1
|
Nugraha Y, Laksmi FA, Nuryana I, Helbert, Khasna FN. Production of reverse transcriptase from Moloney murine Leukemia virus in Escherichia coli expression system. Prep Biochem Biotechnol 2024; 54:1079-1087. [PMID: 38411149 DOI: 10.1080/10826068.2024.2317311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Reverse transcriptase (RT) is one of the most important enzymes used in molecular biology applications, enabling the conversion of RNA into complementary DNA (cDNA) that is used in reverse transcription-polymerase chain reaction (RT-PCR). The high demand of RT enzymes in biotechnological applications making the production optimization of RT is crucial for meeting the growing demand in industrial settings. Conventionally, the expression of recombinant RT is T7-induced promoter using IPTG in Escherichia coli expression systems, which is not cost-efficient. Here, we successfully made an alternative procedure for RT expression from Moloney murine leukemia virus (M-MLV) using autoinduction method in chemically defined medium. The optimization of carbon source composition (glucose, lactose, and glycerol) was analyzed using Response Surface Methodology (RSM). M-MLV RT was purified for further investigation on its activity. A total of 32.8 mg/L purified M-MLV RT was successfully obtained when glucose, glycerol, and lactose were present at concentration of 0.06%, 0.9%, and 0.5% respectively, making a 3.9-fold improvement in protein yield. In addition, the protein was produced in its active form by displaying 7462.50 U/mg of specific activity. This study provides the first step of small-scale procedures of M-MLV RT production that make it a cost-effective and industrially applicable strategy.
Collapse
Affiliation(s)
- Yudhi Nugraha
- Research Center for Molecular Biology Eijkman, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
| | - Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
| | - Helbert
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
| | - Firyal Nida Khasna
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, West Java, Indonesia
| |
Collapse
|
2
|
Podlesniy P, Trullas R. Absolute measurement of gene transcripts with Selfie-digital PCR. Sci Rep 2017; 7:8328. [PMID: 28827685 PMCID: PMC5566441 DOI: 10.1038/s41598-017-08270-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 01/19/2023] Open
Abstract
Absolute measurement of the number of RNA transcripts per gene is necessary to compare gene transcription among different tissues or experimental conditions and to assess transcription of genes that have a variable copy number per cell such as mitochondrial DNA. Here, we present a method called Selfie-digital PCR that measures the absolute amount of an RNA transcript produced by its own coding DNA at a particular moment. Overcoming the limitations of previous approaches, Selfie-digital PCR allows for the quantification of nuclear and mitochondrial gene transcription in a strand-specific manner that is comparable among tissues and cell types that differ in gene copy number or metabolic state. Using Selfie-digital PCR, we found that, with the exception of the liver, different organs exhibit marked variations in mitochondrial DNA copy number but similar transcription of mitochondrial DNA heavy and light chains, thus suggesting a preferential role of mitochondrial DNA abundance over its transcription in organ function. Moreover, the strand-specific analysis of mitochondrial transcription afforded by Selfie-digital PCR showed that transcription of the heavy strand was significantly higher than that of the light strand in all the tissues studied.
Collapse
Affiliation(s)
- Petar Podlesniy
- Neurobiology Unit. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08036, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Spain
| | - Ramon Trullas
- Neurobiology Unit. Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, 08036, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, 08036, Spain. .,Neurobiology Unit, IIBB/CSIC, IDIBAPS, CIBERNED, Rosselló 161, sexta planta, 08036, Barcelona, Spain.
