1
|
Carbo M, Brandi V, Pascarella G, Staid DS, Colotti G, Polticelli F, Ilari A, Morea V. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy. Int J Mol Med 2019; 44:2223-2233. [PMID: 31638189 PMCID: PMC6844632 DOI: 10.3892/ijmm.2019.4373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder for which no cure is available yet. It is caused by abnormal expansion of a CAG triplet in the gene encoding the huntingtin protein (Htt), with consequent expansion of a polyglutamine repeat in mutated Htt (mHtt). This makes mHtt highly unstable and aggregation prone. Soluble mHtt is linked to cytotoxicity and neurotoxicity, whereas mHtt aggregates are thought to be neuroprotective. While Htt and mHtt are ubiquitously expressed throughout the brain and peripheral tissues, HD is characterized by selective degradation of the corpus striatum, without notable alterations in peripheral tissues. Screening for mRNAs preferentially expressed in rodent striatum led to the discovery of a GTP binding protein homologous to Ras family members. Due to these features, the newly discovered protein was termed Ras Homolog Enriched in Striatum (RHES). The aetiological role of RHES in HD has been ascribed to its small ubiquitin-like modifier (SUMO)-E3 ligase function. RHES sumoylates mHtt with higher efficiency than wild-type Htt, thereby protecting mHtt from degradation and increasing the amounts of the soluble form. Although RHES is an attractive target for HD treatment, essential information about protein structure and function are still missing. With the aim of investigating RHES 3D structure and function, bioinformatic analyses and molecular modelling have been performed in the present study, based on which, RHES regions predicted to be involved in the interaction with mHtt or the SUMO-E2 ligase Ubc9 have been identified. These regions have been used to design peptides aimed at inhibiting RHES interactions and, therefore, mHtt sumoylation; in turn, these peptides will be used to develop small molecule inhibitors by both rational design and virtual screening of large compound libraries. Once identified, RHES sumoylation inhibitors may open the road to the development of therapeutic agents against the severe, and currently untreatable, HD.
Collapse
Affiliation(s)
- Miriam Carbo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Gianmarco Pascarella
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - David Sasah Staid
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| |
Collapse
|
2
|
Connor B. Concise Review: The Use of Stem Cells for Understanding and Treating Huntington's Disease. Stem Cells 2017; 36:146-160. [PMID: 29178352 DOI: 10.1002/stem.2747] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
Abstract
Two decades ago, researchers identified that a CAG expansion mutation in the huntingtin (HTT) gene was involved in the pathogenesis of Huntington's disease (HD). However, since the identification of the HTT gene, there has been no advance in the development of therapeutic strategies to prevent or reduce the progression of HD. With the recent advances in stem cell biology and human cell reprogramming technologies, several novel and exciting pathways have emerged allowing researchers to enhance their understanding of the pathogenesis of HD, to identify and screen potential drug targets, and to explore alternative donor cell sources for cell replacement therapy. This review will discuss the role of compensatory neurogenesis in the HD brain, the use of stem cell-based therapies for HD to replace or prevent cell loss, and the recent advance of cell reprogramming to model and/or treat HD. These new technologies, coupled with advances in genome editing herald a promising new era for HD research with the potential to identify a therapeutic strategy to alleviate this debilitating disorder. Stem Cells 2018;36:146-160.
Collapse
Affiliation(s)
- Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Jiang Y, Chadwick SR, Lajoie P. Endoplasmic reticulum stress: The cause and solution to Huntington's disease? Brain Res 2016; 1648:650-657. [PMID: 27040914 DOI: 10.1016/j.brainres.2016.03.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Accumulation of misfolded proteins is a hallmark of many human diseases, including several incurable neurological disorders, such as Huntington's disease (HD). In HD, expansion of a polyglutamine stretch within the first exon of the Huntingtin protein (Htt) leads to Htt misfolding, aberrant protein aggregation, and progressive appearance of disease symptoms. Several studies in various organisms (from yeast to humans) have identified the accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER stress) as a crucial determinant of cellular toxicity in HD. In this review, we highlight the recent research linking HD to ER stress. We also discuss how the modulation of signaling pathways responsible for coping with misfolded protein accumulation in the ER may constitute attractive methods to reduce toxicity and identify new therapeutic targets for treatment of HD. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1
| | - Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada N6A 5C1.
