of urine-derived extracellular vesicle-derived miRNAs. METHODS Urine was non-invasively obtained from infants in one of four groups (n ≥ 8) (Medical NEC, Surgical NEC, non-NEC sepsis, and healthy age-matched controls). EV-derived miRNAs were isolated and transcriptomic analysis was performed. RESULTS Multiple miRNAs, including miR-376a, miR-518a-3p and miR-604, were significantly altered when comparing NEC to non-NEC sepsis and healthy controls, and could potentially be used as specific NEC biomarkers. Additionally, Ingenuity Pathway Analysis demonstrated that miRs differentially-expressed in NEC were associated with inflammatory disease and intestinal disease. Signal transduction molecules associated with NEC including TP53 and RPS15, which were also reduced transcriptionally in a rat model of NEC. CONCLUSION These data indicate that there is a pool of potential urine EV-derived miRNAs that may be validated as NEC biomarkers in the differentiation of NEC from non-NEC sepsis and from age-matched controls. Additionally, signal transduction molecules associated with miRNAs differentially-expressed in human NEC are altered in a murine model of NEC, suggesting potential crossover between murine models of the disease and actual human presentation. LEVEL OF EVIDENCE Level III Study of Diagnostic Test.
Collapse
Affiliation(s)
- Jeffrey D Galley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Pamela Mar
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Yijie Wang
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Rachel Han
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Adrian Rajab
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Gail E Besner
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Department of Pediatric Surgery, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
8
|
Wuttge DM, Carlsen AL, Teku G, Wildt M, Rådegran G, Vihinen M, Heegaard NHH, Hesselstrand R. Circulating Plasma microRNAs In Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Rheumatology (Oxford) 2021; 61:309-318. [PMID: 33784391 PMCID: PMC8742821 DOI: 10.1093/rheumatology/keab300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objectives SSc-associated pulmonary arterial hypertension (SSc-APAH) is a late but devastating complication of SSc. Early identification of SSc-APAH may improve survival. We examined the role of circulating miRNAs in SSc-APAH. Methods Using quantitative RT-PCR the abundance of mature miRNAs in plasma was determined in 85 female patients with ACA-positive lcSSc. Twenty-two of the patients had SSc-APAH. Sixty-three SSc controls without PAH were matched for disease duration. Forty-six selected miRNA plasma levels were correlated with clinical data. Longitudinal samples were analysed from 14 SSc-APAH and 27 SSc patients. Results The disease duration was 12 years for the SSc-APAH patients and 12.7 years for the SSc controls. Plasma expression levels of 11 miRNAs were lower in patients with SSc-APAH. Four miRNAs displayed higher plasma levels in SSc-APAH patients compared with SSc controls. There was significant difference between groups for miR-20a-5p and miR-203a-3p when correcting for multiple comparisons (P = 0.002 for both). Receiver operating characteristics curve showed AUC = 0.69–0.83 for miR-21-5p and miR-20a-5p or their combination. miR-20a-5p and miR-203a-3p correlated inversely with NT-pro-Brain Natriuretic Protein levels (r = −0.42 and −0.47). Mixed effect model analysis could not identify any miRNAs as predictor of PAH development. However, miR-20a-5p plasma levels were lower in the longitudinal samples of SSc-APAH patients than in the SSc controls. Conclusions Our study links expression levels of the circulating plasma miRNAs, especially miR-20a-5p and miR-203a-3p, to the occurrence of SSc-APAH in female patients with ACA-positive lcSSc.
Collapse
Affiliation(s)
- Dirk M Wuttge
- Department of Clinical Sciences Lund, Rheumatology, Lund University and Skåne University Hospital, SE-22185, Sweden, Lund
| | - Anting L Carlsen
- Department of Autoimmunology & Biomarkers, Statens Serum Institut, Copenhagen S, DK-2300, Denmark
| | - Gabriel Teku
- Department of Experimental Medical Science, Protein Structure Bioinformatics, Lund University, Lund, SE-22185, Sweden
| | - Marie Wildt
- Department of Clinical Sciences Lund, Rheumatology, Lund University and Skåne University Hospital, SE-22185, Sweden, Lund
| | - Göran Rådegran
- Department of Clinical Sciences Lund, Cardiology, Lund University and the Hemodynamic Lab, the Section for Heart failure and Valvular Disease, VO Heart and Lung Medicine, Skåne University Hospital, Lund, SE-22185, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, Protein Structure Bioinformatics, Lund University, Lund, SE-22185, Sweden
| | - Niels H H Heegaard
- Department of Autoimmunology & Biomarkers, Statens Serum Institut, Copenhagen S, DK-2300, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark.,Institute of Clinical Research, Clinical Biochemistry, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Roger Hesselstrand
- Department of Clinical Sciences Lund, Rheumatology, Lund University and Skåne University Hospital, SE-22185, Sweden, Lund
| |
Collapse
|
9
|
Cai X, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Zhang P, Shao L. Inhibition of miR-322-5p Protects Cardiac Myoblast Cells Against Hypoxia-Induced Apoptosis and Injury Through Regulating CIAPIN1. J Cardiovasc Pharmacol 2021; 77:200-207. [PMID: 33538533 DOI: 10.1097/fjc.0000000000000949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023]
Abstract
ABSTRACT Hypoxia leads to insufficient supply of blood and nutrients, which is major incentive for cardiomyocyte injury and apoptosis. Previous studies reported the regulation effects of microRNAs (miRNAs) in myocardial infarction, whereas function and molecular mechanisms of miR-322-5p were still unclear. Therefore, our study focused on the biological role of miR-322-5p in hypoxia-induced cardiac myoblast cells apoptosis and injury. The expression levels of miR-322-5p and cytokine-induced apoptosis inhibitor 1 (CIAPIN1) were measured by real-time quantitative polymerase chain reaction in cardiac myoblast cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), lactic dehydrogenase, and flow cytometry assays were performed to examine proliferation, injury, and apoptosis of cardiac myoblast cells, respectively. The protein expression levels were evaluated with western blot assay. The relationship between miR-322-5p and CIAPIN1 was confirmed by dual-luciferase reporter analysis. We found that miR-322-5p level was increased in cardiac myoblast cells exposed to hypoxia. In addition, miR-322-5p silencing could weaken injury and apoptosis in cardiac myoblast cells induced by hypoxia; meanwhile, inhibition of miR-322-5p activation of phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT) signal pathway. Besides, CIAPIN1 was a target mRNA of miR-322-5p based on bioinformatics prediction. CIAPIN1 knockdown reversed the effects of miR-322-5p silencing on hypoxic cardiac myoblast cells. Suppression of miR-322-5p protected cardiac myoblast cells against hypoxia-induced injury and apoptosis through regulation of CIAPIN1 expression and PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Shu Wang
