1
|
Calil IL, Tustumi F, Sousa JHBD, Tomazini BM, Cruz RJ, Saliba GN, Pécora RAA, D’Albuquerque LAC. What is the role of heat shock protein in abdominal organ transplantation? EINSTEIN-SAO PAULO 2022; 20:eRB6181. [PMID: 35293529 PMCID: PMC8909122 DOI: 10.31744/einstein_journal/2022rb6181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/13/2021] [Indexed: 01/02/2023] Open
Abstract
Ischemia-reperfusion injury is a pathophysiological event occuring after abdominal organ transplantation, and has a significant influence on prognosis and survival of the graft. It is involved in delaying the primary function or non-functioning of the graft. The objective of this study was to provide information on heat shock protein mechanisms in ischemia-reperfusion injuries in abdominal organ transplantations, and to indicate the possible factors involved that may influence the graft outcome. Several classes of heat shock proteins are part of the ischemia and reperfusion process, both as inflammatory agonists and in protecting the process. Studies involving heat shock proteins enhance knowledge on ischemia-reperfusion injury mitigation processes and the mechanisms involved in the survival of abdominal grafts, and open space to support therapeutic future clinical studies, minimizing ischemia and reperfusion injuries in abdominal organ transplantations. Expression of heat shock proteins is associated with inflammatory manifestations and ischemia-reperfusion injuries in abdominal organ transplantations and may influence graft outcomes.
Collapse
|
2
|
Alijagic A, Gaglio D, Napodano E, Russo R, Costa C, Benada O, Kofroňová O, Pinsino A. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121389. [PMID: 31639584 DOI: 10.1016/j.jhazmat.2019.121389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are revolutionizing biomedicine due to their potential application as diagnostic and therapeutic agents. However, the TiO2NP immune-compatibility remains an open issue, even for ethical reasons. In this work, we investigated the immunomodulatory effects of TiO2NPs in an emergent proxy to human non-mammalian model for in vitro basic and translational immunology: the sea urchin Paracentrotus lividus. To highlight on the new insights into the evolutionarily conserved intracellular signaling and metabolism pathways involved in immune-TiO2NP recognition/interaction we applied a wide-ranging approach, including electron microscopy, biochemistry, transcriptomics and metabolomics. Findings highlight that TiO2NPs interact with immune cells suppressing the expression of genes encoding for proteins involved in immune response and apoptosis (e.g. NF-κB, FGFR2, JUN, MAPK14, FAS, VEGFR, Casp8), and boosting the immune cell antioxidant metabolic activity (e.g. pentose phosphate, cysteine-methionine, glycine-serine metabolism pathways). TiO2NP uptake was circumscribed to phagosomes/phagolysosomes, depicting harmless vesicular internalization. Our findings underlined that under TiO2NP-exposure sea urchin innate immune system is able to control inflammatory signaling, excite antioxidant metabolic activity and acquire immunological tolerance, providing a new level of understanding of the TiO2NP immune-compatibility that could be useful for the development in Nano medicines.
Collapse
Affiliation(s)
- Andi Alijagic
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Daniela Gaglio
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy; Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche, Segrate, Milano, Italy
| | - Elisabetta Napodano
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Roberta Russo
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Caterina Costa
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Oldřich Benada
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofroňová
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
3
|
Santana-Codina N, Marcé-Grau A, Muixí L, Nieva C, Marro M, Sebastián D, Muñoz JP, Zorzano A, Sierra A. GRP94 Is Involved in the Lipid Phenotype of Brain Metastatic Cells. Int J Mol Sci 2019; 20:ijms20163883. [PMID: 31395819 PMCID: PMC6720951 DOI: 10.3390/ijms20163883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Metabolic adaptation may happen in response to the pressure exerted by the microenvironment and is a key step in survival of metastatic cells. Brain metastasis occurs as a consequence of the systemic dissemination of tumor cells, a fact that correlates with poor prognosis and high morbidity due to the difficulty in identifying biomarkers that allow a more targeted therapy. Previously, we performed transcriptomic analysis of human breast cancer patient samples and evaluated the differential expression of genes in brain metastasis (BrM) compared to lung, bone and liver metastasis. Our network approach identified upregulation of glucose-regulated protein 94 (GRP94) as well as proteins related to synthesis of fatty acids (FA) in BrM. Here we report that BrM cells show an increase in FA content and decreased saturation with regard to parental cells measured by Raman spectroscopy that differentiate BrM from other metastases. Moreover, BrM cells exerted a high ability to oxidize FA and compensate hypoglycemic stress due to an overexpression of proteins involved in FA synthesis and degradation (SREBP-1, LXRα, ACOT7). GRP94 ablation restored glucose dependence, down-regulated ACOT7 and SREBP-1 and decreased tumorigenicity in vivo. In conclusion, GRP94 is required for the metabolic stress survival of BrM cells, and it might act as a modulator of lipid metabolism to favor BrM progression.