| |
Collapse
|
3
|
Khorosheva EM, Karymov MA, Selck DA, Ismagilov RF. Lack of correlation between reaction speed and analytical sensitivity in isothermal amplification reveals the value of digital methods for optimization: validation using digital real-time RT-LAMP. Nucleic Acids Res 2016; 44:e10. [PMID: 26358811 PMCID: PMC4737171 DOI: 10.1093/nar/gkv877] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
In this paper, we asked if it is possible to identify the best primers and reaction conditions based on improvements in reaction speed when optimizing isothermal reactions. We used digital single-molecule, real-time analyses of both speed and efficiency of isothermal amplification reactions, which revealed that improvements in the speed of isothermal amplification reactions did not always correlate with improvements in digital efficiency (the fraction of molecules that amplify) or with analytical sensitivity. However, we observed that the speeds of amplification for single-molecule (in a digital device) and multi-molecule (e.g. in a PCR well plate) formats always correlated for the same conditions. Also, digital efficiency correlated with the analytical sensitivity of the same reaction performed in a multi-molecule format. Our finding was supported experimentally with examples of primer design, the use or exclusion of loop primers in different combinations, and the use of different enzyme mixtures in one-step reverse-transcription loop-mediated amplification (RT-LAMP). Our results show that measuring the digital efficiency of amplification of single-template molecules allows quick, reliable comparisons of the analytical sensitivity of reactions under any two tested conditions, independent of the speeds of the isothermal amplification reactions.
Collapse
Affiliation(s)
- Eugenia M Khorosheva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Mikhail A Karymov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - David A Selck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Bhadra S, Jiang YS, Kumar MR, Johnson RF, Hensley LE, Ellington AD. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV). PLoS One 2015; 10:e0123126. [PMID: 25856093 PMCID: PMC4391951 DOI: 10.1371/journal.pone.0123126] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/24/2015] [Indexed: 12/15/2022] Open
Abstract
The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Yu Sherry Jiang
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
| | - Mia R. Kumar
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Lisa E. Hensley
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Maryland, United States of America
| | - Andrew D. Ellington
- Institute for Cellular and Molecular Biology, Center for Systems and Synthetic Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Feng L, Lintula S, Ho TH, Anastasina M, Paju A, Haglund C, Stenman UH, Hotakainen K, Orpana A, Kainov D, Stenman J. Technique for strand-specific gene-expression analysis and monitoring of primer-independent cDNA synthesis in reverse transcription. Biotechniques 2012; 52:263-70. [PMID: 22482442 DOI: 10.2144/0000113842] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
Primer-independent cDNA synthesis during reverse transcription hinders quantitative analysis of bidirectional mRNA synthesis in eukaryotes as well as in cells infected with RNA viruses. We report a simple RT-PCR-based assay for strand-specific gene-expression analysis. By modifying the cDNA sequence during reverse transcription, the opposite strands of target sequences can be simultaneously detected by postamplification melting curve analysis and primer-initiated transcripts are readily distinguished from nonspecifically primed cDNA. We have utilized this technique to optimize the specificity of reverse transcription on a panel of 15 target genes. Primer-independent reverse transcription occurred for all target sequences when reverse transcription was performed at 42°C and accounted for 11%-57% of the final PCR amplification products. By raising the reaction temperature to 55°C, the specificity of reverse transcription could be increased without significant loss of sensitivity. We have also demonstrated the utility of this technique for analysis of (+) and (-) RNA synthesis of influenza A virus in infected cells. Thus, this technique represents a powerful tool for analysis of bidirectional RNA synthesis.
Collapse
Affiliation(s)
- Lin Feng
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dong ZW, Shao P, Diao LT, Zhou H, Yu CH, Qu LH. RTL-P: a sensitive approach for detecting sites of 2'-O-methylation in RNA molecules. Nucleic Acids Res 2012; 40:e157. [PMID: 22833606 PMCID: PMC3488209 DOI: 10.1093/nar/gks698] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
2′-O-methylation is present within various cellular RNAs and is essential to RNA biogenesis and functionality. Several methods have been developed for the identification and localization of 2′-O-methylated sites in RNAs; however, the detection of RNA modifications, especially in low-abundance RNAs and small non-coding RNAs with a 2′-O-methylation at the 3′-end, remains a difficult task. Here, we introduce a new method to detect 2′-O-methylated sites in diverse RNA species, referred to as RTL-P [Reverse Transcription at Low deoxy-ribonucleoside triphosphate (dNTP) concentrations followed by polymerase chain reaction (PCR)] that demonstrates precise mapping and superior sensitivity compared with previous techniques. The main procedures of RTL-P include a site-specific primer extension by reverse transcriptase at a low dNTP concentration and a semi-quantitative PCR amplification step. No radiolabeled or fluorescent primers are required. By designing specific RT primers, we used RTL-P to detect both previously identified and novel 2′-O-methylated sites in human and yeast ribosomal RNAs (rRNAs), as well as mouse piwi-interacting RNAs (piRNAs). These results demonstrate the powerful application of RTL-P for the systematic analysis of fully or partially methylated residues in diverse RNA species, including low-abundance RNAs or small non-coding RNAs such as piRNAs and microRNAs (miRNAs).
