1
|
Staab-Weijnitz CA. Fighting the Fiber: Targeting Collagen in Lung Fibrosis. Am J Respir Cell Mol Biol 2021; 66:363-381. [PMID: 34861139 DOI: 10.1165/rcmb.2021-0342tr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Organ fibrosis is characterized by epithelial injury and aberrant tissue repair, where activated effector cells, mostly fibroblasts and myofibroblasts, excessively deposit collagen into the extracellular matrix. Fibrosis frequently results in organ failure and has been estimated to contribute to at least one third of all global deaths. Also lung fibrosis, in particular idiopathic pulmonary fibrosis (IPF), is a fatal disease with rising incidence worldwide. As current treatment options targeting fibrogenesis are insufficient, there is an urgent need for novel therapeutic strategies. During the last decade, several studies have proposed to target intra- and extracellular components of the collagen biosynthesis, maturation, and degradation machinery. This includes intra- and extracellular targets directly acting on collagen gene products, but also such that anabolize essential building blocks of collagen, in particular glycine and proline biosynthetic enzymes. Collagen, however, is a ubiquitous molecule in the body and fulfils essential functions as a macromolecular scaffold, growth factor reservoir, and receptor binding site in virtually every tissue. This review summarizes recent advances and future directions in this field. Evidence for the proposed therapeutic targets and where they currently stand in terms of clinical drug development for treatment of fibrotic disease is provided. The drug targets are furthermore discussed in light of (1) specificity for collagen biosynthesis, maturation and degradation, and (2) specificity for disease-associated collagen. As therapeutic success and safety of these drugs may largely depend on targeted delivery, different strategies for specific delivery to the main effector cells and to the extracellular matrix are discussed.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, 9150, Comprehensive Pneumology Center/Institute of Lung Biology and Disease, Member of the German Center of Lung Research (DZL), München, Germany;
| |
Collapse
|
2
|
Zhang Y, Yin Y, Liu S, Yang L, Sun C, An R. FK506 binding protein 10: a key actor of collagen crosslinking in clear cell renal cell carcinoma. Aging (Albany NY) 2021; 13:19475-19485. [PMID: 34388114 PMCID: PMC8386577 DOI: 10.18632/aging.203359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of malignant tumor in the kidney. With numbers of patients whose physical condition or tumor stage not suitable for radical surgery, they only have a narrow choice of using VEGF/mTOR targeted drugs to control their tumors, but ccRCC often shows resistance to these drugs. Therefore, identifying a new therapeutic target is of urgent necessity. In this study, for the first time, we concluded from bioinformatics analyses and in vitro research that FK506 binding protein 10 (FKBP10), together with its molecular partner Lysyl hydroxylase 2 (LH2/PLOD2), participate in the process of type I collagen synthesis in ccRCC via regulating crosslinking of pro-collagen chains. Our findings may provide a potential therapeutic target to treat ccRCC in the future.
Collapse
Affiliation(s)
- Yubai Zhang
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Yue Yin
- Department of Oncology Radiotherapy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sijia Liu
- Department of Gynecological Radiotherapy, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Lei Yang
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Changhua Sun
- Department of Urology Surgery, The First Hospital of Harbin, Harbin, China
| | - Ruihua An
- Department of Urology Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Jiang FN, Dai LJ, Yang SB, Wu YD, Liang YX, Yin XL, Zou CY, Zhong WD. Increasing of FKBP9 can predict poor prognosis in patients with prostate cancer. Pathol Res Pract 2019; 216:152732. [PMID: 31780055 DOI: 10.1016/j.prp.2019.152732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/22/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND FK506 binding protein 9 (FKBP9) has been reported and identified for a long time, but its relationship with cancer is rarely studied. For example, the role of FK506 binding protein 9 in prostate cancer (PCa) is still unclear. Therefore, we decided to detect the expression level of FKBP9 in PCa and explore its clinical significance. METHODS The expression level of FKBP9 protein was detected by immunohistochemistry. In addition, it was demonstrated by high-throughput sequencing of mRNA levels in the TCGA (cancer genome atlas) dataset of 499 patients. Kaplan-meier analysis and Cox proportional hazard regression model were used to evaluate the relationship between FKBP9 expression and survival in prostate cancer patients. RESULTS The expression of FKBP9 was localized in the cytoplasm, which in normal prostate tissues was obviously lower than that in PCa tissues (P = 0.001). High expression of FKBP9 was related with lymph node metastasis (P = 0.022) and distant metastasis (P = 0.028). Kaplan-Meier survival analysis revealed that the BCR-free survival of PCa patients with high FKBP9 level was significantly shortened (P=0.041). CONCLUSIONS FKBP9 may be a cancer promoter that enhances PCa progression, and the level of FKBP9 may be used as an independent precursor of PCa patients.