Collapse
Affiliation(s)
- Naiara Santana-Codina
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain.
- Universitat Autònoma de Barcelona (UAB), Campus Bellaterra, Cerdanyola del Vallés, E-08193 Barcelona, Spain.
| | - Anna Marcé-Grau
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
| | - Laia Muixí
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
| | - Claudia Nieva
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, E-08908 Barcelona, Spain
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Carl Friedrich Gauss 3, 08036 Barcelona, Spain
| | - Mónica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Carl Friedrich Gauss 3, 08036 Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Juan Pablo Muñoz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 08028 Barcelona, Spain
| | - Angels Sierra
- Laboratory of Molecular and Translational Oncology, Centre de Recerca Biomèdica CELLEX-CRBC-Institut d'Investigacions Biomèdiques August Pi i Sunyer-IDIBAPS, E-08036 Barcelona, Spain.
| |
Collapse
|
4
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 566] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
5
|
Nold-Petry CA, Nold MF, Levy O, Kliger Y, Oren A, Borukhov I, Becker C, Wirtz S, Sandhu MK, Neurath M, Dinarello CA. Gp96 Peptide Antagonist gp96-II Confers Therapeutic Effects in Murine Intestinal Inflammation. Front Immunol 2017; 8:1531. [PMID: 29312281 PMCID: PMC5732239 DOI: 10.3389/fimmu.2017.01531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023] Open
Abstract
Background The expression of heat shock protein gp96 is strongly correlated with the degree of tissue inflammation in ulcerative colitis and Crohn’s disease, thereby leading us to the hypothesis that inhibition of expression via gp96-II peptide prevents intestinal inflammation. Methods We employed daily injections of gp96-II peptide in two murine models of intestinal inflammation, the first resulting from five daily injections of IL-12/IL-18, the second via a single intrarectal application of TNBS (2,4,6-trinitrobenzenesulfonic acid). We also assessed the effectiveness of gp96-II peptide in murine and human primary cell culture. Results In the IL-12/IL-18 model, all gp96-II peptide-treated animals survived until day 5, whereas 80% of placebo-injected animals died. gp96-II peptide reduced IL-12/IL-18-induced plasma IFNγ by 89%, IL-1β by 63%, IL-6 by 43% and tumor necrosis factor (TNF) by 70% compared to controls. The clinical assessment Disease Activity Index of intestinal inflammation severity was found to be significantly lower in the gp96-II-treated animals when compared to vehicle-injected mice. gp96-II peptide treatment in the TNBS model limited weight loss to 5% on day 7 compared with prednisolone treatment, whereas placebo-treated animals suffered a 20% weight loss. Histological disease severity was reduced equally by prednisolone (by 40%) and gp96-II peptide (35%). Mice treated with either gp96-II peptide or prednisolone exhibited improved endoscopic scores compared with vehicle-treated control mice: vascularity, fibrin, granularity, and translucency scores were reduced by up to 49% by prednisolone and by up to 30% by gp96-II peptide. In vitro, gp96-II peptide reduced TLR2-, TLR4- and IL-12/IL-18-induced cytokine expression in murine splenocytes, with declines in constitutive IL-6 (54%), lipopolysaccharide-induced TNF (48%), IL-6 (81%) and in Staphylococcus epidermidis-induced TNF (67%) and IL-6 (81%), as well as IL-12/IL-18-induced IFNγ (75%). gp96-II peptide reduced IL–1β, IL-6, TNF and GM-CSF in human peripheral blood mononuclear cells to a similar degree without affecting cell viability, whereas RANTES, IL-25 and MIF were twofold to threefold increased. Conclusion gp96-II peptide protects against murine intestinal inflammation by regulating inflammation in vivo and in vitro, pointing to its promise as a novel treatment for inflammatory bowel disease.