Collapse
Affiliation(s)
- Zhi-Wei Dong
- Key Laboratory of Gene Engineering of the Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Hidalgo Ashrafi E, Yee J, Paul N. Selective control of primer usage in multiplex one-step reverse transcription PCR. BMC Mol Biol 2009; 10:113. [PMID: 20042116 PMCID: PMC2811113 DOI: 10.1186/1471-2199-10-113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/30/2009] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Multiplex RT-PCR is a valuable technique used for pathogen identification, disease detection and relative quantification of gene expression. The simplification of this protocol into a one-step procedure saves time and reagents. However, intensive PCR optimization is often required to overcome competing undesired PCR primer extension during the RT step.
Results
Herein, we report multiplex one-step RT-PCR experiments in which the PCR primers contain thermolabile phosphotriester modification groups. The presence of these groups minimizes PCR primer extension during the RT step and allows for control of PCR primer extension until the more stringent, elevated temperatures of PCR are reached. Results reveal that the use of primers whose extension can be controlled in a temperature-mediated way provides improved one-step RT-PCR specificity in both singleplex and multiplex reaction formats.
Conclusions
The need for an accurate and sensitive technique to quantify mRNA expression levels makes the described modified primer technology a promising tool for use in multiplex one-step RT-PCR. A more accurate representation of the abundances in initial template sample is feasible with modified primers, as artifacts of biased PCR are reduced because of greater improvements in reaction specificity.
Collapse
|
8
|
Nardon E, Donada M, Bonin S, Dotti I, Stanta G. Higher random oligo concentration improves reverse transcription yield of cDNA from bioptic tissues and quantitative RT-PCR reliability. Exp Mol Pathol 2009; 87:146-51. [PMID: 19619529 DOI: 10.1016/j.yexmp.2009.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 06/19/2009] [Accepted: 07/10/2009] [Indexed: 11/19/2022]
Abstract
Real time quantitative reverse transcription-PCR (qRT-PCR) is the most sensitive technique for detection and quantification of mRNA targets. Reliable quantification of gene expression in formalin-fixed, paraffin-embedded tissues (FFPE), however, has been subjected to serious limitations so far, mainly due to the fragmentation of RNA transcripts. We tried to improve the sensitivity and reliability of mRNA quantification in FFPE by boosting the reverse transcription (RT) step, that is neglected in most of the protocol analysis, but that represents the first confounding event in a quantitative analysis. For this purpose, we compared yield, reproducibility and linearity of RTs performed with random hexamers, random pentadecamers, or a mixture of antisense specific primers in presence of either Moloney murine leukemia virus (MmLV) or the avian myeloblastosis virus (AMV) enzymes. Random primers were tested at two concentrations, 0.14 and 3.35 nmol/reaction. Our qRT-PCR results indicate an improvement of RT yield when using the highest concentration of random oligos with MmLV (from -1.4 to -4.1 C(t)s) in comparison to the lowest concentration. Moreover, more reliable standard curves and therefore, efficiencies were obtained. RT reactions performed with specific primers and AMV were those with the highest yield, but efficiencies were unreliable, due to the RT enzyme-driven PCR inhibition. Random priming at the 3.35 nmol/reaction concentration seems to be the most convenient strategy in assays using RNA obtained from FFPE tissues.