- Department of Gerontology, The First Affliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Songping Yu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Bin Li
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Hong Zeng
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Xu Yang
- Shenzhen Realomics (Biotech), Co. Ltd, Shenzhen, China ; and
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Santos-Ferreira CA, Abreu MT, Marques CI, Gonçalves LM, Baptista R, Girão HM. Micro-RNA Analysis in Pulmonary Arterial Hypertension: Current Knowledge and Challenges. ACTA ACUST UNITED AC 2020; 5:1149-1162. [PMID: 33294743 PMCID: PMC7691282 DOI: 10.1016/j.jacbts.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/18/2023]
Abstract
The role of miRNAs in PAH is fast expanding, and it is increasingly difficult to identify which molecules have the highest translational potential. This review discusses the challenges in miRNA analysis and interpretation in PAH and highlights 4 promising miRNAs in this field. Additional pre-clinical studies and clinical trials are urgently needed to bring miRNAs from the bench to the bedside soon.
Pulmonary arterial hypertension (PAH) is a rare, chronic disease of the pulmonary vasculature that is associated with poor outcomes. Its pathogenesis is multifactorial and includes micro-RNA (miRNA) deregulation. The understanding of the role of miRNAs in PAH is expanding quickly, and it is increasingly difficult to identify which miRNAs have the highest translational potential. This review summarizes the current knowledge of miRNA expression in PAH, discusses the challenges in miRNA analysis and interpretation, and highlights 4 promising miRNAs in this field (miR-29, miR-124, miR-140, and miR-204).
Collapse
Key Words
- BMPR2, bone morphogenetic protein receptor type 2
- EPC, endothelial progenitor cell
- HIF, hypoxia-inducible factor
- HPAH, hereditary pulmonary arterial hypertension
- MCT, monocrotaline
- PAAF, pulmonary arterial adventitial fibroblast
- PAEC, pulmonary artery endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cells
- PH, pulmonary hypertension
- RV, right ventricle
- SU/Hx/Nx, association of Sugen 5416 with chronic hypoxia followed by normoxia
- WHO, World Health Organization
- animal model
- lncRNA, long noncoding RNA
- mRNA, messenger RNA
- miRNA, micro-RNA
- micro-RNA
- microarray
- ncRNAs, noncoding RNAs
- pulmonary arterial hypertension
Collapse
Affiliation(s)
- Cátia A Santos-Ferreira
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Mónica T Abreu
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Carla I Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Lino M Gonçalves
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| | - Rui Baptista
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal.,Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria de Feira, Portugal
| | - Henrique M Girão
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal.,Clinical Academic Centre of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Trans-Right-Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension. Pediatr Crit Care Med 2020; 21:340-349. [PMID: 31876555 DOI: 10.1097/pcc.0000000000002207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES We investigated whether concentrations of circulating microRNAs differ across the hypertensive right ventricle and pulmonary circulation, and correlate with hemodynamic/echocardiographic variables in patients with pulmonary arterial hypertension versus nonpulmonary arterial hypertension controls. DESIGN Prospective blood collection during cardiac catheterization from the superior vena cava, pulmonary artery, and ascending aorta in 12 children with pulmonary arterial hypertension and nine matched nonpulmonary arterial hypertension controls, followed by an unbiased quantitative polymerase chain reaction array screen for 754 microRNAs in plasma. SETTING Children's hospital at a medical school. PATIENTS Twelve pulmonary arterial hypertension patients included as follows: idiopathic pulmonary arterial hypertension (5), pulmonary arterial hypertension (2), pulmonary arterial hypertension-repaired congenital heart disease (4), portopulmonary pulmonary hypertension (1). Nine nonpulmonary arterial hypertension controls included as follows: mild/moderate left ventricular outflow tract obstruction (7), mediastinal teratoma (1), portal vein stenosis (1). INTERVENTIONS Standard pulmonary arterial hypertension treatment. MEASUREMENTS AND MAIN RESULTS Analysis of differential concentrations (false discovery rate < 0.05) revealed two trans-right-ventricle microRNA gradients (pulmonary artery vs superior vena cava): miR-193a-5p (step-up in pulmonary arterial hypertension and step-down in control) and miR-423-5p (step-down in pulmonary arterial hypertension and step-up in control) and two transpulmonary microRNA gradients (ascending aorta vs pulmonary artery): miR-26b-5p (step-down only in control) and miR-331-3p (step-up only in pulmonary arterial hypertension). Between-group comparison revealed miR-29a-3p, miR-26a-5p, miR-590-5p, and miR-200c-3p as upregulated in pulmonary arterial hypertension-superior vena cava and miR-99a-5p as downregulated in pulmonary arterial hypertension-pulmonary artery. The differential microRNA-concentrations correlated with prognostic hemodynamic variables (pulmonary vascular resistance, tricuspid annular plane systolic excursion, etc.). CONCLUSIONS We identified for the first time in human disease (pulmonary arterial hypertension) trans-right-ventricle and transpulmonary microRNA gradients in blood plasma. Several of these microRNAs regulate transcripts that drive cardiac remodeling and pulmonary arterial hypertension and are now emerging as epigenetic pulmonary arterial hypertension biomarkers and targets for therapy.