Collapse
Affiliation(s)
- Claudia A Nold-Petry
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Marcel F Nold
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | | | | | | | | | - Christoph Becker
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Manjeet K Sandhu
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Gastroenterology, Monash Health, Clayton, VIC, Australia
| | - Markus Neurath
- Medical Clinic 1, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
6
|
Ansa-Addo EA, Thaxton J, Hong F, Wu BX, Zhang Y, Fugle CW, Metelli A, Riesenberg B, Williams K, Gewirth DT, Chiosis G, Liu B, Li Z. Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Curr Top Med Chem 2017; 16:2765-78. [PMID: 27072698 DOI: 10.2174/1568026616666160413141613] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/07/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
Abstract
As an endoplasmic reticulum heat shock protein (HSP) 90 paralogue, glycoprotein (gp) 96 possesses immunological properties by chaperoning antigenic peptides for activation of T cells. Genetic studies in the last decade have unveiled that gp96 is also an essential master chaperone for multiple receptors and secreting proteins including Toll-like receptors (TLRs), integrins, the Wnt coreceptor, Low Density Lipoprotein Receptor-Related Protein 6 (LRP6), the latent TGFβ docking receptor, Glycoprotein A Repetitions Predominant (GARP), Glycoprotein (GP) Ib and insulin-like growth factors (IGF). Clinically, elevated expression of gp96 in a variety of cancers correlates with the advanced stage and poor survival of cancer patients. Recent preclinical studies have also uncovered that gp96 expression is closely linked to cancer progression in multiple myeloma, hepatocellular carcinoma, breast cancer and inflammation-associated colon cancer. Thus, gp96 is an attractive therapeutic target for cancer treatment. The chaperone function of gp96 depends on its ATPase domain, which is structurally distinct from other HSP90 members, and thus favors the design of highly selective gp96-targeted inhibitors against cancer. We herein discuss the strategically important oncogenic clients of gp96 and their underlying biology. The roles of cell-intrinsic gp96 in T cell biology are also discussed, in part because it offers another opportunity of cancer therapy by manipulating levels of gp96 in T cells to enhance host immune defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29466, USA.
| |
Collapse
|
7
|
Huang QQ, Birkett R, Koessler RE, Cuda CM, Haines GK, Jin JP, Perlman H, Pope RM. Fas signaling in macrophages promotes chronicity in K/BxN serum-induced arthritis. Arthritis Rheumatol 2014; 66:68-77. [PMID: 24431281 DOI: 10.1002/art.38198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/10/2013] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A nonapoptotic role of Fas signaling has been implicated in the regulation of inflammation and innate immunity. This study was undertaken to elucidate the contribution of Fas signaling in macrophages to the development of arthritis. METHODS K/BxN serum-transfer arthritis was induced in a mouse line in which Fas was conditionally deleted in the myeloid lineage (Cre(LysM) Fas(flox/flox) mice). The arthritis was assessed clinically and histologically. Expression of interleukin-1β (IL-1β), CXCL5, IL-10, IL-6, and gp96 was determined by enzyme-linked immunosorbent assay. Bone marrow-derived macrophages were activated with IL-1β and gp96. Cell phenotype and apoptosis were analyzed by flow cytometry. RESULTS Arthritis onset in Cre(LysM) Fas(flox/flox) mice was comparable with that observed in control mice; however, resolution was accelerated during the chronic phase. The attenuated arthritis was associated with reduced articular expression of the endogenous Toll-like receptor 2 (TLR-2) ligand gp96 and the neutrophil chemotactic chemokine CXCL5, and enhanced expression of IL-10. Activation with IL-1β or gp96 induced increased IL-10 expression in Fas-deficient murine macrophages compared with control macrophages. IL-10 suppressed IL-6 and CXCL5 expression induced by IL-1β plus gp96. IL-1β-mediated activation of ERK, which regulates IL-10 expression, was increased in Fas-deficient mouse macrophages. CONCLUSION Taken together, our findings indicate that impaired Fas signaling results in enhanced expression of antiinflammatory IL-10 and reduced expression of gp96, and these effects are associated with accelerated resolution of inflammation during the chronic phase of arthritis. These observations suggest that strategies to reduce endogenous TLR ligands and increase IL-10 may be beneficial in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Henderson B, Kaiser F. Do reciprocal interactions between cell stress proteins and cytokines create a new intra-/extra-cellular signalling nexus? Cell Stress Chaperones 2013; 18:685-701. [PMID: 23884786 PMCID: PMC3789882 DOI: 10.1007/s12192-013-0444-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022] Open
Abstract
Cytokine biology began in the 1950s, and by 1988, a large number of cytokines, with a myriad of biological actions, had been discovered. In 1988, the basis of the protein chaperoning function of the heat shock, or cell stress, proteins was identified, and it was assumed that this was their major activity. However, since this time, evidence has accumulated to show that cell stress proteins are secreted by cells and can stimulate cellular cytokine synthesis with the generation of pro- and/or anti-inflammatory cytokine networks. Cell stress can also control cytokine synthesis, and cytokines are able to induce, or even inhibit, the synthesis of selected cell stress proteins and may also promote their release. How cell stress proteins control the formation of cytokines is not understood and how cytokines control cell stress protein synthesis depends on the cellular compartment experiencing stress, with cytoplasmic heat shock factor 1 (HSF1) having a variety of actions on cytokine gene transcription. The endoplasmic reticulum unfolded protein response also exhibits a complex set of behaviours in terms of control of cytokine synthesis. In addition, individual intracellular cell stress proteins, such as Hsp27 and Hsp90, have major roles in controlling cellular responses to cytokines and in controlling cytokine synthesis in response to exogenous factors. While still confusing, the literature supports the hypothesis that cell stress proteins and cytokines may generate complex intra- and extra-cellular networks, which function in the control of cells to external and internal stressors and suggests the cell stress response as a key parameter in cytokine network generation and, as a consequence, in control of immunity.