Collapse
Affiliation(s)
- Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Li-Jun Dai
- Laboratory Animal Center, Guangzhou Medical University, Guangzhou 510182, China.
| | - Sheng-Bang Yang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Yong-Ding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| | - Xiao-Li Yin
- Guangzhou HYY Precision&Translation Medicine Institute, Guangzhou 510300, China.
| | - Cui-Yun Zou
- Guangzhou HYY Precision&Translation Medicine Institute, Guangzhou 510300, China.
| | - Wei-de Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
4
|
Maghami F, Tabei SMB, Moravej H, Dastsooz H, Modarresi F, Silawi M, Faghihi MA. Splicing defect in FKBP10 gene causes autosomal recessive osteogenesis imperfecta disease: a case report. BMC MEDICAL GENETICS 2018; 19:86. [PMID: 29801479 PMCID: PMC5970456 DOI: 10.1186/s12881-018-0579-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/18/2018] [Indexed: 12/01/2022]
Abstract
Background Osteogenesis imperfecta (OI) is a group of connective tissue disorder caused by mutations of genes involved in the production of collagen and its supporting proteins. Although the majority of reported OI variants are in COL1A1 and COL1A2 genes, recent reports have shown problems in other non-collagenous genes involved in the post translational modifications, folding and transport, transcription and proliferation of osteoblasts, bone mineralization, and cell signaling. Up to now, 17 types of OI have been reported in which types I to IV are the most frequent cases with autosomal dominant pattern of inheritance. Case Presentation Here we report an 8- year- old boy with OI who has had multiple fractures since birth and now he is wheelchair-dependent. To identify genetic cause of OI in our patient, whole exome sequencing (WES) was carried out and it revealed a novel deleterious homozygote splice acceptor site mutation (c.1257-2A > G, IVS7-2A > G) in FKBP10 gene in the patient. Then, the identified mutation was confirmed using Sanger sequencing in the proband as homozygous and in his parents as heterozygous, indicating its autosomal recessive pattern of inheritance. In addition, we performed RT-PCR on RNA transcripts originated from skin fibroblast of the proband to analyze the functional effect of the mutation on splicing pattern of FKBP10 gene and it showed skipping of the exon 8 of this gene. Moreover, Real-Time PCR was carried out to quantify the expression level of FKBP10 in the proband and his family members in which it revealed nearly the full decrease in the level of FKBP10 expression in the proband and around 75% decrease in its level in the carriers of the mutation, strongly suggesting the pathogenicity of the mutation. Conclusions Our study identified, for the first time, a private pathogenic splice site mutation in FKBP10 gene and further prove the involvement of this gene in the rare cases of autosomal recessive OI type XI with distinguished clinical manifestations. Electronic supplementary material The online version of this article (10.1186/s12881-018-0579-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatemeh Maghami
- Department of Medical Genetics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Moravej
- Pediatric Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetics Center, Shiraz, Iran
| | - Farzaneh Modarresi
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetics Center, Shiraz, Iran
| | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, Dr. Faghihi's Medical Genetics Center, Shiraz, Iran. .,Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL, 33136, USA.