Collapse
Affiliation(s)
- Ermanno Nardon
- Department of Clinical, Morphological and Technological Sciences, University of Trieste, Italy
| | | | | | | | | |
Collapse
|
9
|
Motorin Y, Muller S, Behm-Ansmant I, Branlant C. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 2007; 425:21-53. [PMID: 17673078 DOI: 10.1016/s0076-6879(07)25002-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Naturally occurring modified residues derived from canonical RNA nucleotides are present in most cellular RNAs. Their detection in RNA represents a difficult task because of their great diversity and their irregular distribution within RNA molecules. Over the decades, multiple experimental techniques were developed for the identification and localization of RNA modifications. Most of them are quite laborious and require purification of individual RNA to a homogeneous state. An alternative to these techniques is the use of reverse transcription (RT)-based approaches. In these approaches, purification of RNA to homogeneity is not necessary, because the selection of the analyzed RNA species is done by specific annealing of oligonucleotide DNA primers. However, results from primer extension analysis are difficult to interpret because of the unpredictable nature of RT pauses. They depend not only on the properties of nucleotides but also on the RNA primary and secondary structure. In addition, the degradation of cellular RNA during extraction, even at a very low level, may complicate the analysis of the data. RT-based techniques for the identification of modified residues were considerably improved by the development of selected chemical reagents specifically reacting with a given modified nucleotide. The RT profile obtained after such chemical modifications generally allows unambiguous identification of the chemical nature of the modified residues and their exact location in the RNA sequence. Here, we provide experimental protocols for selective chemical modification and identification of several modified residues: pseudouridine, inosine, 5-methylcytosine, 2'-O-methylations, 7-methylguanosine, and dihydrouridine. Advice for an optimized use of these methods and for correct interpretation of the data is also given. We also provide some helpful information on the ability of other naturally occurring modified nucleotides to generate RT pauses.
Collapse
Affiliation(s)
- Yuri Motorin
- Laboratoire de Maturation des ARN et Enzymologie Moléculaire, Faculté des Sciences et Techniques, Nancy Université, Vandouevre-les-Nancy, France
| | | | | | | |
Collapse
|
10
|
Chan CH, Lin KL, Chan Y, Wang YL, Chi YT, Tu HL, Shieh HK, Liu WT. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. J Virol Methods 2006; 136:38-43. [PMID: 16687177 DOI: 10.1016/j.jviromet.2006.03.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
This study describes the development of a simple RT-PCR method to amplify the whole genome of the influenza A virus based on the amplification of full-length gene segments. Primers were designed based on the conserved regions of both the 5'-end and the 3'-end of each gene segment. After optimizing the duration and temperature of denaturing, annealing, and extension, these primers could amplify all of the full-length gene segments. To test the accuracy of the method, all amplicons were subjected to DNA sequencing with an autosequencer. Eighteen strains of influenza A virus which belonged to H1N1 or H3N2 subtypes were tested. All eight segments of both subtypes were successfully amplified in all tested strains. Using a newly developed reverse-transcriptase (RT), primers and PCR running conditions, this study established a protocol to amplify the entire genome of the influenza A virus. This method provides a tool which can be used for the amplification of all genes of the H1N1 and H3N2 subtypes of influenza A virus prior to analysis of their sequences, and to construct expression plasmids for further study.
Collapse
Affiliation(s)
- Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University (CSMU), 110, Sec. No. 1, Chien-Kuo N. Road, Taichung 402, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The polymerase chain reaction (PCR) has become one of the most important tools in molecular diagnostics, providing exquisite sensitivity and specificity for detection of nucleic acid targets. Real-time monitoring of PCR has simplified and accelerated PCR laboratory procedures and has increased information obtained from specimens including routine quantification and differentiation of amplification products. Clinical diagnostic applications and uses of real-time PCR are growing exponentially, real-time PCR is rapidly replacing traditional PCR, and new diagnostic uses likely will emerge. This review analyzes the scope of present and potential future clinical diagnostic applications of this powerful technique. Critical discussions focus on basic concepts, variations, data analysis, instrument platforms, signal detection formats, sample collection, assay design, and execution of real-time PCR.