Collapse
Affiliation(s)
- Brian Henderson
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Frank Kaiser
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
- />Division of Microbial Diseases, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London, WC1X 8LD UK
| |
Collapse
|
9
|
Wolfram L, Fischbeck A, Frey-Wagner I, Wojtal KA, Lang S, Fried M, Vavricka SR, Hausmann M, Rogler G. Regulation of the expression of chaperone gp96 in macrophages and dendritic cells. PLoS One 2013; 8:e76350. [PMID: 24146856 PMCID: PMC3797789 DOI: 10.1371/journal.pone.0076350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/26/2013] [Indexed: 11/23/2022] Open
Abstract
The chaperone function of the ER-residing heat shock protein gp96 plays an important role in protein physiology and has additionally important immunological functions due to its peptide-binding capacity. Low amounts of gp96 stimulate immunity; high quantities induce tolerance by mechanisms not fully understood. A lack of gp96 protein in intestinal macrophages (IMACs) from Crohn`s disease (CD) patients correlates with loss of tolerance against the host gut flora, leading to chronic inflammation. Since gp96 shows dose-dependent direction of immunological reactions, we studied primary IMACs and developed cell models to understand the regulation of gp96 expression. Induction of gp96-expression was higher in in vitro differentiated dendritic cells (i.v.DCs) than in in vitro differentiated macrophages (i.v.MACs), whereas monocytes (MOs) expressed only low gp96 levels. The highest levels of expression were found in IMACs. Lipopolysaccharide (LPS), muramyl dipeptide (MDP), tumour necrosis factor (TNF), and Interleukin (IL)-4 induced gp96-expression, while IL12, IL-17, IL-23 and interferon (IFN)-γ were not effective indicating that Th1 and Th17 cells are probably not involved in the induction of gp96. Furthermore, gp96 was able to induce its own expression. The ER-stress inducer tunicamycin increased gp96-expression in a concentration- and time-dependent manner. Both ulcerative colitis (UC) and CD patients showed significantly elevated gp96 mRNA levels in intestinal biopsies which correlated positively with the degree of inflammation of the tissue. Since gp96 is highly expressed on the one hand upon stress induction as during inflammation and on the other hand possibly mediating tolerance, these results will help to understand the whether gp96 plays a role in the pathophysiology of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Lutz Wolfram
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Anne Fischbeck
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Kacper A. Wojtal
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Stephan R. Vavricka
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Gulic T, Laskarin G, Redzovic A, Eminović S, Haller H, Rukavina D. The significance of heat-shock protein gp96 and its receptors' CD91 and Toll-like receptor 4 expression at the maternal foetal interface. Am J Reprod Immunol 2013; 70:10-23. [PMID: 23755898 DOI: 10.1111/aji.12096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/19/2013] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Differences in the expression of gp96 and its receptors were analysed in normal and pathological human pregnancy. MATERIAL AND METHODS Immunohistology and immunofluorescence of sections from decidual part of term placenta, first trimester normal decidua, missed abortion and blighted ovum decidua were performed together with reverse transcriptase-quantitative polymerase chain reaction and flow cytometry. RESULTS In missed abortion, gp96 was intensively stained, when compared to normal early pregnancy. The intensity of CD91 and TLR4 was higher in the first trimester pregnancy and blighted ovum, when compared to missed abortion. Decidual part of the term placenta is invaded with gp96⁺ , CD91⁺ and TLR4+ trophoblast. Progesterone-induced blocking factor (PIBF) decreased the frequency of TLR4⁺ T lymphocytes, CD91⁺ T, natural killer (NK) and mature dendritic cells after an 18-h culture. Decidual mononuclear cells (DMCs) treated with PIBF down-regulated CD91, TLR4 and gp96 gene expression. CONCLUSION The presence of gp96, CD91 and TLR4 at the maternal-foetal interface provides a molecular basis for their interaction, particularly in the absence of PIBF.
