1
|
King J, Dockry R, Marsden P, Fowler S, Smith J. Bronchoconstriction with inhaled ATP in healthy volunteers. Eur Respir J 2024; 64:2400880. [PMID: 39227071 PMCID: PMC11447284 DOI: 10.1183/13993003.00880-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Jenny King
- The University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Paul Marsden
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Stephen Fowler
- The University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Jaclyn Smith
- The University of Manchester, Manchester, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Dunne OM, Martin SL, Sergeant GP, McAuley DF, O'Kane CM, Button B, McGarvey LP, Lundy FT. TRPV2 modulates mechanically Induced ATP Release from Human bronchial epithelial cells. Respir Res 2024; 25:188. [PMID: 38678280 PMCID: PMC11056070 DOI: 10.1186/s12931-024-02807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Repetitive bouts of coughing expose the large airways to significant cycles of shear stress. This leads to the release of alarmins and the tussive agent adenosine triphosphate (ATP) which may be modulated by the activity of ion channels present in the human airway. This study aimed to investigate the role of the transient receptor potential subfamily vanilloid member 2 (TRPV2) channel in mechanically induced ATP release from primary bronchial epithelial cells (PBECs).PBECs were obtained from individuals undergoing bronchoscopy. They were cultured in vitro and exposed to mechanical stress in the form of compressive and fluid shear stress (CFSS) or fluid shear stress (FSS) alone at various intensities. ATP release was measured using a luciferin-luciferase assay. Functional TRPV2 protein expression in human PBECs was investigated by confocal calcium imaging. The role of TRPV2 inhibition on FSS-induced ATP release was investigated using the TRPV2 inhibitor tranilast or siRNA knockdown of TRPV2. TRPV2 protein expression in human lung tissue was also determined by immunohistochemistry.ATP release was significantly increased in PBECs subjected to CFSS compared with control (unstimulated) PBECs (N = 3, ***P < 0.001). PBECs expressed functional TRPV2 channels. TRPV2 protein was also detected in fixed human lung tissue. ATP release from FFS stimulated PBECs was decreased by the TRPV2 inhibitor tranilast (N = 3, **P < 0.01) (vehicle: 159 ± 17.49 nM, tranilast: 25.08 ± 5.1 nM) or by TRPV2 siRNA knockdown (N = 3, *P < 0.05) (vehicle: 197 ± 24.52 nM, siRNA: 119 ± 26.85 nM).In conclusion, TRPV2 is expressed in the human airway and modulates ATP release from mechanically stimulated PBECs.
Collapse
Affiliation(s)
- Orla M Dunne
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Co. Louth, Dundalk, Ireland
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lorcan P McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
3
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
4
|
Liang L, Zhang J, Duan H, Li X, Xie S, Wang C. Effects of spray cryotherapy on cough receptors and airway microenvironment in a canine model of chronic bronchitis. Cryobiology 2023; 113:104569. [PMID: 37597598 DOI: 10.1016/j.cryobiol.2023.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The aim of this study was to explore the effects of spray cryotherapy (SCT) on cough receptors and airway microenvironment in a canine model of chronic bronchitis. We examined the expression of transient receptor potential vanilloid 1/4 (TRPV1/4) and the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) at the gene and protein levels before and after SCT. In addition, we explored whether TRPV1/4 could regulate inflammatory factors via mediator adenosine triphosphate (ATP). The levels of ATP and cytokines in alveolar lavage fluid and cell supernatant were measured using ELISA. SCT effectively downregulated the expression of TRPV1/4 and SP/CGRP in canine airway tissues with chronic bronchitis and reduced the levels of inflammatory mediators and cytokines that affect cough receptor sensitivity, achieving cough relief. TRPV1/4 - ATP - inflammatory cytokines axis has been demonstrated at the cellular level, which in turn modulate the milieu of the airways and promote the formation of a cough feedback loop. Our study has fully revealed the specific mechanism of SCT in treating cough in a canine model of chronic bronchitis, providing a solid theoretical basis for future clinical treatment.
Collapse
Affiliation(s)
- Long Liang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongxia Duan
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Xuan Li
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
5
|
Shen Y, Chen L, Chen J, Qin J, Wang T, Wen F. Mitochondrial damage-associated molecular patterns in chronic obstructive pulmonary disease: Pathogenetic mechanism and therapeutic target. J Transl Int Med 2023; 11:330-340. [PMID: 38130648 PMCID: PMC10732348 DOI: 10.2478/jtim-2022-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common inflammatory airway disease characterized by enhanced inflammation. Recent studies suggest that mitochondrial damage-associated molecular patterns (DAMPs) may play an important role in the regulation of inflammation and are involved in a serial of inflammatory diseases, and they may also be involved in COPD. This review highlights the potential role of mitochondrial DAMPs during COPD pathogenesis and discusses the therapeutic potential of targeting mitochondrial DAMPs and their related signaling pathways and receptors for COPD. Research progress on mitochondrial DAMPs may enhance our understanding of COPD inflammation and provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jun Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Jiangyue Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu610041, Sichuan Province, China
| |
Collapse
|
6
|