Collapse
|
12
|
Tsai SH, Huang PH, Tsai HY, Hsu YJ, Chen YW, Wang JC, Chen YH, Lin SJ. Roles of the hypoximir microRNA-424/322 in acute hypoxia and hypoxia-induced pulmonary vascular leakage. FASEB J 2019; 33:12565-12575. [PMID: 31461385 DOI: 10.1096/fj.201900564rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute mountain sickness (AMS) occurs in up to 25% of unacclimatized persons who ascend to 3000 m and can result in high-altitude pulmonary edema (HAPE). MicroRNAs (miRs) can regulate gene expression at the post-transcriptional level. Hypoxia selectively disrupts endothelial tight junction complexes through a hypoxia-inducible factor-1α (HIF-1α)-dependent mechanism. Though increased HIF-1α expression is associated with adaptation and protection from AMS development in the early stage of hypoxia, a downstream effector of HIF-1α, VEGF, can induce overzealous endothelial barrier dysfunction, increase vascular permeability, and ultimately result in HAPE and high-altitude cerebral edema. We hypothesized that the fine-tuning of downstream effectors by miRs is paramount for the preservation of endothelial barrier integrity and the prevention of vascular leakage. We found that several miRs were up-regulated in healthy volunteers who were subjected to a 3100-m height. By reviewing the literature and using online bioinformatics prediction software, we specifically selected miR-424 for further investigation because it can modulate both HIF-1α and VEGF. Hypoxia-induced miR-424 overexpression is HIF-1α dependent, and miR-424 stabilized HIF-1α, decreased VEGF expression, and promoted vascular endothelial cadherin phosphorylation. In addition, hypoxia resulted in endothelial barrier dysfunction with increased permeability; miR-424 thus attenuated hypoxia-induced endothelial cell senescence and apoptosis. miR-322 knockout mice were susceptible to hypoxia-induced pulmonary vascular leakage. miR-322 mimics improved hypoxia-induced pulmonary vascular leakage in vivo. We conclude that several miRs were up-regulated in healthy adult volunteers subjected to hypobaric hypoxemia. miR-424/322 could modulate the HIF-1α-VEGF axis and prevent hypoxia-induced pulmonary vascular leakage under hypoxic conditions.-Tsai, S.-H., Huang, P.-H., Tsai, H.-Y., Hsu, Y.-J., Chen, Y.-W., Wang, J.-C., Chen, Y.-H., Lin, S.-J. Roles of the hypoximir microRNA-424/322 in acute hypoxia and hypoxia-induced pulmonary vascular leakage.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Wen Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ying-Hsin Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Baptista R, Marques C, Catarino S, Enguita FJ, Costa MC, Matafome P, Zuzarte M, Castro G, Reis A, Monteiro P, Pêgo M, Pereira P, Girão H. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovasc Res 2019; 114:53-64. [PMID: 29016730 DOI: 10.1093/cvr/cvx187] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/11/2017] [Indexed: 01/26/2023] Open
Abstract
Aims MicroRNAs (miRNAs) have been implicated in the pathogenesis of pulmonary hypertension (PH), a multifactorial and progressive condition associated with an increased afterload of the right ventricle leading to heart failure and death. The main aim of this study was to correlate the levels of miR-424(322) with the severity and prognosis of PH and with right ventricle hypertrophy progression. Additionally, we intended to evaluate the mechanisms and signalling pathways whereby miR-424(322) secreted by pulmonary arterial endothelial cells (PAECs) impacts cardiomyocytes. Methods and results Using quantitative real-time PCR, we showed that the levels of circulating miR-424(322) are higher in PH patients when compared with healthy subjects. Moreover, we found that miR-424(322) levels correlated with more severe symptoms and haemodynamics. In the subgroup of Eisenmenger syndrome patients, miR-424(322) displayed independent prognostic value. Furthermore, we demonstrated that miR-424(322) targets SMURF1, through which it sustains bone morphogenetic protein receptor 2 signalling. Moreover, we showed that hypoxia induces the secretion of miR-424(322) by PAECs, which after being taken up by cardiomyocytes leads to down-regulation of SMURF1. In the monocrotaline rat model of PH, we found an association between circulating miR-424(322) levels and the stage of right ventricle hypertrophy, as well as an inverse correlation between miR-424(322) and SMURF1 levels in the hypertrophied right ventricle. Conclusions This study shows that miR-424(322) has diagnostic and prognostic value in PH patients, correlating with markers of disease severity. Additionally, miR-424(322) can target proteins with a direct effect on heart function, suggesting that this miRNA can act as a messenger linking pulmonary vascular disease and right ventricle hypertrophy.