Collapse
Affiliation(s)
- Tamara Gulic
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | | | | | | | | | | |
Collapse
|
11
|
Vollmer S, Haan C, Behrmann I. Oncostatin M up-regulates the ER chaperone Grp78/BiP in liver cells. Biochem Pharmacol 2010; 80:2066-73. [PMID: 20650266 DOI: 10.1016/j.bcp.2010.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 02/07/2023]
Abstract
OSM, a cytokine of the IL-6-type cytokine family, regulates inflammatory processes (like the acute phase response), tissue remodeling, angiogenesis, cell differentiation and proliferation. Inflammation is discussed to favor carcinogenesis and the inflammatory cytokine OSM was lately described to up-regulate HIF-1α, whose up-regulation is also observed in many cancers. In this study we demonstrate that OSM, and to a lesser degree IL-6, induces the expression of Grp78/BiP, an ER chaperone associated with tumor development and poor prognosis in cancer. In contrast, IFN-γ or TNF-α had no effect on Grp78 expression. The up-regulation seems to be specific to liver cells, as it occurs in hepatocytes and hepatoma cells but not in prostate, melanoma, breast or kidney cells. OSM does not lead to up-regulation of Grp94, enhanced XBP-1 mRNA splicing or phosphorylation of eIF2α, indicating that it is not associated to a general ER stress response. Analysis of the underlying mechanism showed that Grp78 is up-regulated by transcriptional processes which are to the greater part, though not completely, dependent on MEK/Erk activation.
Collapse
Affiliation(s)
- Stefan Vollmer
- Life Sciences Research Unit-Signal Transduction Laboratory, University of Luxembourg, 162A, av. de la Faïencerie, 1511 Luxembourg, Luxembourg
| | | | | |
Collapse
|
12
|
Mode-of-Action, Efficacy, and Safety of a Homologous Multi-Epitope Vaccine in a Murine Model for Adjuvant Treatment of Renal Cell Carcinoma. Eur Urol 2009; 56:123-31. [DOI: 10.1016/j.eururo.2008.05.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 05/20/2008] [Indexed: 11/21/2022]
|
13
|
Huang QQ, Sobkoviak R, Jockheck-Clark AR, Shi B, Mandelin AM, Tak PP, Haines GK, Nicchitta CV, Pope RM. Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. THE JOURNAL OF IMMUNOLOGY 2009; 182:4965-73. [PMID: 19342676 DOI: 10.4049/jimmunol.0801563] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are important mediators of chronic inflammation and are prominent in the synovial lining and sublining of patients with rheumatoid arthritis (RA). Recently, we demonstrated increased TLR2 and TLR4 expression and increased response to microbial TLR2 and TLR4 ligands in macrophages from the joints of RA. The current study characterized the expression of the 96-kDa heat shock glycoprotein (gp96) in the joints of RA and its role as an endogenous TLR ligand to promote innate immunity in RA. gp96 was increased in RA compared with osteoarthritis and arthritis-free control synovial tissues. The expression of gp96 strongly correlated with inflammation and synovial lining thickness. gp96 was increased in synovial fluid from the joints of RA compared with disease controls. Recombinant gp96 was a potent activator of macrophages and the activation was mediated primarily through TLR2 signaling. The cellular response to gp96 was significantly stronger with RA synovial macrophages compared with peripheral blood monocytes from RA or healthy controls. The transcription of TLR2, TNF-alpha, and IL-8, but not TLR4, was significantly induced by gp96, and the induction was significantly greater in purified RA synovial macrophages. The expression of TLR2, but not TLR4, on synovial fluid macrophages strongly correlated with the level of gp96 in the synovial fluid. The present study documents the potential role of gp96 as an endogenous TLR2 ligand in RA and provides insight into the mechanism by which gp96 promotes the chronic inflammation of RA, identifying gp96 as a potential new therapeutic target.