Drake MG, McGarvey LP, Morice AH. From bench to bedside: The role of cough hypersensitivity in chronic cough. Clin Transl Med 2023; 13:e1343. [PMID: 37501282 PMCID: PMC10374883 DOI: 10.1002/ctm2.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Chronic cough is a burdensome condition characterized by persistent cough lasting longer than 8 weeks. Chronic cough can significantly affect quality of life, physical function and productivity, with many people troubled with a cough that lasts for months or even years. People with chronic cough commonly report a persistent urge to cough with frequent bouts of coughing triggered by innocuous stimuli, which has led to the concept of cough hypersensitivity. MAIN BODY Both central and peripheral neural pathways regulate cough, and although mechanisms driving development of cough hypersensitivity are not fully known, sensitization of these neural pathways contributes to excessive cough triggering in cough hypersensitivity. Effective therapies that control chronic cough are currently lacking. Recent therapeutic development has focused on several ion channels and receptors involved in peripheral activation of cough (e.g., transient receptor potential channels, P2 × 3 receptors and voltage-gated sodium channels) or central cough processing (e.g., neurokinin-1 [NK-1] receptors and nicotinic acetylcholine receptors). CONCLUSION These targeted therapies provide novel insights into mechanisms underlying cough hypersensitivity and may offer new treatment options for people with chronic cough. In this review, we explore preclinical and clinical studies that have improved our understanding of the mechanisms responsible for chronic cough and discuss the most promising targeted approaches to date, including trials of P2 × 3-receptor antagonists and NK-1-receptor antagonists.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Lorcan P. McGarvey
- Wellcome‐Wolfson Institute for Experimental Medicine, School of MedicineDentistry & Biomedical Science, Queen's University BelfastBelfastUnited Kingdom of Great Britain and Northern Ireland
| | - Alyn H. Morice
- Respiratory Research GroupHull York Medical SchoolUniversity of HullCottinghamUK
| |
Collapse
|
7
|
Chawla A, Largajolli A, Hussain A, Kleijn H, Ait‐Oudhia S, Anton J, Krishna Ananthula H, Nussbaum J, La Rosa C, Gheyas F. Population pharmacokinetic analysis of the P2X3-receptor antagonist gefapixant. CPT Pharmacometrics Syst Pharmacol 2023; 12:1107-1118. [PMID: 37147897 PMCID: PMC10431053 DOI: 10.1002/psp4.12978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/07/2023] Open
Abstract
Gefapixant, a P2X3-receptor antagonist, demonstrated objective and subjective efficacy in individuals with refractory or unexplained chronic cough. We report a population pharmacokinetic (PopPK) analysis that characterizes gefapixant pharmacokinetics (PKs), quantifies between- and within-participant variability, and evaluates the impact of intrinsic and extrinsic factors on gefapixant exposure. The PopPK model was initially developed using PK data from six phase I studies. Stepwise covariate method was utilized to identify covariates impacting PK parameters; the model was re-estimated and covariate effects were re-assessed after integrating PK data from three phase II and III studies. Simulations were conducted to evaluate the magnitude of covariate effects on gefapixant exposure. Of 1677 participants included in this data set, 1618 had evaluable PK records. Age, body weight, and sex had statistically significant, but not clinically relevant, effects on exposure. Degree of renal impairment (RI) had statistically significant and clinically relevant effects on exposure; exposure was 17% to 89% higher in those with versus without RI. Simulation results indicated that gefapixant 45 mg administered once daily to patients with severe RI has similar exposure to gefapixant 45 mg administered twice daily to patients with normal renal function. There were no significant effects of proton pump inhibitors or food. Of evaluated intrinsic and extrinsic factors, only RI had a clinically relevant effect on gefapixant exposure. Patients with mild or moderate RI do not require dosage adjustments; however, for patients with severe RI who are not on dialysis, gefapixant 45 mg once daily is recommended.
Collapse
Affiliation(s)
| | | | | | - Huub Kleijn
- Certara Strategic ConsultingPrincetonNew JerseyUSA
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhang M, Ma Y, Ye X, Zhang N, Pan L, Wang B. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct Target Ther 2023; 8:261. [PMID: 37402746 DOI: 10.1038/s41392-023-01464-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/26/2023] [Accepted: 04/25/2023] [Indexed: 07/06/2023] Open
Abstract
Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.
Collapse
Affiliation(s)
- Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yueming Ma
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xianglu Ye
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lei Pan
- The Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
9
|
Ren X, Lin L, Sun Q, Li T, Sun M, Sun Z, Duan J. Metabolomics-based safety evaluation of acute exposure to electronic cigarettes in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156392. [PMID: 35660447 DOI: 10.1016/j.scitotenv.2022.156392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION A growing number of epidemiological evidence reveals that electronic cigarettes (E-cigs) were associated with pneumonia, hypertension and atherosclerosis, but the toxicological evaluation and mechanism of E-cigs were largely unknown. OBJECTIVE Our study was aimed to explore the adverse effects on organs and metabolomics changes in C57BL/6J mice after acute exposure to E-cigs. METHODS AND RESULTS Hematoxylin and eosin (H&E) staining found pathological changes in tissues after acute exposure to E-cigs, such as inflammatory cell infiltration, nuclear pyknosis, and intercellular interstitial enlargement. E-cigs could increase apoptosis-positive cells in a time-dependent way using Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Oxidative damage indicators of reactive oxygen species (ROS), malondialdehyde (MDA) and 4-hydroxynonena (4-HNE) were also elevated after E-cigs exposure. There was an increasing trend of total glycerol and cholesterol in serum, while the glucose and liver enzymes including alanine aminotransferase (ALT), aspartate transaminase (AST), gamma-glutamyltranspeptidase (γ-GT) had no significant change compared to that of control. Further, Q Exactive high field (HF) mass spectrometer was used to conduct metabolomics, which revealed that differential metabolites including l-carnitine, Capryloyl glycine, etc. Trend analysis showed the type of compounds that change over time. Pathway enrichment analysis indicated that E-cigs affected 24 metabolic pathways, which were mainly regulated amino acid metabolism, further affected the tricarboxylic acid (TCA) cycle. Additionally, metabolites-diseases network analysis found that the type 2 diabetes mellitus, propionic acidemia, defect in long-chain fatty acids transport and lung cancer may be related to E-cigs exposure. CONCLUSIONS Our findings provided important clues for metabolites biomarkers of E-cigs acute exposure and are beneficial for disease prevention.