Collapse
Affiliation(s)
- Rui Baptista
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Carla Marques
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Steve Catarino
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | - Paulo Matafome
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,Department of Complementary Sciences, Coimbra Health School (ESTeSC), Instituto Politécnico de Coimbra, 3046-854 Coimbra, Portugal
| | - Mónica Zuzarte
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Graça Castro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Abílio Reis
- Unidade de Doença Vascular Pulmonar, Departamento de Medicina, Centro Hospitalar do Porto, EPE, 4099-001 Porto, Portugal
| | - Pedro Monteiro
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Mariano Pêgo
- Department of Cardiology A, Centro Hospitalar e Universitário de Coimbra, 3000-001 Coimbra, Portugal
| | - Paulo Pereira
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.,CEDOC, NOVA Medical School, Nova University of Lisbon, 1169-056 Lisboa, Portugal
| | - Henrique Girão
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, Celas, 3000-354 Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
14
|
Marchand A, Roulland I, Semence F, Schröder K, Domergue V, Audran M. Detection of Hypoxia-Regulated MicroRNAs in Blood as Potential Biomarkers of HIF Stabilizer Molidustat. Microrna 2019; 8:189-197. [PMID: 30657053 DOI: 10.2174/2211536608666190117170317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/01/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The recent development of drugs that stabilize HIFalpha, called HIF stabilizers, offers a new strategy for treating anemia. Although these drugs are still in clinical trials, misuse for doping has already begun. Identifying the biomarkers of HIF stabilizers would therefore help in detecting this drug misuse by athletes. OBJECTIVE Our aim was twofold: to determine whether hypoxamiRs, the microRNAs associated with the cellular response to hypoxia, are potential biomarkers of HIF stabilizers in blood and whether the response to treatment with an HIF stabilizer differs from the response to a hypoxic environment. METHOD Rats were treated for 6 days with either a placebo or 2mg/kg of Molidustat, an HIF stabilizer, or they were put under hypoxia (10% oxygen) for the same length of time. Plasma samples were analyzed before, during and 48 hours after the treatments. RESULTS EPO concentration increased significantly in plasma during hypoxia and Molidustat treatment and showed a negative retro-control 2 days after the end of the treatments. On the contrary, circulating levels of VEGF were not modified. Among the hypoxamiRs tested, miR-130a and miR-21 were significantly increased during Molidustat treatment and miR-21 was still increased 48 hours after treatment end. CONCLUSION Although using these microRNAs as biomarkers seems unlikely due to other possible factors of regulation, this study provides the first identification of a specific effect of HIF stabilizers on microRNAs. Further investigations are needed to better understand the possible consequences of such regulation.
Collapse
Affiliation(s)
- Alexandre Marchand
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Ingrid Roulland
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Florian Semence
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Kaja Schröder
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| | - Valérie Domergue
- AnimEx Chatenay-Malabry, Plateforme AnimEx IPSIT, Faculte de Pharmacie, Universite Paris-Sud, 5 rue Jean-Baptiste Clement, 92296 Châtenay-Malabry, France
| | - Michel Audran
- Analysis Department ‒ Agence Francaise de Lutte Contre le Dopage (AFLD), 143 Avenue Roger Salengro, 92290 Chatenay- Malabry, France
| |
Collapse
|
15
|
Kameny RJ, He Y, Zhu T, Gong W, Raff GW, Chapin CJ, Datar SA, Boehme JT, Hata A, Fineman JR. Analysis of the microRNA signature driving adaptive right ventricular hypertrophy in an ovine model of congenital heart disease. Am J Physiol Heart Circ Physiol 2018; 315:H847-H854. [PMID: 29906222 DOI: 10.1152/ajpheart.00057.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The right ventricular (RV) response to pulmonary arterial hypertension (PAH) is heterogeneous. Most patients have maladaptive changes with RV dilation and RV failure, whereas some, especially patients with PAH secondary to congenital heart disease, have an adaptive response with hypertrophy and preserved systolic function. Mechanisms for RV adaptation to PAH are unknown, despite RV function being a primary determinant of mortality. In our congenital heart disease ovine model with fetally implanted aortopulmonary shunt (shunt lambs), we previously demonstrated an adaptive physiological RV response to increased afterload with hypertrophy. In the present study, we examined small noncoding microRNA (miRNA) expression in shunt RV and characterized downstream effects of a key miRNA. RV tissue was harvested from 4-wk-old shunt and control lambs ( n = 5), and miRNA, mRNA, and protein were quantitated. We found differential expression of 40 cardiovascular-specific miRNAs in shunt RV. Interestingly, this miRNA signature is distinct from models of RV failure, suggesting that miRNAs might contribute to adaptive RV hypertrophy. Among RV miRNAs, miR-199b was decreased in the RV with eventual downregulation of nuclear factor of activated T cells/calcineurin signaling. Furthermore, antifibrotic miR-29a was increased in the shunt RV with a reduction of the miR-29 targets collagen type A1 and type 3A1 and decreased fibrosis. Thus, we conclude that the miRNA signature specific to shunt lambs is distinct from RV failure and drives gene expression required for adaptive RV hypertrophy. We propose that the adaptive RV miRNA signature may serve as a prognostic and therapeutic tool in patients with PAH to attenuate or prevent progression of RV failure and premature death. NEW & NOTEWORTHY This study describes a novel microRNA signature of adaptive right ventricular hypertrophy, with particular attention to miR-199b and miR-29a.