| |
Collapse
|
5
|
Inhibition of FKBP10 Attenuates Hypertrophic Scarring through Suppressing Fibroblast Activity and Extracellular Matrix Deposition. J Invest Dermatol 2017; 137:2326-2335. [DOI: 10.1016/j.jid.2017.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
|
6
|
Bonner JM, Boulianne GL. Diverse structures, functions and uses of FK506 binding proteins. Cell Signal 2017; 38:97-105. [DOI: 10.1016/j.cellsig.2017.06.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023]
|
7
|
Ishikawa Y, Holden P, Bächinger HP. Heat shock protein 47 and 65-kDa FK506-binding protein weakly but synergistically interact during collagen folding in the endoplasmic reticulum. J Biol Chem 2017; 292:17216-17224. [PMID: 28860186 DOI: 10.1074/jbc.m117.802298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Collagen is the most abundant protein in the extracellular matrix in humans and is critical to the integrity and function of many musculoskeletal tissues. A molecular ensemble comprising more than 20 molecules is involved in collagen biosynthesis in the rough endoplasmic reticulum. Two proteins, heat shock protein 47 (Hsp47/SERPINH1) and 65-kDa FK506-binding protein (FKBP65/FKBP10), have been shown to play important roles in this ensemble. In humans, autosomal recessive mutations in both genes cause similar osteogenesis imperfecta phenotypes. Whereas it has been proposed that Hsp47 and FKBP65 interact in the rough endoplasmic reticulum, there is neither clear evidence for this interaction nor any data regarding their binding affinities for each other. In this study using purified endogenous proteins, we examined the interaction between Hsp47, FKBP65, and collagen and also determined their binding affinities and functions in vitro Hsp47 and FKBP65 show a direct but weak interaction, and FKBP65 prefers to interact with Hsp47 rather than type I collagen. Our results suggest that a weak interaction between Hsp47 and FKBP65 confers mutual molecular stability and also allows for a synergistic effect during collagen folding. We also propose that Hsp47 likely acts as a hub molecule during collagen folding and secretion by directing other molecules to reach their target sites on collagens. Our findings may explain why osteogenesis imperfecta-causing mutations in both genes result in similar phenotypes.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Paul Holden
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University and Shriners Hospital for Children, Research Department, Portland, Oregon 97239
| |
Collapse
|
8
|
Seyedhassani SM, Hashemi-Gorji F, Yavari M, Harazi F, Yassaee VR. Novel FKBP10 Mutation in a Patient with Osteogenesis Imperfecta Type XI. Fetal Pediatr Pathol 2016; 35:353-358. [PMID: 27362741 DOI: 10.1080/15513815.2016.1191567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Osteogenesis imperfecta (OI) is a set of clinically and genetically heterogeneous disorders with autosomal dominant, recessive and X-linked inheritance patterns. The aim of this study was to describe a novel genetic abnormality in a case of OI type XI with mild joint contractures, kyphoscoliosis, muscular atrophy, progressively deforming and multiple bone fractures in a consanguineous Iranian family. Based on the phenotype, investigation of two candidate genes, CRTAP (OI type VII) and FKBP10 (OI type XI) detected a novel homozygous frameshift mutation in the FKBP10 gene. This finding can be useful in accurate genetic counseling and prioritization of molecular analysis of OI in Iranian patients.
Collapse
Affiliation(s)
- Seyed Mohammad Seyedhassani
- a Genomic Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Dr. Seyedhassani Medical Genetic Center , Yazd , Iran
| | | | | | | | - Vahid Reza Yassaee
- a Genomic Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
9
|
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2015; 192:455-67. [PMID: 26039104 DOI: 10.1164/rccm.201412-2233oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES To assess the expression and function of FKBP10 in IPF. METHODS We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-β1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-β1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS FKBP10 might be a novel drug target for IPF.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Larissa Knüppel
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia Maul
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Brenda M Juan-Guardela
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elisabeth Hennen
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Claus Neurohr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and
| | - Rudolf Hatz
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | | | - Jürgen Behr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Naftali Kaminski
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
10
|
Wang L, Liu H, Jiao Y, Wang E, Clark SH, Postlethwaite AE, Gu W, Chen H. Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level: Obstacles that Translational Research Must Overcome. Int J Mol Sci 2015; 16:15031-56. [PMID: 26151842 PMCID: PMC4519886 DOI: 10.3390/ijms160715031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/17/2022] Open
Abstract
Collagen, type III, alpha-1 (COL3A1) is essential for normal collagen I fibrillogenesis in many organs. There are differences in phenotypes of mutations in the COL3A1 gene in humans and mutations in mice. In order to investigate whether the regulation and gene network of COL3A1 is the same in healthy populations of mice and humans, we compared the quantitative trait loci (QTL) that regulate the expression level of COL3A1 and the gene network of COL3A1 pathways between humans and mice using whole genome expression profiles. Our results showed that, for the regulation of expression of Col3a1 in mice, an eQTL on chromosome (Chr) 12 regulates the expression of Col3a1. However, expression of genes in the syntenic region on human Chr 7 has no association with the expression level of COL3A1. For the gene network comparison, we identified 44 top genes whose expression levels are strongly associated with that of Col3a1 in mice. We next identified 41 genes strongly associated with the expression level of COL3A1 in humans. There are a few but significant differences in the COL3A1 gene network between humans and mice. Several genes showed opposite association with expression of COL3A1. These genes are known to play important roles in development and function of the extracellular matrix of the lung. Difference in the molecular pathway of key genes in the COL3A1 gene network in humans and mice suggest caution should be used in extrapolating results from models of human lung diseases in mice to clinical lung diseases in humans. These differences may influence the efficacy of drugs in humans whose development employed mouse models.