Collapse
Affiliation(s)
- Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Zhang M, Sykes DL, Sadofsky LR, Morice AH. ATP, an attractive target for the treatment of refractory chronic cough. Purinergic Signal 2022; 18:289-305. [PMID: 35727480 PMCID: PMC9209634 DOI: 10.1007/s11302-022-09877-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologically targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underlying mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was developed as potential antitussive medications and provide an update on current clinical progresses.
Collapse
Affiliation(s)
- Mengru Zhang
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dominic L Sykes
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Laura R Sadofsky
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.
| |
Collapse
|
11
|
Singanayagam A, Footitt J, Marczynski M, Radicioni G, Cross MT, Finney LJ, Trujillo-Torralbo MB, Calderazzo M, Zhu J, Aniscenko J, Clarke TB, Molyneaux PL, Bartlett NW, Moffatt MF, Cookson WO, Wedzicha J, Evans CM, Boucher RC, Kesimer M, Lieleg O, Mallia P, Johnston SL. Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. J Clin Invest 2022; 132:e120901. [PMID: 35239513 PMCID: PMC9012283 DOI: 10.1172/jci120901] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The respiratory tract surface is protected from inhaled pathogens by a secreted layer of mucus rich in mucin glycoproteins. Abnormal mucus accumulation is a cardinal feature of chronic respiratory diseases, but the relationship between mucus and pathogens during exacerbations is poorly understood. We identified elevations in airway mucin 5AC (MUC5AC) and MUC5B concentrations during spontaneous and experimentally induced chronic obstructive pulmonary disease (COPD) exacerbations. MUC5AC was more sensitive to changes in expression during exacerbation and was therefore more predictably associated with viral load, inflammation, symptom severity, decrements in lung function, and secondary bacterial infections. MUC5AC was functionally related to inflammation, as Muc5ac-deficient (Muc5ac-/-) mice had attenuated RV-induced (RV-induced) airway inflammation, and exogenous MUC5AC glycoprotein administration augmented inflammatory responses and increased the release of extracellular adenosine triphosphate (ATP) in mice and human airway epithelial cell cultures. Hydrolysis of ATP suppressed MUC5AC augmentation of RV-induced inflammation in mice. Therapeutic suppression of mucin production using an EGFR antagonist ameliorated immunopathology in a mouse COPD exacerbation model. The coordinated virus induction of MUC5AC and MUC5B expression suggests that non-Th2 mechanisms trigger mucin hypersecretion during exacerbations. Our data identified a proinflammatory role for MUC5AC during viral infection and suggest that MUC5AC inhibition may ameliorate COPD exacerbations.
Collapse
Affiliation(s)
- Aran Singanayagam
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Joseph Footitt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthias Marczynski
- School of Engineering and Design, Department of Materials Engineering and
- Center for Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Giorgia Radicioni
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Cross
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lydia J. Finney
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Maria Calderazzo
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jie Zhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Julia Aniscenko
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nathan W. Bartlett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- College of Health, Medicine and Wellbeing, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales, Australia
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - William O. Cookson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jadwiga Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard C. Boucher
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute/Cystic Fibrosis and Pulmonary Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering and
- Center for Protein Assemblies, Technical University of Munich, Munich, Germany
| | - Patrick Mallia
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
12
|
Zhuang J, Gao X, Wei W, Pelleg A, Xu F. Intralaryngeal application of ATP evokes apneic response mainly via acting on P2X3 (P2X2/3) receptors of the superior laryngeal nerve in postnatal rats. J Appl Physiol (1985) 2021; 131:986-996. [PMID: 34323594 DOI: 10.1152/japplphysiol.00091.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aerosolized adenosine 5'-triphosphate (ATP) induces cough and bronchoconstriction by activating vagal sensory fibers' P2X3 and P2X2/3 receptors (P2X3R and P2X2/3R). The goal of this study is to determine the effect of these receptors on the superior laryngeal nerve (SLN)-mediated cardiorespiratory responses to ATP challenge. We compared the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-methylene ATP in rat pups before and after 1) intralaryngeal perfusion of A-317491 (a P2X3R and P2X2/3R antagonist); 2) bilateral section of the SLN; and 3) peri-SLN treatment with capsaicin (to block conduction in superior laryngeal C-fibers, SLCFs) or A-317491. The immunoreactivity (IR) of P2X3R and P2X2R was determined in laryngeal sensory neurons of the nodose/jugular ganglia. Lastly, a whole-cell patch clamp recording was used to determine ATP- or α,β-mATP-induced currents without and with A-317491 treatment. It was found that intralaryngeal perfusion of both ATP and α,β-mATP induced immediate apnea, hypertension, and bradycardia. The apnea was eliminated and the hypertension and bradycardia were blunted by intralaryngeal perfusion of A-317491 and peri-SLN treatment with either A-317491 or capsaicin, while all of the cardiorespiratory responses were abolished by bilateral section of the SLN. P2X3R- and P2X2R-IR were observed in nodose and jugular ganglionic neurons labeled by fluoro-gold (FG). ATP- and α,β-mATP-induced currents recorded in laryngeal C-neurons were reduced by 75% and 95% respectively by application of A-317491. It is concluded that in anesthetized rat pups, the cardiorespiratory responses to intralaryngeal perfusion of either ATP or α,β-mATP are largely mediated by activation of SLCFs' P2X3R-P2X2/3R.