Collapse
Affiliation(s)
| | - Youping He
- Department of Pediatrics, University of California , San Francisco, California
| | - Terry Zhu
- Department of Pediatrics, University of California , San Francisco, California
| | - Wenhui Gong
- Department of Pediatrics, University of California , San Francisco, California
| | - Gary W Raff
- Department of Surgery, University of California , Davis, California
| | - Cheryl J Chapin
- Department of Pediatrics, University of California , San Francisco, California
| | - Sanjeev A Datar
- Department of Pediatrics, University of California , San Francisco, California
| | - Jason T Boehme
- Department of Pediatrics, University of California , San Francisco, California
| | - Akiko Hata
- Cardiovascular Research Institute, University of California , San Francisco, California.,Department of Biochemistry and Biophysics, University of California , San Francisco, California
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California , San Francisco, California.,Cardiovascular Research Institute, University of California , San Francisco, California
| |
Collapse
|
16
|
Connolly M, Garfield BE, Crosby A, Morrell NW, Wort SJ, Kemp PR. miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension. FEBS Open Bio 2018; 8:339-348. [PMID: 29511611 PMCID: PMC5832985 DOI: 10.1002/2211-5463.12369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/09/2017] [Accepted: 12/10/2017] [Indexed: 01/05/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterised by remodelling of the pulmonary vasculature leading to right ventricular hypertrophy. Here, we show that miR‐322‐5p (the rodent orthologue of miR‐424‐5p) expression is decreased in the right ventricle of monocrotaline‐treated rats, a model of PAH, whereas a putative target insulin‐like growth factor 1 (IGF‐1) is increased. IGF‐1 mRNA was enriched 16‐fold in RNA immunoprecipitated with Ago2, indicating binding to miR‐322‐5p. In cell transfection experiments, miR‐322‐5p suppressed the activity of a luciferase reporter containing a section of the IGF‐1 3′ untranslated region (UTR) as well as IGF‐1 mRNA and protein levels. Taken together, these data suggest that miR‐322 targets IGF‐1, a process downregulated in PAH‐related RV hypertrophy.
Collapse
Affiliation(s)
- Martin Connolly
- Molecular Medicine National Heart & Lung Institute Imperial College London UK
| | - Benjamin E Garfield
- Molecular Medicine National Heart & Lung Institute Imperial College London UK.,National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London UK
| | - Alexi Crosby
- Department of Medicine Addenbrookes Hospital University of Cambridge UK
| | - Nick W Morrell
- Department of Medicine Addenbrookes Hospital University of Cambridge UK
| | - Stephen J Wort
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London UK
| | - Paul R Kemp
- Molecular Medicine National Heart & Lung Institute Imperial College London UK
| |
Collapse
|
17
|
Abstract
Transcriptome analysis is a powerful tool in the study of pulmonary vascular disease and pulmonary hypertension. Pulmonary hypertension is a disease process that consists of several unique pathologies sharing a common clinical definition, that of elevated pressure within the pulmonary circulation. As such, it has become increasingly important to identify both similarities and differences among the different classes of pulmonary hypertension. Transcriptome analysis has been an invaluable tool both in the basic science research on animal models as well as clinical research among the various different groups of pulmonary hypertension. This work has identified new potential candidate genes, implicated numerous biochemical and molecular pathways in diseased onset and progression, developed gene signatures to appropriately classify types of pulmonary hypertension and severity of illness, and identified novel gene mutations leading to hereditary forms of the disease.
Collapse
Affiliation(s)
- Dustin R Fraidenburg
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
18
|
Kang BY, Park K, Kleinhenz JM, Murphy TC, Sutliff RL, Archer D, Hart CM. Peroxisome Proliferator-Activated Receptor γ Regulates the V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1/microRNA-27a Axis to Reduce Endothelin-1 and Endothelial Dysfunction in the Sickle Cell Mouse Lung. Am J Respir Cell Mol Biol 2017; 56:131-144. [PMID: 27612006 DOI: 10.1165/rcmb.2016-0166oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pulmonary hypertension (PH), a serious complication of sickle cell disease (SCD), causes significant morbidity and mortality. Although a recent study determined that hemin release during hemolysis triggers endothelial dysfunction in SCD, the pathogenesis of SCD-PH remains incompletely defined. This study examines peroxisome proliferator-activated receptor γ (PPARγ) regulation in SCD-PH and endothelial dysfunction. PH and right ventricular hypertrophy were studied in Townes humanized sickle cell (SS) and littermate control (AA) mice. In parallel studies, SS or AA mice were gavaged with the PPARγ agonist, rosiglitazone (RSG), 10 mg/kg/day, or vehicle for 10 days. In vitro, human pulmonary artery endothelial cells (HPAECs) were treated with vehicle or hemin for 72 hours, and selected HPAECs were treated with RSG. SS mice developed PH and right ventricular hypertrophy associated with reduced lung levels of PPARγ and increased levels of microRNA-27a (miR-27a), v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1), endothelin-1 (ET-1), and markers of endothelial dysfunction (platelet/endothelial cell adhesion molecule 1 and E selectin). HPAECs treated with hemin had increased ETS1, miR-27a, ET-1, and endothelial dysfunction and decreased PPARγ levels. These derangements were attenuated by ETS1 knockdown, inhibition of miR-27a, or PPARγ overexpression. In SS mouse lung or in hemin-treated HPAECs, activation of PPARγ with RSG attenuated reductions in PPARγ and increases in miR-27a, ET-1, and markers of endothelial dysfunction. In SCD-PH pathogenesis, ETS1 stimulates increases in miR-27a levels that reduce PPARγ and increase ET-1 and endothelial dysfunction. PPARγ activation attenuated SCD-associated signaling derangements, suggesting a novel therapeutic approach to attenuate SCD-PH pathogenesis.