Collapse
Affiliation(s)
- Lishi Wang
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Department of Basic Research, Inner Mongolia Medical College, Inner Mongolia 010110, China.
| | - Hongchao Liu
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| | - Yan Jiao
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Department of Medicine, Mudanjiang Medical College, Mudanjiang 157001, China.
| | - Erjian Wang
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| | - Stephen H Clark
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Arnold E Postlethwaite
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, USA.
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Research Service, Veterans Affairs Medical Center, Memphis, TN 38104, USA.
| | - Hong Chen
- Integrative Research Center, the first Hospital of Qiqihaer City, Qiqihaer 161005, China.
| |
Collapse
|
11
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
12
|
Carmona FJ, Davalos V, Vidal E, Gomez A, Heyn H, Hashimoto Y, Vizoso M, Martinez-Cardus A, Sayols S, Ferreira HJ, Sánchez-Mut JV, Morán S, Margelí M, Castella E, Berdasco M, Stefansson OA, Eyfjord JE, Gonzalez-Suarez E, Dopazo J, Orozco M, Gut IG, Esteller M. A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition. Cancer Res 2014; 74:5608-19. [PMID: 25106427 DOI: 10.1158/0008-5472.can-13-3659] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a plastic process in which fully differentiated epithelial cells are converted into poorly differentiated, migratory and invasive mesenchymal cells, and it has been related to the metastasis potential of tumors. This is a reversible process and cells can also eventually undergo mesenchymal-to-epithelial transition. The existence of a dynamic EMT process suggests the involvement of epigenetic shifts in the phenotype. Herein, we obtained the DNA methylomes at single-base resolution of Madin-Darby canine kidney cells undergoing EMT and translated the identified differentially methylated regions to human breast cancer cells undergoing a gain of migratory and invasive capabilities associated with the EMT phenotype. We noticed dynamic and reversible changes of DNA methylation, both on promoter sequences and gene-bodies in association with transcription regulation of EMT-related genes. Most importantly, the identified DNA methylation markers of EMT were present in primary mammary tumors in association with the epithelial or the mesenchymal phenotype of the studied breast cancer samples.
Collapse
Affiliation(s)
- F Javier Carmona
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Veronica Davalos
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Enrique Vidal
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Antonio Gomez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Holger Heyn
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Yutaka Hashimoto
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Sergi Sayols
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Jose V Sánchez-Mut
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Sebastián Morán
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | | | - Eva Castella
- Pathology Department, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Maria Berdasco
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Olafur A Stefansson
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Jorunn E Eyfjord
- Cancer Research Laboratory, Faculty of Medicine, University of Iceland, Reykjavik, Iceland. Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Eva Gonzalez-Suarez
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain
| | - Joaquín Dopazo
- Department of Bioinformatics, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain. CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. Functional Genomics Node (INB) at CIPF, Valencia, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain. Joint IRB-BSC Research Program on Computational Biology, Barcelona, Spain. Barcelona Supercomputing Center, Barcelona, Spain. Department of Biochemistry and Molecular Biology, University of Barcelona, Barcelona, Spain
| | - Ivo G Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat; Barcelona, Spain. Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain. Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
Lietman CD, Rajagopal A, Homan EP, Munivez E, Jiang MM, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D. Connective tissue alterations in Fkbp10-/- mice. Hum Mol Genet 2014; 23:4822-31. [PMID: 24777781 DOI: 10.1093/hmg/ddu197] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited brittle bone disorder characterized by bone fragility and low bone mass. Loss of function mutations in FK506-binding protein 10 (FKBP10), encoding the FKBP65 protein, result in recessive OI and Bruck syndrome, of which the latter is additionally characterized by joint contractures. FKBP65 is thought to act as a collagen chaperone, but it is unknown how loss of FKBP65 affects collagen synthesis and extracellular matrix formation. We evaluated the developmental and postnatal expression of Fkbp10 and analyzed the consequences of its generalized loss of function. Fkbp10 is expressed at low levels in E13.5 mouse embryos, particularly in skeletal tissues, and steadily increases through E17.5 with expression in not only skeletal tissues, but also in visceral tissues. Postnatally, expression is limited to developing bone and ligaments. In contrast to humans, with complete loss of function mutations, Fkbp10(-/-) mice do not survive birth, and embryos present with growth delay and tissue fragility. Type I calvarial collagen isolated from these mice showed reduced stable crosslink formation at telopeptide lysines. Furthermore, Fkbp10(-/-) mouse embryonic fibroblasts show retention of procollagen in the cell layer and associated dilated endoplasmic reticulum. These data suggest a requirement for FKBP65 function during embryonic connective tissue development in mice, but the restricted expression postnatally in bone, ligaments and tendons correlates with the bone fragility and contracture phenotype in humans.