Collapse
Affiliation(s)
- Jianguo Zhuang
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Xiuping Gao
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| | - Wan Wei
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States.,Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA, United States
| | - Fadi Xu
- Pathophysiology Program, Lovelace Biomedical Institute, Albuquerque, NM, United States
| |
Collapse
|
13
|
Mai Y, Guo Z, Yin W, Zhong N, Dicpinigaitis PV, Chen R. P2X Receptors: Potential Therapeutic Targets for Symptoms Associated With Lung Cancer - A Mini Review. Front Oncol 2021; 11:691956. [PMID: 34268121 PMCID: PMC8276243 DOI: 10.3389/fonc.2021.691956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Symptoms associated with lung cancer mainly consist of cancer-associated pain, cough, fatigue, and dyspnea. However, underlying mechanisms of lung cancer symptom clusters remain unclear. There remains a paucity of effective treatment to ameliorate debilitating symptoms and improve the quality of life of lung cancer survivors. Recently, extracellular ATP and its receptors have attracted increasing attention among researchers in the field of oncology. Extracellular ATP in the tumor microenvironment is associated with tumor cell metabolism, proliferation, and metastasis by driving inflammation and neurotransmission via P2 purinergic signaling. Accordingly, ATP gated P2X receptors expressed on tumor cells, immune cells, and neurons play a vital role in modulating tumor development, invasion, progression, and related symptoms. P2 purinergic signaling is involved in the development of different lung cancer-related symptoms. In this review, we summarize recent findings to illustrate the role of P2X receptors in tumor proliferation, progression, metastasis, and lung cancer- related symptoms, providing an outline of potential anti-neoplastic activity of P2X receptor antagonists. Furthermore, compared with opioids, P2X receptor antagonists appear to be innovative therapeutic interventions for managing cancer symptom clusters with fewer side effects.
Collapse
Affiliation(s)
- Yonglin Mai
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Guo
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqiang Yin
- Department of Thoracic Surgery, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peter V Dicpinigaitis
- Department of Medicine, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY, United States
| | - Ruchong Chen
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic Receptors in the Airways: Potential Therapeutic Targets for Asthma? FRONTIERS IN ALLERGY 2021; 2:677677. [PMID: 35386996 PMCID: PMC8974712 DOI: 10.3389/falgy.2021.677677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP functions as a signaling messenger through its actions on purinergic receptors, and is known to be involved in numerous physiological and pathophysiological processes throughout the body, including in the lungs and airways. Consequently, purinergic receptors are considered to be promising therapeutic targets for many respiratory diseases, including asthma. This review explores how online bioinformatics resources combined with recently generated datasets can be utilized to investigate purinergic receptor gene expression in tissues and cell types of interest in respiratory disease to identify potential therapeutic targets, which can then be investigated further. These approaches show that different purinergic receptors are expressed at different levels in lung tissue, and that purinergic receptors tend to be expressed at higher levels in immune cells and at more moderate levels in airway structural cells. Notably, P2RX1, P2RX4, P2RX7, P2RY1, P2RY11, and P2RY14 were revealed as the most highly expressed purinergic receptors in lung tissue, therefore suggesting that these receptors have good potential as therapeutic targets for asthma and other respiratory diseases.
Collapse
Affiliation(s)
- Rebecca J. Thompson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Research and Development, Turku, Finland
| | - Ian P. Hall
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ian P. Hall
| |
Collapse
|
15
|
Shapiro CO, Proskocil BJ, Oppegard LJ, Blum ED, Kappel NL, Chang CH, Fryer AD, Jacoby DB, Costello RW, Drake MG. Airway Sensory Nerve Density Is Increased in Chronic Cough. Am J Respir Crit Care Med 2021; 203:348-355. [PMID: 32809840 DOI: 10.1164/rccm.201912-2347oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rationale: Chronic cough is characterized by frequent urges to cough and a heightened sensitivity to inhaled irritants. Airway sensory nerves trigger cough. We hypothesized that sensory nerve density is increased in chronic cough, which may contribute to excessive and persistent coughing.Objectives: To measure airway nerve density (axonal length) and complexity (nerve branching, neuropeptide expression) in humans with and without chronic cough.Methods: Bronchoscopic human airway biopsies were immunolabeled for nerves and the sensory neuropeptide substance P. Eosinophil peroxidase was also quantified given previous reports showing associations between eosinophils and nerve density. Three-dimensional image z-stacks of epithelium and subepithelium were generated using confocal microscopy, and from these z-stacks, total nerve length, the number of nerve branch points, substance P expression, and eosinophil peroxidase were quantified within each airway compartment.Measurements and Main Results: Nerve length and the number of branch points were significantly increased in epithelium, but not subepithelium, in chronic cough compared with healthy airways. Substance P expression was scarce and was similar in chronic cough and healthy airways. Nerve length and branching were not associated with eosinophil peroxidase nor with demographics such as age and sex in either group.Conclusions: Airway epithelial sensory nerve density is increased in chronic cough, suggesting sensory neuroplasticity contributes to cough hypersensitivity.
Collapse
Affiliation(s)
- Clare O Shapiro
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Laura J Oppegard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Nicole L Kappel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Christopher H Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon; and
| |
Collapse
|
16
|
Mazzoccoli G, Kvetnoy I, Mironova E, Yablonskiy P, Sokolovich E, Krylova J, Carbone A, Anderson G, Polyakova V. The melatonergic pathway and its interactions in modulating respiratory system disorders. Biomed Pharmacother 2021; 137:111397. [PMID: 33761613 DOI: 10.1016/j.biopha.2021.111397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Melatonin is a key intracellular neuroimmune-endocrine regulator and coordinator of multiple complex and interrelated biological processes. The main functions of melatonin include the regulation of neuroendocrine and antioxidant system activity, blood pressure, rhythms of the sleep-wake cycle, the retardation of ageing processes, as well as reseting and optimizing mitochondria and thereby the cells of the immune system. Melatonin and its agonists have therefore been mooted as a treatment option across a wide array of medical disorders. This article reviews the role of melatonin in the regulation of respiratory system functions under normal and pathological conditions. Melatonin can normalize the structural and functional organization of damaged lung tissues, by a number of mechanisms, including the regulation of signaling molecules, oxidant status, lipid raft function, optimized mitochondrial function and reseting of the immune response over the circadian rhythm. Consequently, melatonin has potential clinical utility for bronchial asthma, chronic obstructive pulmonary disease, lung cancer, lung vascular diseases, as well as pulmonary and viral infections. The integration of melatonin's effects with the alpha 7 nicotinic receptor and the aryl hydrocarbon receptor in the regulation of mitochondrial function are proposed as a wider framework for understanding the role of melatonin across a wide array of diverse pulmonary disorders.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy.