Collapse
Affiliation(s)
- Bum-Yong Kang
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Kathy Park
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Jennifer M Kleinhenz
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Tamara C Murphy
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - Roy L Sutliff
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| | - David Archer
- 2 Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - C Michael Hart
- 1 Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, Georgia; and
| |
Collapse
|
19
|
Rothman A, Restrepo H, Sarukhanov V, Evans WN, Wiencek RG, Williams R, Hamburger N, Anderson K, Balsara J, Mann D. Assessment of microRNA and gene dysregulation in pulmonary hypertension by endoarterial biopsy. Pulm Circ 2017; 7:455-464. [PMID: 28597755 PMCID: PMC5467936 DOI: 10.1177/2045893217704206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) may regulate a number of genes, each of which may have a variety of functions. We utilized an endoarterial biopsy catheter to assess the dysregulation of miRNAs in a porcine shunt model of pulmonary hypertension (PH). Two Yucatan micropigs underwent surgical anastomosis of the left pulmonary artery to the descending aorta. Endoarterial biopsy samples were obtained at baseline, and at regular intervals during the progression of PH. RNA, isolated from biopsy samples, was analyzed by Illumina miRNA expression microarrays (containing ∼1200 human miRNAs), Affymetrix Porcine GeneChips, Bioconductor, and GeneSpring. We examined a total of 925 genes in a PH whole genome microarray. Biopsy samples showed that 39 miRNAs were downregulated and 34 miRNAs were upregulated compared to baseline. The number of PH-associated genes reported to be controlled by each of the dysregulated miRNAs was in the range of 1–113. The five miRNAs that had the largest number of PH-associated genes were: miR-548c-3p, miR-520d-3p, miR-130a-5p, miR-30a-3p, and miR-let-7g-3p. Several of the dysregulated miRNAs have been associated with molecular pathways and biologic processes involved in PH. Among 29 miRNAs, which were predicted to be dysregulated by a systems biology approach, we found four that were dysregulated in our porcine shunt model. An endoarterial biopsy technique was successful in showing that a large number of miRNAs are dysregulated in a porcine shunt model of PH. Many of these miRNAs control multiple PH-associated genes, molecular pathways, and biologic processes. Endoarterial biopsy offers potential experimental and clinical diagnostic value.
Collapse
Affiliation(s)
- Abraham Rothman
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | - Humberto Restrepo
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | | | - William N Evans
- 1 Children's Heart Center Nevada, Las Vegas, NV, USA.,2 Department of Pediatrics, University of Nevada, School of Medicine, Las Vegas, NV, USA
| | - Robert G Wiencek
- 5 Department of Cardiothoracic Surgery, Stanford University, Cardiothoracic Dignity Healthcare, Las Vegas, NV, USA
| | - Roy Williams
- 3 Scripps Research Institute, La Jolla, CA, USA.,4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Nicole Hamburger
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Kylie Anderson
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - Jasmine Balsara
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| | - David Mann
- 4 Vascular BioSciences, Molecular Diagnostics Division, Goleta, CA, USA
| |
Collapse
|
20
|
Schlosser K, Taha M, Deng Y, Jiang B, McIntyre LA, Mei SH, Stewart DJ. Lack of elevation in plasma levels of pro-inflammatory cytokines in common rodent models of pulmonary arterial hypertension: questions of construct validity for human patients. Pulm Circ 2017; 7:476-485. [PMID: 28597756 PMCID: PMC5467939 DOI: 10.1177/2045893217705878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Translational research depends on the relevance of animal models and how well they replicate human disease. Here, we investigated plasma levels of three important pro-inflammatory cytokines (TNFα, IL-6, and MCP-1), known to be elevated in human pulmonary arterial hypertension (PAH), and systematically assessed their levels in PAH patients compared to five different rodent models of pulmonary hypertension (PH). A consistent immunoassay platform (Luminex xMAP) and source (Millipore) was used to measure all specimens. PAH patients (n = 29) exhibited significant elevations in all three cytokines (median [IQR] pg/mL; TNFα, 7.0 [4.8–11.7]; IL-6, 9.2 [3.8–17.2]; MCP-1, 109 [65–142]) versus healthy participants (n = 20) (median [IQR] pg/mL; TNFα, 3.0 [2.0–3.6]; IL-6, 1.7 [0.5–7.2]; MCP-1, 79 [49–93]. In contrast, mice with PH established after three weeks of hypoxia (n = 18) or SU5416 plus hypoxia (n = 20) showed no significant change in their plasma cytokine levels versus controls (n = 16), based on three to four independent experiments per group. Similarly, plasma cytokine levels were not elevated in rats with PH established three weeks after monocrotaline (n = 23), eight weeks after SU5416 alone (n = 10) or six to eight weeks after SU5416 plus hypoxia (n = 21) versus controls (n = 36 rats), based on three to eight independent experiments per group. Positive biologic control specimens from sepsis patients (n = 9), cecal-ligation and puncture (CLP)-induced septic mice (n = 6), and lipopolysaccharide-induced septic rats (n = 4) showed robust elevations in all three cytokines. This study suggests that animal models commonly used for the development of novel diagnostic and therapeutic approaches for PAH may have limited construct validity with respect to markers of systemic immune activation seen in human patients.