| |
Collapse
|
4
|
Lee S, Park S, Won J, Lee SR, Chang KT, Hong Y. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury. Int J Mol Sci 2015; 16:19657-70. [PMID: 26295390 PMCID: PMC4581318 DOI: 10.3390/ijms160819657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Sookyoung Park
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Life Sciences, Kyungnam University, Changwon 51767, Korea.
| | - Jinyoung Won
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| |
Collapse
|
5
|
Xu Z, Tito AJ, Rui YN, Zhang S. Studying polyglutamine diseases in Drosophila. Exp Neurol 2015; 274:25-41. [PMID: 26257024 DOI: 10.1016/j.expneurol.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Polyglutamine (polyQ) diseases are a family of dominantly transmitted neurodegenerative disorders caused by an abnormal expansion of CAG trinucleotide repeats in the protein-coding regions of the respective disease-causing genes. Despite their simple genetic basis, the etiology of these diseases is far from clear. Over the past two decades, Drosophila has proven to be successful in modeling this family of neurodegenerative disorders, including the faithful recapitulation of pathological features such as polyQ length-dependent formation of protein aggregates and progressive neuronal degeneration. Additionally, it has been valuable in probing the pathogenic mechanisms, in identifying and evaluating disease modifiers, and in helping elucidate the normal functions of disease-causing genes. Knowledge learned from this simple invertebrate organism has had a large impact on our understanding of these devastating brain diseases.
Collapse
Affiliation(s)
- Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Antonio Joel Tito
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Yan-Ning Rui
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, 1825 Pressler Street, Houston, TX 77030, United States; Department of Neurobiology and Anatomy, 1825 Pressler Street, Houston, TX 77030, United States; Programs in Human and Molecular Genetics and Neuroscience, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Graduate School of Biomedical Sciences, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Medical School at Houston, 1825 Pressler Street, Houston, TX 77030, United States; The University of Texas Health Science Center at Houston (UTHealth), 1825 Pressler Street, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Mason RP, Breda C, Kooner GS, Mallucci GR, Kyriacou CP, Giorgini F. Modeling Huntington Disease in Yeast and Invertebrates. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
7
|
Direct reprogramming of Huntington's disease patient fibroblasts into neuron-like cells leads to abnormal neurite outgrowth, increased cell death, and aggregate formation. PLoS One 2014; 9:e109621. [PMID: 25275533 PMCID: PMC4183653 DOI: 10.1371/journal.pone.0109621] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Recent advances in trans-differentiation of one type cell to another have made it possible to directly convert Huntington’s disease (HD) patient fibroblasts into neurons by modulation of cell-lineage-specific transcription factors or RNA processing. However, this possibility has not been examined. Here, we demonstrate that HD patient-derived fibroblasts can be directly trans-differentiated into neuron-like cells by knockdown of the expression of a single gene encoding the polypyrimidine-tract-binding protein. The directly converted HD neuron-like cells were positive in expression of Tuj1, NeuN, DARPP-32, and γ-aminobutyric acid and exhibited neuritic breakdown, abnormal neuritic branching, increased cell death, and aggregation of mutant huntingtin. These observations indicate that the neuron-like cells directly converted from HD patient fibroblasts recapitulate the major aspects of neuropathological characteristics of HD and thus provide an additional model for understanding the disorder and validation of therapeutic reagents.