| | - Igor Kvetnoy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Department of Pathology, Saint Petersburg State University, University Embankment, 7/9, Saint Petersburg 199034, Russian Federation
| | - Ekaterina Mironova
- Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, Saint Petersburg 197110, Russian Federation
| | - Petr Yablonskiy
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Evgenii Sokolovich
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation
| | - Julia Krylova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; Pavlov First Saint Petersburg State Medical University, Lev Tolstoy str. 6-8, Saint Petersburg 197022, Russian Federation
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo 71013, Italy
| | | | - Victoria Polyakova
- Saint Petersburg Institute of Phthisiopulmonology, Lygovsky Ave. 2-4, Saint Petersburg 191036, Russian Federation; St. Petersburg State Pediatric Medical University, Litovskaia str. 2, Saint-Petersburg 194100, Russian Federation
| |
Collapse
|
17
|
Brozmanova M, Pavelkova N. The Prospect for Potent Sodium Voltage-Gated Channel Blockers to Relieve an Excessive Cough. Physiol Res 2021; 69:S7-S18. [PMID: 32228007 DOI: 10.33549/physiolres.934395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An excessive, irritable, productive or non-productive coughing associated with airway inflammation belongs to pathological cough. Increased activation of airway vagal nociceptors in pathological conditions results from dysregulation of the neural pathway that controls cough. A variety of mediators associated with airway inflammation overstimulate these vagal airway fibers including C-fibers leading to hypersensitivity and hyperreactivity. Because current antitussives have limited efficacy and unwanted side effects there is a continual demand for the development of a novel more effective antitussives for a new efficacious and safe cough treatment. Therefore, inhibiting the activity of these vagal C-fibers represents a rational approach to the development of effective antitussive drugs. This may be achieved by blocking inflammatory mediator receptors or by blocking the generator potential associated with the specific ion channels. Because voltage-gated sodium channels (NaVs) are absolutely required for action potentials initiation and conduction irrespective of the stimulus, NaVs become a promising neural target. There is evidence that NaV1.7, 1.8 and 1.9 subtypes are predominantly expressed in airway cough-triggering nerves. The advantage of blocking these NaVs is suppressing C-fiber irrespective to stimuli, but the disadvantage is that by suppressing the nerves is may also block beneficial sensations and neuronal reflex behavior. The concept is that new antitussive drugs would have the benefit of targeting peripheral airway nociceptors without inhibiting the protective cough reflex.
Collapse
Affiliation(s)
- M Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | |
Collapse
|
18
|
Grabczak EM, Dabrowska M, Birring SS, Krenke R. Looking ahead to novel therapies for chronic cough. Part 1 - peripheral sensory nerve targeted treatments. Expert Rev Respir Med 2020; 14:1217-1233. [PMID: 32804594 DOI: 10.1080/17476348.2020.1811686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Due to a relatively high prevalence and negative impact on quality of life chronic cough (CC) is a challenge for both patients and clinicians. There is ongoing research to address the unmet need and develop more effective antitussive treatment options. This is the first part of a series of two reviews of new antitussive medications. Medical databases (Medline, Embase and SCOPUS) and trial registries (ClinicalTrials.gov and EudraCT) were searched for studies on antitussive drugs targeting peripheral sensory nerves. AREAS COVERED This review presents current knowledge of peripheral receptors that are not only involved in evoking the cough reflex, but are also potentially responsible for more sustained neural alterations. Blockage of the receptors and ion channels is discussed in terms of its potential antitussive effect. EXPERT OPINION Although better understanding of CC mechanisms has facilitated the development of novel treatments including P2X2/3 receptor inhibitors (e.g. gefapixant), there remain several gaps in the knowledge about the mechanisms and treatment of CC. These include the lack of tests to diagnose cough hypersensitivity syndrome and predictors of response to specific treatments. Further research into cough phenotypes and endotypes will yield important insights and a personalized approach to cough management.
Collapse
Affiliation(s)
- Elzbieta M Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw , Warsaw, Poland
| | - Marta Dabrowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw , Warsaw, Poland
| | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London , London, UK
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw , Warsaw, Poland
| |
Collapse
|
19
|
P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. Lung 2020; 198:609-616. [PMID: 32661659 DOI: 10.1007/s00408-020-00377-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Cough is among the most common complaints for which patients worldwide seek medical attention. In a majority of patients with chronic cough (defined as cough of greater than 8 weeks' duration), successful management results from a thorough evaluation and treatment of underlying causes. In a subgroup of patients, however, cough proves refractory to therapeutic trials aimed at known reversible causes of chronic cough. Such patients are appropriately termed as having refractory chronic cough. At present, safe and effective medications are lacking for this challenging patient population. Currently available therapeutic options are usually ineffective or achieve antitussive effect at the expense of intolerable side effects, typically sedation. Fortunately, the past decade has witnessed great progress in elucidating underlying mechanisms of cough. From that knowledge, aided by the development of validated instruments to measure objective and subjective cough-related end points, numerous antitussive drug development programs have emerged. The most active area of inquiry at present involves antagonists of the purinergic P2X receptors. Indeed, four clinical programs (one in Phase 3 and three in Phase 2) are currently underway investigating antagonists of receptors comprised entirely or partially of the P2X3 subunit as potential antitussive medications. Herein we review the foundation on which P2X receptor antagonists were developed as potential antitussive medications and provide an update on current clinical trials.