Collapse
Affiliation(s)
- Kenny Schlosser
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Mohamad Taha
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Yupu Deng
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Baohua Jiang
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Lauralyn A McIntyre
- 3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Shirley Hj Mei
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,2 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure. PLoS One 2017; 12:e0177242. [PMID: 28475616 PMCID: PMC5419653 DOI: 10.1371/journal.pone.0177242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
Introduction We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. Methods The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Results Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. Conclusions The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.
Collapse
|
22
|
Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med 2017; 23:31-45. [DOI: 10.1016/j.molmed.2016.11.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
|
23
|
Schlosser K, Hanson J, Villeneuve PJ, Dimitroulakos J, McIntyre L, Pilote L, Stewart DJ. Assessment of Circulating LncRNAs Under Physiologic and Pathologic Conditions in Humans Reveals Potential Limitations as Biomarkers. Sci Rep 2016; 6:36596. [PMID: 27857151 PMCID: PMC5114641 DOI: 10.1038/srep36596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/17/2016] [Indexed: 01/02/2023] Open
Abstract
Long non-coding RNAs (lncRNA) are a new class of regulatory molecules with diverse cellular functions. Recent reports have suggested that extracellular lncRNAs are detectable in human plasma and may serve as biomarkers. Here, we sought to investigate circulating lncRNAs as potential biomarkers for pulmonary arterial hypertension (PAH). Eighty-four lncRNAs, representing some of the most abundant and functionally relevant candidates identified in cellular studies, were assessed via RT-qPCR in plasma from PAH and healthy subjects. However, despite preamplification, the majority of lncRNAs were surprisingly undetectable or sporadically detectable, and showed no differential changes. Systematic characterization of plasma/RNA quality and technical performance via internal and external controls revealed no evidence of RNA degradation or RT-qPCR inhibition, and most lncRNAs were robustly detectable in pulmonary tissue. In plasma, lncRNA levels were the lowest among several different RNA species examined, and this was generalizable to other chronic and acute vascular conditions including coronary artery disease, acute coronary syndrome, and septic shock. In addition, two of three previously reported circulating lncRNA biomarker candidates were not detectable in any of the plasma samples. This study reveals new insight on the relative levels of lncRNAs in circulation, which has important implications for their potential development as biomarkers.
Collapse
Affiliation(s)
- Kenny Schlosser
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jennifer Hanson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | - Jim Dimitroulakos
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Louise Pilote
- Division of General Internal Medicine, McGill University Health Centre, Montreal, Quebec, Canada.,Research Institute, McGill University Health Center, Montreal, Quebec, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Rothman AMK, Rowlands DJ, Lawrie A. miRNA-140-5p: new avenue for pulmonary arterial hypertension drug development? Epigenomics 2016; 8:1311-1313. [DOI: 10.2217/epi-2016-0089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Alexander MK Rothman
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK
- Sheffield Teaching Hospitals NHS Trust, Sheffield, S10 2JF, UK
| | - David J Rowlands
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, S10 2RX, UK
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is a rare disease with poor prognosis and no therapeutics. PAH is characterized by severe remodeling of precapillary pulmonary arteries, leading to increased vascular resistance, pulmonary hypertension compensatory right ventricular hypertrophy, then heart failure and death. PAH pathogenesis shares similarities with carcinogenesis such as excessive cell proliferation, apoptosis resistance, metabolic shifts, or phenotypic transition. Although PAH is not a cancer, comparison of analogous mechanisms between PAH and cancer led to the concept of a cancer-like disease to emerge. MicroRNAs (miRNAs) are small noncoding RNAs involved in the regulation of posttranscriptional gene expression. miRNA dysregulations have been reported as promoter of the development of various diseases including cancers. RECENT FINDINGS Recent studies revealed that miRNA dysregulations also occur in PAH pathogenesis. In PAH, different miRNAs have been implicated to be the main features of PAH pathophysiology (in pulmonary inflammation, vascular remodeling, angiogenesis, and right heart hypertrophy). SUMMARY The review summarizes the implication of miRNA dysregulation in PAH development and discusses the similarities and differences with those observed in cancers.