Collapse
|
8
|
Idris MM, Thorndyke MC, Brown ER. Evidence for dynamic and multiple roles for huntingtin in Ciona intestinalis. INVERTEBRATE NEUROSCIENCE 2014; 13:151-65. [PMID: 23797324 DOI: 10.1007/s10158-013-0158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 11/29/2022]
Abstract
Although mutations in the huntingtin gene (HTT) due to poly-Q expansion cause neuropathology in humans (Huntington’s disease; HD), the normal function(s) of the gene and its protein (HTT) remain obscure. With new information from recently sequenced invertebrate genomes, the study of new animal models opens the possibility of a better understanding of HTT function and its evolution. To these ends, we studied huntingtin expression pattern and dynamics in the invertebrate chordate Ciona intestinalis. Ciona huntingtin (Ci-HTT) shows a biphasic expression pattern during larval development and prior to metamorphosis. A single form of huntingtin protein is present until the early larval stages, at which time two different mass proteins become evident in the metamorphically competent larva. An antibody against Ci-HTT labeled 50 cells in the trunk mesenchyme regions in pre-hatching and hatched larvae and probably represents the distribution of the light form of the protein. Dual labeling with anti-Ci-HTT and anti-aldoketoreductase confirmed the presence of Ci-HTT in mesenchyme cells. Suppression of Ci-HTT RNA by a morpholino oligonucleotide reduced the number and apparent mobility of Ci-HTT positive cells. In Ciona, HTT expression has a dynamic temporal and spatial expression pattern that in ontogeny precedes metamorphosis. Although our results may reflect a derived function for the protein in pre- and post-metamorphic events in Ciona, we also note that as in vertebrates, there is evidence for multiple differential temporal expression, indicating that this protein probably has multiple roles in ontogeny and cell migration.
Collapse
|
9
|
Dong X, Zong S, Witting A, Lindenberg KS, Kochanek S, Huang B. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration. J Gene Med 2012; 14:468-81. [PMID: 22700462 DOI: 10.1002/jgm.2641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neuronal degeneration, in particular in the striatum, and the formation of nuclear and cytoplasmic inclusions are characteristics of Huntington's disease (HD) as a result of the expansion of a polyglutamine tract located close to the N-terminus of huntingtin (htt). Because of the large (10-kb) size of the htt cDNA, expression of full-length htt in primary neurons has proved difficult in the past. METHODS We generated a new chronic in vitro model that is based on high-capacity adenovirus vector-mediated transduction of primary murine striatal and cortical neurons. Because the vector has a large capacity for transport of foreign DNA, it was possible to quantitatively express in these primary cells normal and mutant full-length htt (designed as fusion proteins with enhanced green fluorescent protein) in addition to its truncated versions. Pathological changes caused by mutant htt were characterized. RESULTS The model mimicked several features observed in HD patients: prominent nuclear inclusions in cortical but not in striatal neurons, preferential neuronal degeneration of striatal neurons and neurofilament fragmentation in this cell type. Compared with expressed truncated mutant htt, the expression of full-length mutant htt in neurons resulted in a much slower appearance of pathological changes. Different from cortical neurons, the vast majority of nuclei in striatal cells contained only diffusely distributed N-terminal htt fragments. Cytoplasmic inclusions in both cell types contained full-length mutant htt. CONCLUSIONS This model and the adenovirus vectors used will be valuable for studying the function of htt and the pathogenesis of HD at molecular and cellular levels in different neuronal cell types.
Collapse
Affiliation(s)
- Xiaomin Dong
- Department of Gene Therapy, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Ravikumar M, Jain S, Miller RH, Capadona JR, Selkirk SM. An organotypic spinal cord slice culture model to quantify neurodegeneration. J Neurosci Methods 2012; 211:280-8. [PMID: 22975474 DOI: 10.1016/j.jneumeth.2012.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 08/19/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023]
Abstract
Activated microglia cells have been implicated in the neurodegenerative process of Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis; however, the precise roles of microglia in disease progression are unclear. Despite these diseases having been described for more than a century, current FDA approved therapeutics are symptomatic in nature with little evidence to supporting a neuroprotective effect. Furthermore, identifying novel therapeutics remains challenging due to undetermined etiology, a variable disease course, and the paucity of validated targets. Here, we describe the use of a novel ex vivo spinal cord culture system that offers the ability to screen potential neuroprotective agents, while maintaining the complexity of the in vivo environment. To this end, we treated spinal cord slice cultures with lipopolysaccharide and quantified neuron viability in culture using measurements of axon length and FluoroJadeC intensity. To simulate a microglia-mediated response to cellular debris, antigens, or implanted materials/devices, we supplemented the culture media with increasing densities of microspheres, facilitating microglia-mediated phagocytosis of the particles, which demonstrated a direct correlation between the phagocytic activities of microglia and neuronal health. To validate our model's capacity to accurately depict neuroprotection, cultures were treated with resveratrol, which demonstrated enhanced neuronal health. Our results successfully demonstrate the use of this model to reproducibly quantify the extent of neurodegeneration through the measurement of axon length and FluoroJadeC intensity, and we suggest this model will allow for accurate, high-throughput screening, which could result in expedited success in translational efficacy of therapeutic agents to clinical trials.