Collapse
|
20
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
21
|
Pelleg A, Xu F, Zhuang J, Undem B, Burnstock G. DT-0111: a novel drug-candidate for the treatment of COPD and chronic cough. Ther Adv Respir Dis 2020; 13:1753466619877960. [PMID: 31558105 PMCID: PMC6767719 DOI: 10.1177/1753466619877960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Extracellular adenosine 5′-triphosphate (ATP) plays important mechanistic
roles in pulmonary disorders in general and chronic obstructive pulmonary
disease (COPD) and cough in particular. The effects of ATP in the lungs are
mediated to a large extent by P2X2/3 receptors (P2X2/3R) localized on vagal
sensory nerve terminals (both C and Aδ fibers). The activation of these
receptors by ATP triggers a pulmonary-pulmonary central reflex, which
results in bronchoconstriction and cough, and is also proinflammatory due to
the release of neuropeptides from these nerve terminals via
the axon reflex. These actions of ATP in the lungs constitute a strong
rationale for the development of a new class of drugs targeting P2X2/3R.
DT-0111 is a novel, small, water-soluble molecule that acts as an antagonist
at P2X2/3R sites. Methods: Experiments using receptor-binding functional assays, rat nodose ganglionic
cells, perfused innervated guinea pig lung preparation ex
vivo, and anesthetized and conscious guinea pigs in
vivo were performed. Results: DT-0111 acted as a selective and effective antagonist at P2X2/3R, that is, it
did not activate or block P2YR; markedly inhibited the activation by ATP of
nodose pulmonary vagal afferents in vitro; and, given as an
aerosol, inhibited aerosolized ATP-induced bronchoconstriction and cough
in vivo. Conclusions: These results indicate that DT-0111 is an attractive drug-candidate for the
treatment of COPD and chronic cough, both of which still constitute major
unmet clinical needs. The reviews of this paper are available via the supplementary
material section.
Collapse
Affiliation(s)
- Amir Pelleg
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA.,Danmir Therapeutics, LLC, Haverford, PA, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bradley Undem
- Johns Hopkins University Asthma Center, Baltimore, MD, USA
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, UK
| |
Collapse
|
22
|
Smith JA, Kitt MM, Butera P, Smith SA, Li Y, Xu ZJ, Holt K, Sen S, Sher MR, Ford AP. Gefapixant in two randomised dose-escalation studies in chronic cough. Eur Respir J 2020; 55:13993003.01615-2019. [DOI: 10.1183/13993003.01615-2019] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022]
Abstract
Background and objectivesGefapixant has previously demonstrated efficacy in the treatment of refractory chronic cough at a high daily dose. The current investigations explore efficacy and tolerability of gefapixant, a P2X3 receptor antagonist, for the treatment of chronic cough using a dose-escalation approach.Materials and methodsTwo randomised, double-blind, placebo-controlled, crossover, dose-escalation studies recruited participants with refractory chronic cough. Patients were assigned to receive ascending doses of gefapixant (study 1: 50–200 mg, study 2: 7.5–50 mg) or placebo for 16 days, then crossed-over after washout. The primary end-point was awake cough frequency assessed using a 24-h ambulatory cough monitor at baseline and on day 4 of each dose. Patient-reported outcomes included a cough severity visual analogue scale and the cough severity diary.ResultsIn clinical studies, gefapixant doses ≥30 mg produced maximal improvements in cough frequency compared with placebo (p<0.05); reported cough severity measures improved at similar doses. Taste disturbance exhibited a different relationship with dose, apparently maximal at doses ≥150 mg.ConclusionsP2X3 antagonism with gefapixant demonstrates anti-tussive efficacy and improved tolerability at lower doses than previously investigated. Studies of longer duration are warranted.
Collapse
|
23
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
24
|
Methods of Cough Assessment. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1715-1723. [DOI: 10.1016/j.jaip.2019.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
|
25
|
Chen X, Zeng M, He D, Yan X, Chen H, Chen Y, Xia C, Wang J, Shen L, Zhu D, Wang J. Asthmatic Augmentation of Airway Vagal Activity Involves Decreased Central Expression and Activity of CD73 in Rats. ACS Chem Neurosci 2019; 10:2809-2822. [PMID: 30913879 DOI: 10.1021/acschemneuro.9b00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The severity of asthma is closely related to the intensity of airway vagal activity; however, it is unclear how airway vagal activity is centrally augmented in asthma. Here we report that in an asthma model of male Sprague-Dawley rats, the expression and activity of ecto-5'-nucleotidase (CD73) were decreased in airway vagal centers, ATP concentration in cerebral spinal fluid was increased, and the inhibitory and excitatory airway vagal responses to intracisternally injected ATP (5 μmol) and CD73 inhibitor AMPCP (5 μmol), respectively, were attenuated. In airway vagal preganglionic neurons (AVPNs) identified in medullary slices of neonatal Sprague-Dawley rats, AMPCP (100 μmol·L-1) caused excitatory effects, as are shown in patch-clamp by depolarization, increased neuronal discharge, and facilitated spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, exogenous ATP (100 μmol·L-1, 1 mmol·L-1) primarily caused inhibitory effects, which are similar to those induced by exogenous adenosine (100 μmol·L-1). Adenosine A1 receptor antagonist CPT (5 μmol·L-1) blocked the inhibition of sEPSCs induced by 100 μmol·L-1 exogenous ATP and that by 100 μmol·L-1 exogenous adenosine, whereas 50 μmol·L-1 CPT converted the inhibition of sEPSCs induced by 1 mmol·L-1 ATP to facilitation that was blocked by addition of P2X receptor antagonist PPADS (20 μmol·L-1). These results demonstrate that in rat, the sEPSCs of AVPNs are facilitated by extracellular ATP via activation of P2X receptors and inhibited by extracellular adenosine via activation of A1 receptors; in experimental asthma, decreased CD73 expression and activity in airway vagal centers contribute to the augmentation of airway vagal activity through imbalanced ATP/ADO modulation of AVPNs.