Collapse
Affiliation(s)
- Caressa D Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abbhirami Rajagopal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica P Homan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Terry K Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA,
| | - Deborah Krakow
- Department of Orthopaedic Surgery and Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Miao M, Reichheld SE, Muiznieks LD, Huang Y, Keeley FW. Elastin Binding Protein and FKBP65 Modulate in Vitro Self-Assembly of Human Tropoelastin. Biochemistry 2013; 52:7731-41. [DOI: 10.1021/bi400760f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ming Miao
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sean E. Reichheld
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lisa D. Muiznieks
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yayi Huang
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fred W. Keeley
- Department
of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
15
|
Galat A. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Cell Mol Life Sci 2013; 70:3243-75. [PMID: 23224428 PMCID: PMC11113493 DOI: 10.1007/s00018-012-1206-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 12/25/2022]
Abstract
From 5 to 12 FK506-binding proteins (FKBPs) are encoded in the genomes of disparate marine organisms, which appeared at the dawn of evolutionary events giving rise to primordial multicellular organisms with elaborated internal body plan. Fifteen FKBPs, several FKBP-like proteins and some splicing variants of them are expressed in humans. Human FKBP12 and some of its paralogues bind to different macrocyclic antibiotics such as FK506 or rapamycin and their derivatives. FKBP12/(macrocyclic antibiotic) complexes induce diverse pharmacological activities such as immunosuppression in humans, anticancerous actions and as sustainers of quiescence in certain organisms. Since the FKBPs bind to various assemblies of proteins and other intracellular components, their complexes with the immunosuppressive drugs may differentially perturb miscellaneous cellular functions. Sequence-structure relationships and pharmacological profiles of diverse FKBPs and their involvement in crucial intracellular signalization pathways and modulation of cryptic intercellular communication networks were discussed.
Collapse
Affiliation(s)
- Andrzej Galat
- Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie et de Technologies de Saclay, Service d'Ingénierie Moléculaire des Protéines, Bat. 152, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
16
|
Barnes AM, Duncan G, Weis M, Paton W, Cabral WA, Mertz EL, Makareeva E, Gambello MJ, Lacbawan FL, Leikin S, Fertala A, Eyre DR, Bale SJ, Marini JC. Kuskokwim syndrome, a recessive congenital contracture disorder, extends the phenotype of FKBP10 mutations. Hum Mutat 2013; 34:1279-88. [PMID: 23712425 DOI: 10.1002/humu.22362] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/16/2013] [Indexed: 11/09/2022]
Abstract
Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI) and Bruck syndrome (OI plus congenital contractures). Contractures are a variable manifestation of null/missense FKBP10 mutations. Kuskokwim syndrome (KS) is an autosomal recessive congenital contracture disorder found among Yup'ik Eskimos. Linkage mapping of KS to chromosome 17q21, together with contractures as a feature of FKBP10 mutations, made FKBP10 a candidate gene. We identified a homozygous three-nucleotide deletion in FKBP10 (c.877_879delTAC) in multiple Kuskokwim pedigrees; 3% of regional controls are carriers. The mutation deletes the highly conserved p.Tyr293 residue in FKBP65's third peptidyl-prolyl cis-trans isomerase domain. FKBP10 transcripts are normal, but mutant FKBP65 is destabilized to a residual 5%. Collagen synthesized by KS fibroblasts has substantially decreased hydroxylation of the telopeptide lysine crucial for collagen cross-linking, with 2%-10% hydroxylation in probands versus 60% in controls. Matrix deposited by KS fibroblasts has marked reduction in maturely cross-linked collagen. KS collagen is disorganized in matrix, and fibrils formed in vitro had subtle loosening of monomer packing. Our results imply that FKBP10 mutations affect collagen indirectly, by ablating FKBP65 support for collagen telopeptide hydroxylation by lysyl hydroxylase 2, thus decreasing collagen cross-links in tendon and bone matrix. FKBP10 mutations may also underlie other arthrogryposis syndromes.