Collapse
|
26
|
Gamen E, Seeger W, Pullamsetti SS. The emerging role of epigenetics in pulmonary hypertension. Eur Respir J 2016; 48:903-17. [PMID: 27492834 DOI: 10.1183/13993003.01714-2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Epigenetics is usually defined as the study of changes in phenotype and gene expression not related to sequence alterations, but rather the chemical modifications of DNA and of its associated chromatin proteins. These modifications can be acquired de novo, being inherited, and represent the way in which genome and environment interact. Recent evidence points to the involvement of epigenetic changes in the pathogenesis of pulmonary hypertension, as they can partly explain how environmental and lifestyle factors can impose susceptibility to pulmonary hypertension and can explain the phenotypic alteration and maintenance of the disease state.In this article, we review the epigenetic regulatory mechanisms that are mediated by DNA methylation, the post-translational modifications of histone tails and noncoding RNAs in the pathogenesis of pulmonary hypertension. Furthermore, pharmacological interventions aimed at epigenetic regulators/modifiers and their outcomes in different cellular and preclinical rodent models are discussed. Lastly, the remaining challenges and future directions in which to explore epigenetic-based therapies in pulmonary hypertension are discussed.
Collapse
Affiliation(s)
- Elisabetta Gamen
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
27
|
Rothman AMK, Arnold ND, Pickworth JA, Iremonger J, Ciuclan L, Allen RMH, Guth-Gundel S, Southwood M, Morrell NW, Thomas M, Francis SE, Rowlands DJ, Lawrie A. MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. J Clin Invest 2016; 126:2495-508. [PMID: 27214554 DOI: 10.1172/jci83361] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Loss of the growth-suppressive effects of bone morphogenetic protein (BMP) signaling has been demonstrated to promote pulmonary arterial endothelial cell dysfunction and induce pulmonary arterial smooth muscle cell (PASMC) proliferation, leading to the development of pulmonary arterial hypertension (PAH). MicroRNAs (miRs) mediate higher order regulation of cellular function through coordinated modulation of mRNA targets; however, miR expression is altered by disease development and drug therapy. Here, we examined treatment-naive patients and experimental models of PAH and identified a reduction in the levels of miR-140-5p. Inhibition of miR-140-5p promoted PASMC proliferation and migration in vitro. In rat models of PAH, nebulized delivery of miR-140-5p mimic prevented the development of PAH and attenuated the progression of established PAH. Network and pathway analysis identified SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1) as a key miR-140-5p target and regulator of BMP signaling. Evaluation of human tissue revealed that SMURF1 is increased in patients with PAH. miR-140-5p mimic or SMURF1 knockdown in PASMCs altered BMP signaling, further supporting these factors as regulators of BMP signaling. Finally, Smurf1 deletion protected mice from PAH, demonstrating a critical role in disease development. Together, these studies identify both miR-140-5p and SMURF1 as key regulators of disease pathology and as potential therapeutic targets for the treatment of PAH.
Collapse
|
28
|
Mohsenin V. The emerging role of microRNAs in hypoxia-induced pulmonary hypertension. Sleep Breath 2016; 20:1059-67. [DOI: 10.1007/s11325-016-1351-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/11/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
|
29
|
Santulli G. MicroRNAs and Endothelial (Dys) Function. J Cell Physiol 2015; 231:1638-44. [PMID: 26627535 DOI: 10.1002/jcp.25276] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that microRNAs (miRs)-non-coding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation-are becoming one of the most fascinating areas of physiology, given their fundamental roles in countless pathophysiological processes. The relative roles of different miRs in vascular biology as direct or indirect post-transcriptional regulators of fundamental genes implied in vascular remodeling designate miRs as potential biomarkers and/or promising drug targets. The mechanistic importance of miRs in modulating endothelial cell (EC) function in physiology and in disease is addressed here. Drawbacks of currently available therapeutic options are also discussed, pointing at the challenges and clinical opportunities provided by miR-based treatments. J. Cell. Physiol. 231: 1638-1644, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital-Manhattan, New York, New York
| |
Collapse
|
30
|
Zhao K, Chen BJ, Chen ZG, Zhang YJ, Xu D, Liu Q. Effect of miR-503 Down-Regulation on Growth and Invasion of Esophagus Carcinoma and Related Immune Function. Med Sci Monit 2015; 21:3564-9. [PMID: 26580839 PMCID: PMC4655614 DOI: 10.12659/msm.895518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNA (miR) has been proved to be an important biomarker for tumors because it can regulate occurrence, progression, invasion, and metastasis of cancer. A previous study has shown the involvement of miR-503 in multiple gastrointestinal tumors. Its detailed role and immune regulatory function in esophagus carcinoma, however, remains unknown. This study thus investigated the effect of miR-503 in regulating growth, proliferation, and invasion of esophagus cancer and its influence on cytokine secretion. Material/Methods Esophagus carcinoma cell line EC9706 and normal esophageal epithelial cell line HEEC were transfected with miR-503 inhibitor. MTT assay was used to quantify the cell proliferation, and a Transwell chamber was used to evaluate cell invasion. Release of cytokines, including interleukin-2 (IL-2), IL-4, IL-10, and interferon-γ (IFN-γ), was measured by enzyme-linked immunosorbent assay (ELISA). Results MiR-503 expression was significantly elevated in esophagus carcinoma cells (p<0.05). The specific inhibition of miR-503 expression remarkably suppressed proliferation and invasion of tumor cells. It can also down-regulated IL-2 and IFN-γ expression and facilitate secretion of IL-4 and IL-10 when compared to the control group (p<0.05 in all ceases). Conclusions The inhibition of miR-503 can effectively inhibit tumor progression and improve immune function, suggesting its potency as a novel drug target for esophagus cancer treatment.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Bao-Jun Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Zhi-Guo Chen
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Yong-Jian Zhang
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| | - Qi Liu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Wuhan, Hubei, China (mainland)
| |
Collapse
|