Collapse
Affiliation(s)
- Xingxin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jijiang Wang
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Morice AH, Kitt MM, Ford AP, Tershakovec AM, Wu WC, Brindle K, Thompson R, Thackray-Nocera S, Wright C. The effect of gefapixant, a P2X3 antagonist, on cough reflex sensitivity: a randomised placebo-controlled study. Eur Respir J 2019; 54:13993003.00439-2019. [DOI: 10.1183/13993003.00439-2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
We evaluated the effect of gefapixant on cough reflex sensitivity to evoked tussive challenge.In this phase 2, double-blind, two-period study, patients with chronic cough (CC) and healthy volunteers (HV) were randomised to single-dose gefapixant 100 mg or placebo in a crossover fashion. Sequential inhalational challenges with ATP, citric acid, capsaicin and distilled water were performed 1, 3 and 5 h after dosing. Mean concentrations evoking ≥2 coughs (C2) and ≥5 coughs (C5) post dose versus baseline were co-primary endpoints. Objective cough frequency (coughs·h−1) over 24 h and a cough severity visual analogue scale (VAS) were assessed in CC patients. Adverse events were monitored.24 CC patients and 12 HV were randomised (mean age 61 and 38 years, respectively). The cough challenge threshold increased for ATP by 4.7-fold (C2, p≤0.001) and 3.7-fold (C5, p=0.007) for gefapixant versus placebo in CC patients; in HV, C2 and C5 increased 2.4-fold (C2, p=0.113; C5, p=0.003). The distilled water C2 and C5 thresholds increased significantly (p<0.001) by a factor of 1.4 and 1.3, respectively, in CC patients. Gefapixant had no effect on capsaicin or citric acid challenge. Median cough frequency was reduced by 42% and the least squares mean cough severity VAS was 18.0 mm lower for gefapixant versus placebo in CC patients. Dysgeusia was the most frequent adverse event (75% of HV and 67% of CC patients).ATP-evoked cough was significantly inhibited by gefapixant 100 mg, demonstrating peripheral target engagement. Cough count and severity were reduced in CC patients. Distilled water may also evoke cough through a purinergic pathway.
Collapse
|
27
|
Crooks MG, Brown T, Morice AH. Is cough important in acute exacerbations of COPD? Respir Physiol Neurobiol 2018; 257:30-35. [DOI: 10.1016/j.resp.2018.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
|
28
|
Bonvini SJ, Belvisi MG. Cough and airway disease: The role of ion channels. Pulm Pharmacol Ther 2017; 47:21-28. [PMID: 28669932 DOI: 10.1016/j.pupt.2017.06.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Cough is the most common reason for patients to visit a primary care physician, yet it remains an unmet medical need. It can be idiopathic in nature but can also be a troublesome symptom across chronic lung diseases such as asthma, COPD and idiopathic pulmonary fibrosis (IPF). Chronic cough affects up to 12% of the population and yet there are no safe and effective therapies. The cough reflex is regulated by vagal, sensory afferent nerves which innervate the airway. The Transient Receptor Potential (TRP) family of ion channels are expressed on sensory nerve terminals, and when activated can evoke cough. This review focuses on the role of 4 TRP channels; TRP Vannilloid 1 (TRPV1), TRP Ankyrin 1 (TRPA1), TRP Vannilloid 4 (TRPV4) and TRP Melastatin 8 (TRPM8) and the purinergic P2X3 receptor and their possible role in chronic cough. We conclude that these ion channels, given their expression profile and their role in the activation of sensory afferents and the cough reflex, may represent excellent therapeutic targets for the treatment of respiratory symptoms in chronic lung disease.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
29
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
30
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 339] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
31
|
Contrasting effects of ATP and adenosine on capsaicin challenge in asthmatic patients. Pulm Pharmacol Ther 2017; 45:13-18. [PMID: 28392320 DOI: 10.1016/j.pupt.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND Adenosine 5'-triphosphate (ATP) stimulates pulmonary vagal slow conducting C-fibres and fast conducting Aδ-fibres with rapidly adapting receptors (RARs). Pulmonary C-fibres but not RARs are also sensitive to capsaicin, a potent tussigenic agent in humans. Thus, the aim of this study was to determine the effects of ATP and its metabolite adenosine (given as adenosine 5'-monophosphate, AMP) on capsaicin challenge in asthmatic patients. METHODS Cough (quantified as visual analogue scale, VAS), dyspnoea (quantified as Borg score), and FEV1 were quantified following bronchoprovocation using capsaicin, adenosine and ATP in healthy non-smokers (age 40±4y, 6 males), smokers (45±4y, 5 males) and asthmatic patients (37±3y, 5 males); n = 10 in each group. RESULTS None of the healthy non-smokers responded to either AMP or ATP. AMP induced bronchoconstriction in one smoker and eight asthmatics, and ATP in two smokers and all ten asthmatics. The geometric mean of capsaicin causing ≥5 coughs (C5) increased from 134 to 203 μM in non-smokers and from 117 to 287 μM in asthmatics after AMP, whereas it decreased from 203 to 165 μM and 125 to 88 μM, respectively after ATP. AMP decreased C5 from 58 to 29 μM and ATP increased from 33 to 47 μM in smokers. However, due to intergroup variability, these effects of ATP and AMP were not statistically significant (0.125 ≤ p ≤ 0.998). That notwithstanding, in healthy and asthmatic subjects the effects of the ATP showed a tendency to be greater than those of AMP (p < 0.053). Dyspnea, assessed by Borg score, increased after ATP (p < 0.001) and AMP (p < 0.001) only in asthmatic patients. Intensity of cough assessed by VAS increased (p < 0.05) after second capsaicin challenges performed after AMP in all groups, but not after ATP. CONCLUSIONS Asthmatic patients exhibit hypersensitivity to aerosolized AMP and ATP, but aerosolized AMP does not mimic the effects of ATP and the effects of ATP are not mediated by adenosine.