Collapse
Affiliation(s)
- Aileen M Barnes
- Bone and Extracellular Matrix Branch, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Quinn MCJ, Wojnarowicz PM, Pickett A, Provencher DM, Mes-Masson AM, Davis EC, Tonin PN. FKBP10/FKBP65 expression in high-grade ovarian serous carcinoma and its association with patient outcome. Int J Oncol 2013; 42:912-20. [PMID: 23354471 DOI: 10.3892/ijo.2013.1797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/05/2012] [Indexed: 11/06/2022] Open
Abstract
The frequent loss of chromosome 17 in epithelial ovarian carcinomas (EOC), particularly high-grade serous carcinomas (HGSC), has been attributed to the disruption of TP53 (at 17p13.1) and other chromosome 17 genes suspected to play a role in tumour suppressor pathways. In a transcriptome analysis of HGSC, we showed underexpression of a number of chromosome 17 genes, which included FKBP10 (at 17q21.1) and collagen I α 1 (COL1A1; at 17q21.33). FKBP10 codes for the immunophilin FKBP65 and is suspected to act as a chaperone for COL1A1. We have investigated FKBP10 (gene) and FKBP65 (protein) expression in HGSC samples and EOC cell lines that differ in their tumourigenic potential. COL1A1 expression was also investigated given the purported function of FKBP65. RT-PCR analysis verified underexpression of FKBP10 and COL1A1 in HGSCs (n=14) and six tumourigenic EOC cell lines, relative to normal ovarian surface epithelial cells and a non-tumourigenic EOC cell line. Immunohistochemistry analyses of 196 HGSC samples using tissue microarrays revealed variable staining intensities in the epithelial tumour component where only 7.8% and 1.0% of samples stained intensely for FKBP65 and COL1A1, respectively. Variable staining intensities were also observed for the stromal component where 23.6% and 24.1% stained intensely for FKBP65 and COL1A1, respectively. There was no significant correlation of staining intensity of either protein with disease stage. Staining of FKBP65 was clearly visible in normal epithelial cells of the ovarian surface and fallopian tube. There was a significant correlation between absence of FKBP65 staining in the epithelial cell component of the tumour and prolonged overall survival (p<0.001). Our results suggest that underexpression of FKBP65 protein is characteristic of HGSCs and that this expression profile may be linked to molecular pathways associated with an unfavourable outcome in cancer patients.
Collapse
Affiliation(s)
- Michael C J Quinn
- Research Centre of the University of Montreal Hospital Centre/Montreal Cancer Institute, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Murphy LA, Ramirez EA, Trinh VT, Herman AM, Anderson VC, Brewster JL. Endoplasmic reticulum stress or mutation of an EF-hand Ca(2+)-binding domain directs the FKBP65 rotamase to an ERAD-based proteolysis. Cell Stress Chaperones 2011; 16:607-19. [PMID: 21761186 PMCID: PMC3220392 DOI: 10.1007/s12192-011-0270-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/12/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022] Open
Abstract
FKBP65 is an endoplasmic reticulum (ER)-localized chaperone and rotamase, with cargo proteins that include tropoelastin and collagen. In humans, mutations in FKBP65 have recently been shown to cause a form of osteogenesis imperfecta (OI), a brittle bone disease resulting from deficient secretion of mature type I collagen. In this work, we describe the rapid proteolysis of FKBP65 in response to ER stress signals that activate the release of ER Ca(2+) stores. A large-scale screen for stress-induced cellular changes revealed FKBP65 proteins to decrease within 6-12 h of stress activation. Inhibiting IP(3)R-mediated ER Ca(2+) release blocked this response. No other ER-localized chaperone and folding mediators assessed in the study displayed this phenomenon, indicating that this rapid proteolysis of folding mediator is distinctive. Imaging and cellular fractionation confirmed the localization of FKBP65 (72 kDa glycoprotein) to the ER of untreated cells, a rapid decrease in protein levels following ER stress, and the corresponding appearance of a 30-kDa fragment in the cytosol. Inhibition of the proteasome during ER stress revealed an accumulation of FKBP65 in the cytosol, consistent with retrotranslocation and a proteasome-based proteolysis. To assess the role of Ca(2+)-binding EF-hand domains in FKBP65 stability, a recombinant FKBP65-GFP construct was engineered to ablate Ca(2+) binding at each of two EF-hand domains. Cells transfected with the wild-type construct displayed ER localization of the FKBP65-GFP protein and a proteasome-dependent proteolysis in response to ER stress. Recombinant FKBP65-GFP carrying a defect in the EF1 Ca(2+)-binding domain displayed diminished protein in the ER when compared to wild-type FKBP65-GFP. Proteasome inhibition restored mutant protein to levels similar to that of the wild-type FKBP65-GFP. A similar mutation in EF2 did not confer FKBP65 proteolysis. This work supports a model in which stress-induced changes in ER Ca(2+) stores induce the rapid proteolysis of FKBP65, a chaperone and folding mediator of collagen and tropoelastin. The destruction of this protein may identify a cellular strategy for replacement of protein folding machinery following ER stress. The implications for stress-induced changes in the handling of aggregate-prone proteins in the ER-Golgi secretory pathway are discussed. This work was supported by grants from the National Institutes of Health (R15GM065139) and the National Science Foundation (DBI-0452587).