Collapse
Affiliation(s)
- Bernhard Kaltenboeck
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
12
|
Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 2005; 71:3866-71. [PMID: 16000799 PMCID: PMC1169012 DOI: 10.1128/aem.71.7.3866-3871.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute standard curves. The technique was applied to quantify mRNA of the trichloroethene (TCE) reductive dehalogenase-encoding tceA gene in an anaerobic TCE-to-ethene dechlorinating microbial enrichment. Compared to RT-qPCR protocols that utilize DNA absolute standard curves, application of the new technique increased measured quantities of tceA mRNA by threefold, demonstrating a substantial improvement in quantification. The technique was also effective for quantifying the loss of mRNA during specific steps of the sample processing protocol. Analysis revealed that the efficiency of the RNA isolation (56%) step was significantly less than that of the cell lysis (84%), DNA removal (93%), and RT (88%) steps. The technique was applied to compare the effects of cellular exposure to different chlorinated ethenes on tceA expression. Results show that exposure to TCE or cis-1,2-dichloroethene resulted in 25-fold-higher quantities of tceA mRNA than exposure to vinyl chloride or chlorinated ethene starvation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710.
| | | | | | | |
Collapse
|
13
|
Vellore J, Moretz SE, Lampson BC. A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol 2005; 70:7140-7. [PMID: 15574910 PMCID: PMC535183 DOI: 10.1128/aem.70.12.7140-7147.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The production of a stable cDNA copy of an unstable RNA molecule by reverse transcription is a widely used and essential technology for many important applications, such as the construction of gene libraries, production of DNA probes, and analysis of gene expression by reverse transcriptase PCR (RT-PCR). However, the synthesis of full-length cDNAs is frequently inefficient, because the RT commonly used often produces truncated cDNAs. Synthesizing cDNA at higher temperatures, on the other hand, can provide a number of improvements. These include increasing the length of cDNA product, greater accuracy, and greater specificity during reverse transcription. Thus, an RT that remains stable and active at hot temperatures may produce better-quality cDNAs and improve the yield of full-length cDNAs. Described here is the discovery of a gene, designated trt, from the genome of the thermophilic bacterium Bacillus (Geobacillus) stearothermophilus strain 10. The gene codes for an open reading frame (ORF) similar to the ORFs encoded by group II introns found in bacteria. The gene was cloned and overexpressed in Escherichia coli, and its protein product was partially purified. Like the host organism, the Trt protein is a heat-stable protein with RT activity and can reverse transcribe RNA at temperatures as high as 75 degrees C.
Collapse
Affiliation(s)
- Jaishree Vellore
- Department of Health Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | |
Collapse
|
14
|
Gerard GF, Potter RJ, Smith MD, Rosenthal K, Dhariwal G, Lee J, Chatterjee DK. The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res 2002; 30:3118-29. [PMID: 12136094 PMCID: PMC135738 DOI: 10.1093/nar/gkf417] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We compared the thermal stabilities of wild-type recombinant avian myeloblastosis virus (AMV) and Moloney murine leukemia virus (M-MLV) reverse transcriptase (RT) with those of mutants of the recombinant enzymes lacking RNase H activity. They differed in resistance to thermal inactivation at elevated temperatures in the presence of an RNA/DNA template-primer. RNase H-minus RTs retained the ability to efficiently synthesize cDNA at much higher temperatures. We show that the structure of the template-primer has a critical bearing on protection of RT from thermal inactivation. RT RNase H activity rapidly alters the structure of the template-primer to forms less tightly bound by RT and thus less able to protect the enzyme at elevated temperatures. We also found that when comparing wild-type or mutant AMV RT with the respective M-MLV RT, the avian enzymes retained more DNA synthetic activity at elevated temperatures than murine RTs. Enzyme, template-primer interaction again played the most significant role in producing these differences. AMV RT binds much tighter to template- primer and has a much greater tendency to remain bound during cDNA synthesis than M-MLV RT and therefore is better protected from heat inactivation.
Collapse
Affiliation(s)
- Gary F Gerard
- Invitrogen Corporation, 7335 Executive Way, Frederick, MD 21704, USA.
| | | | | | | | | | | | | |
Collapse
|