Collapse
|
32
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
33
|
Fowles HE, Rowland T, Wright C, Morice A. Tussive challenge with ATP and AMP: does it reveal cough hypersensitivity? Eur Respir J 2017; 49:49/2/1601452. [PMID: 28179439 DOI: 10.1183/13993003.01452-2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Recent studies have demonstrated that blockade of P2X3 ATP receptors can profoundly inhibit chronic cough. We have considered whether inhaled ATP produces a tussive response and whether chronic cough patients are hypersensitive to inhaled ATP compared to healthy volunteers.A standardised inhalational cough challenge was performed with ATP and AMP. We randomised 20 healthy volunteers and 20 chronic cough patients as to the order of challenges. The concentration of challenge solution causing at least five coughs (C5) was compared for ATP and AMP.The study population consisted of six male and 14 female volunteers in each group. Two out of 19 healthy volunteers coughed with AMP (one volunteer could not take part in this challenge) and none reached C5. Eight out of 20 chronic cough patients coughed with AMP and two reached C5. Of the 20 healthy volunteers, 18 coughed with ATP, with 15 reaching C5. All 19 chronic cough patients completing the ATP challenge coughed with ATP and 18 reached C5. The chronic cough patients had a greater cough response at lower concentrations of ATP.The greater potency of ATP versus AMP in the inhalational challenge suggests that tussive responses are mediated through members of the P2X purinergic receptor family. This acute effect was, however, not sufficient to explain cough hypersensitivity syndrome.
Collapse
Affiliation(s)
- Helen Elizabeth Fowles
- Hull York Medical School Centre for Cardiovascular and Metabolic Research, Respiratory, Castle Hill Hospital, Cottingham, UK
| | - Tim Rowland
- Castle Hill Hospital, Respiratory, Cottingham, UK
| | - Caroline Wright
- Hull York Medical School Centre for Cardiovascular and Metabolic Research, Respiratory, Castle Hill Hospital, Cottingham, UK
| | - Alyn Morice
- Hull York Medical School Centre for Cardiovascular and Metabolic Research, Respiratory, Castle Hill Hospital, Cottingham, UK
| |
Collapse
|
34
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
35
|
Pelleg A, Schulman ES, Barnes PJ. Extracellular Adenosine 5'-Triphosphate in Obstructive Airway Diseases. Chest 2016; 150:908-915. [PMID: 27568579 DOI: 10.1016/j.chest.2016.06.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
In recent years, numerous studies have generated data supporting the hypothesis that extracellular adenosine 5'-triphosphate (ATP) plays a major role in obstructive airway diseases. Studies in animal models and human subjects have shown that increased amounts of extracellular ATP are found in the lungs of patients with COPD and asthma and that ATP has effects on multiple cell types in the lungs, resulting in increased inflammation, induction of bronchoconstriction, and cough. These effects of ATP are mediated by cell surface P2 purinergic receptors and involve other endogenous inflammatory agents. Recent clinical trials reported promising treatment with P2X3R antagonists for the alleviation of chronic cough. The purpose of this review was to describe these studies and outline some of the remaining questions, as well as the potential clinical implications, associated with the pharmacologic manipulation of ATP signaling in the lungs.
Collapse
Affiliation(s)
- Amir Pelleg
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA.
| | - Edward S Schulman
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
36
|
Atkinson SK, Sadofsky LR, Morice AH. How does rhinovirus cause the common cold cough? BMJ Open Respir Res 2016; 3:e000118. [PMID: 26835135 PMCID: PMC4716235 DOI: 10.1136/bmjresp-2015-000118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023] Open
Abstract
Cough is a protective reflex to prevent aspiration and can be triggered by a multitude of stimuli. The commonest form of cough is caused by upper respiratory tract infection and has no benefit to the host. The virus hijacks this natural defence mechanism in order to propagate itself through the population. Despite the resolution of the majority of cold symptoms within 2 weeks, cough can persist for some time thereafter. Unfortunately, the mechanism of infectious cough brought on by pathogenic viruses, such as human rhinovirus, during colds, remains elusive despite the extensive work that has been undertaken. For socioeconomic reasons, it is imperative we identify the mechanism of cough. There are several theories which have been proposed as the causative mechanism of cough in rhinovirus infection, encompassing a range of different processes. Those of which hold most promise are physical disruption of the epithelial lining, excess mucus production and an inflammatory response to rhinovirus infection which may be excessive. And finally, neuronal modulation, the most convincing hypothesis, is thought to potentiate cough long after the original stimulus has been cleared. All these hypotheses will be briefly covered in the following sections.
Collapse
Affiliation(s)
- Samantha K Atkinson
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Laura R Sadofsky
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Alyn H Morice
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| |
Collapse
|