Collapse
Affiliation(s)
- Lindsey A. Murphy
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| | - Emily A. Ramirez
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| | - Van T. Trinh
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| | - Alexander M. Herman
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| | - Valen C. Anderson
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| | - Jay L. Brewster
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263 USA
| |
Collapse
|
19
|
Massoud O, Heimbach J, Viker K, Krishnan A, Poterucha J, Sanchez W, Watt K, Wiesner R, Charlton M. Noninvasive diagnosis of acute cellular rejection in liver transplant recipients: a proteomic signature validated by enzyme-linked immunosorbent assay. Liver Transpl 2011; 17:723-32. [PMID: 21618694 PMCID: PMC3293624 DOI: 10.1002/lt.22266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The diagnosis of acute cellular rejection (ACR) requires liver biopsy with its attendant expense and risk. Our first aim was to prospectively determine in an exploratory analysis whether there is a serum proteome signature associated with histologically confirmed ACR. Our second aim was to use simpler and faster enzyme-linked immunosorbent assay (ELISA)-based assays for proteins identified as differentially abundant in the proteomic analysis to identify patients with ACR in a separate validation cohort. We used sequential high-abundance protein depletion and isobaric tag for relative and absolute quantitation liquid chromatography-tandem mass spectrometry to characterize the serum proteome in serum samples of patients with or without ACR. Seven of the 41 proteins identified as differentially abundant [serum amyloid A, complement component 4 (C4), fibrinogen, complement component 1q (C1q), complement component 3, heat shock protein 60 (HSP60), and HSP70] could be measured with ELISA-based assays in a validation cohort consisting of patients with ACR (n = 25) and patients without ACR (n = 21). The mean alanine aminotransferase (ALT) levels in patients with ACR and in patients without ACR were 198 ± 27 and 153 ± 34 U/L, respectively. Among the 7 proteins for which ELISA assays were available, C4 and C1q were both independent predictors of ACR. C4 had the greatest predictivity for differentiating patients with or without ACR. A C4 level ≤ 0.31 g/L had a sensitivity of 97%, a specificity of 62%, a positive predictive value of 74%, and a negative predictive value of 94%. A C4 level ≤ 0.31 g/L and an ALT level ≥ 70 IU/mL together had a sensitivity of 96%, a specificity of 81%, a positive predictive value of 86%, and a negative predictive value of 94%. In summary, in this exploratory analysis, serum C4 and ALT levels were highly predictive of ACR in liver transplant recipients. Confirmation in a prospective, larger, and diverse population is needed.
Collapse
Affiliation(s)
- Omar Massoud
- Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julie Heimbach
- Division of Transplant Surgery, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Kimberly Viker
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Anuradha Krishnan
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - John Poterucha
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - William Sanchez
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Kymberly Watt
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Russell Wiesner
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Michael Charlton
- Department of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Henriksen R, Sørensen FB, Ørntoft TF, Birkenkamp-Demtroder K. Expression of FK506 binding protein 65 (FKBP65) is decreased in epithelial ovarian cancer cells compared to benign tumor cells and to ovarian epithelium. Tumour Biol 2011; 32:671-6. [PMID: 21399973 DOI: 10.1007/s13277-011-0167-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/23/2011] [Indexed: 11/24/2022] Open
Abstract
FK506 binding protein 65 (FKBP65) belongs to a group of proteins termed immunophilins that have a high binding affinity to immunosuppressant drugs as FK506 (tacrolimus) and rapamycin (sirolimus). Treatment of female premenopausal women with tacrolimus, which binds to FKBP65, has been reported to be followed by a strongly increased risk of ovarian cysts. We performed the present study to reveal how FKBP65 is expressed in the ovary and in ovarian tumors and to see if this expression might be related to ovarian tumor development, a relationship we have found in colorectal cancer. Biopsies from prospectively collected samples from ovaries and benign, borderline, and invasive ovarian tumors were analyzed for expression of FKBP65 by immunohistochemistry. The expression was compared to survival and several clinicopathological parameters. FKBP65 is strongly expressed in ovarian epithelium and in benign ovarian tumor cells. In the ovary, a positive staining was also found in endothelial cells of blood vessels. In non-invasive and in invasive malignant tumor cells, a decreased staining was observed, which was not correlated to stage, histology, or survival. A significant inversed correlation to expression of p53 was found. The differential expression of FKBP65 indicates a role in ovarian physiology as well as in ovarian tumor development. Our observations and the chromosomal localization of the FKBP65 gene indicate a tumor suppressor function of the FKBP65 protein in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Rudi Henriksen
- Department of Obstetrics and Gynecology, University Hospital SUS, Lunds University, 20502, Malmoe, Sweden.