Collapse
Affiliation(s)
- Qi-Quan Huang
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Garikapaty VPS, Ashok BT, Tadi K, Mittelman A, Tiwari RK. Synthetic dimer of indole-3-carbinol: second generation diet derived anti-cancer agent in hormone sensitive prostate cancer. Prostate 2006; 66:453-62. [PMID: 16353249 DOI: 10.1002/pros.20350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cruciferous vegetables have been found to have anti-prostate cancer effects. The active compounds mediating these effects include indoles such as indole-3-carbinol (I3C) and isothiocyanates. I3C is unstable having tissue tropic effects and clinical utility has been partly addressed by the synthesis of a more stable dimer diindolylmethane (DIM). METHODS Anti-proliferative activity was measured by XTT assay and cytosolic proteins quantitated by Western blot analysis. RESULTS DIM (IC(50) 50 microM) is a better anti-proliferative agent than I3C (IC(50) 150 microM) in androgen dependent LNCaP cells, inhibits DNA synthesis, and growth of R1881 stimulated LNCaP cells. Androgen receptor (AR), cyclin D1, and cdk4, induced by R1881, are downregulated by DIM. DIM downregulates phosphorylated Akt and phosphatidyl inositol 3-kinase and downstream inhibition of cyclin D1 and cdk4. CONCLUSION These studies provide evidence that DIM is a second-generation chemopreventive agent with a viable cellular target and has clinical potential as an anti-prostate cancer chemopreventive.
Collapse
Affiliation(s)
- Venkata P S Garikapaty
- Department of Microbiology & Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|
15
|
Suriano R, Ghosh SK, Ashok BT, Mittelman A, Chen Y, Banerjee A, Tiwari RK. Differences in Glycosylation Patterns of Heat Shock Protein, gp96: Implications for Prostate Cancer Prevention. Cancer Res 2005; 65:6466-75. [PMID: 16024652 DOI: 10.1158/0008-5472.can-04-4639] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heat shock protein gp96 induces a tumor-specific protective immunity in a variety of experimental tumor models. Because the primary sequences of the glycoprotein, gp96 are identical between tumor and normal tissues, the peptides associated with gp96 and/or the posttranslational modifications of gp96, determine its immunogenicity. Gp96-associated peptides constitute the antigenic repertoire of the source tissue; thus, purified gp96-peptide complexes have clinical significance as autologous cancer vaccines. However, the role of altered glycosylation and its contribution in the biological as well as immunologic activity of gp96 still remains uncharacterized. We examined the cancer-specific glycosylation patterns of gp96. To this end, monosaccharide compositions of gp96 were compared between normal rat prostate and two cancerous rat prostate tissues, nonmetastatic/androgen-dependent Dunning G and metastatic/androgen-independent MAT-LyLu, as well as two human nonmetastatic prostate cancer cell lines, androgen-dependent LnCaP and androgen-independent DU145. Marked differences were observed between the gp96 monosaccharide compositions of the normal and cancerous tissues. Furthermore, gp96 molecules from more aggressive cellular transformations were found to carry decreasing quantities of several monosaccharides as well as sum total content of neutral and amino sugars. We believe that the unique glycosylation patterns contribute to cellular phenotype and that the posttranslational modifications of gp96 may affect its functional attributes.
Collapse
Affiliation(s)
- Robert Suriano
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Land WG. The role of postischemic reperfusion injury and other nonantigen-dependent inflammatory pathways in transplantation. Transplantation 2005; 79:505-14. [PMID: 15753838 DOI: 10.1097/01.tp.0000153160.82975.86] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Injury Hypothesis, first published in 1994 and modified several times between 1996 and 2002, holds that the reactive oxygen species-mediated reperfusion injury to allografts initiates and induces the alloimmune response and contributes to alloatherogenesis. Recent experimental and clinical evidence in support of the concept is presented suggesting that (1) reactive oxygen species-mediated allograft injury activates the innate immune system of the donor and recipient; (2) injury-induced putative endogenous ligands of Toll-like receptors (TLRs) of host origin such as heat shock proteins interact with and activate TLR4-bearing dendritic cells that mature and induce the adaptive alloimmune response (acute rejection), and interact with and activate TLR4-bearing vascular cells contributing to the development of alloatherosclerosis (chronic rejection); and (3) TLR4-triggered signaling, involved in the establishment of a reperfusion injury, seems to use myeloid differentiation marker 88-independent, Toll/interleukin-1 receptor domain containing adaptor inducing interferon-beta-dependent pathways that are associated with the maturation of dendritic cells and induction of interferon-inducible genes.
Collapse
|