| | | | | | | |
Collapse
|
21
|
Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJ, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 2010; 86:551-9. [PMID: 20362275 DOI: 10.1016/j.ajhg.2010.02.022] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 02/01/2010] [Accepted: 02/25/2010] [Indexed: 01/03/2023] Open
Abstract
Osteogenesis imperfecta is a clinically and genetically heterogeneous brittle bone disorder that results from defects in the synthesis, structure, or posttranslational modification of type I procollagen. Dominant forms of OI result from mutations in COL1A1 or COL1A2, which encode the chains of the type I procollagen heterotrimer. The mildest form of OI typically results from diminished synthesis of structurally normal type I procollagen, whereas moderately severe to lethal forms of OI usually result from structural defects in one of the type I procollagen chains. Recessively inherited OI, usually phenotypically severe, has recently been shown to result from defects in the prolyl-3-hydroxylase complex that lead to the absence of a single 3-hydroxyproline at residue 986 of the alpha1(I) triple helical domain. We studied a cohort of five consanguineous Turkish families, originating from the Black Sea region of Turkey, with moderately severe recessively inherited OI and identified a novel locus for OI on chromosome 17. In these families, and in a Mexican-American family, homozygosity for mutations in FKBP10, which encodes FKBP65, a chaperone that participates in type I procollagen folding, was identified. Further, we determined that FKBP10 mutations affect type I procollagen secretion. These findings identify a previously unrecognized mechanism in the pathogenesis of OI.
Collapse
|
22
|
Lagoda G, Sezen SF, Burnett AL. FK506 and Rapamycin Neuroprotect Erection and Involve Different Immunophilins in a Rat Model of Cavernous Nerve Injury. J Sex Med 2009; 6:1914-23. [DOI: 10.1111/j.1743-6109.2009.01293.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Lagoda G, Sezen SF, Liu T, Höke A, Burnett AL. FK506-binding protein localizations in human penile innervation. BJU Int 2008; 101:604-9. [DOI: 10.1111/j.1464-410x.2007.07290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Werner T, Shkoda A, Haller D. Intestinal epithelial cell proteome in IL-10 deficient mice and IL-10 receptor reconstituted epithelial cells: impact on chronic inflammation. J Proteome Res 2007; 6:3691-704. [PMID: 17658738 DOI: 10.1021/pr070222x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of nonpathogenic enteric bacteria with intestinal epithelial cells (IEC) in the absence of host-derived Interleukin 10 (IL-10) may contribute to the development of chronic inflammation. Functional proteome analysis of primary IEC from Enterococcus faecalis-monoassociated WT and IL-10-/- mice as well as IL-10 receptor reconstituted IEC revealed expression changes of proteins that are involved in endoplasmic reticulum stress, energy metabolism, and apoptosis, suggesting a protective role for IL-10 at the epithelial cell level.
Collapse
Affiliation(s)
- Tanja Werner
- Technical University of Munich, Departments of Food and Nutrition Science and Medicine, Experimental Nutritional Medicine, Else-Kroener-Fresenius Center, Am Forum 5, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
25
|
Tremmel D, Tropschug M. Neurospora crassa FKBP22 Is a Novel ER Chaperone and Functionally Cooperates with BiP. J Mol Biol 2007; 369:55-68. [PMID: 17428499 DOI: 10.1016/j.jmb.2007.01.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 11/30/2022]
Abstract
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.
Collapse
Affiliation(s)
- Dirk Tremmel
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | |
Collapse
|