Collapse
Affiliation(s)
- Madhumitha Ravikumar
- Department of Biomedical Engineering, Case Western Reserve University, School of Engineering, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
11
|
An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 2012; 3:e382. [PMID: 22932724 PMCID: PMC3434668 DOI: 10.1038/cddis.2012.121] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder whose main hallmark is brain atrophy. However, several peripheral organs are considerably affected and their symptoms may, in fact, manifest before those resulting from brain pathology. HD is of genetic origin and caused by a mutation in the huntingtin gene. The mutated protein has detrimental effects on cell survival, but whether the mutation leads to a gain of toxic function or a loss of function of the altered protein is still highly controversial. Most currently used in vitro models have been designed, to a large extent, to investigate the effects of the aggregation process in neuronal-like cells. However, as the pathology involves several other organs, new in vitro models are critically needed to take into account the deleterious effects of mutant huntingtin in peripheral tissues, and thus to identify new targets that could lead to more effective clinical interventions in the early course of the disease. This review aims to present current in vitro models of HD pathology and to discuss the knowledge that has been gained from these studies as well as the new in vitro tools that have been developed, which should reflect the more global view that we now have of the disease.
Collapse
|
12
|
Wang L, Lin F, Wang J, Wu J, Han R, Zhu L, Zhang G, DiFiglia M, Qin Z. Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes. Acta Biochim Biophys Sin (Shanghai) 2012; 44:249-58. [PMID: 22234237 DOI: 10.1093/abbs/gmr125] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although huntingtin (htt) can be cleaved at many sites by caspases, calpains, and aspartyl proteases, amino acid (aa) 552 was defined as a preferred site for cleavage in human Huntington disease (HD) brains in vivo. To date, the normal function of wild-type N-terminal htt fragment 1-552 aa (htt552) and its pathological roles of mutant htt552 are still unknown. Although mutant htt (mhtt) is also expressed in astrocytes, whether and how mhtt contributes to the neurodegeneration through astrocytes in HD remains largely unknown. In this study, a glia HD model, using an adenoviral vector to express wild-type htt552 (htt552-18Q) and its mutation (htt552-100Q) in rat primary cortical astrocytes, was generated to investigate the influence of htt552 on the transcription of brain-derived neurotrophic factor (BDNF). Results from enzyme linked immunosorbent assay showed that the level of BDNF in astrocyte-conditioned medium was decreased in the astrocytes expressing htt552-100Q. Quantitative real-time polymerase chain reaction demonstrated that htt552-100Q reduced the transcripts of the BDNF III and IV, hence, repressed the transcription of BDNF. Furthermore, immunofluorescence showed that aggregates formed by htt552-100Q entrapped transcription factors cAMP-response element-binding protein and stimulatory protein 1, which might account for the reduction of BDNF transcription. These findings suggest that mhtt552 reduces BDNF transcription in astrocytes, which might contribute to the neuronal dysfunction in HD.
Collapse
Affiliation(s)
- Linhui Wang
- Department of Physiology, Soochow University School of Biology and Basic Medical Sciences, Suzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ransome MI, Hannan AJ. Behavioural state differentially engages septohippocampal cholinergic and GABAergic neurons in R6/1 Huntington’s disease mice. Neurobiol Learn Mem 2012; 97:261-70. [DOI: 10.1016/j.nlm.2012.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 12/18/2011] [Accepted: 01/04/2012] [Indexed: 12/15/2022]
|
14
|
Hannan AJ, Ransome MI. Deficits in spermatogenesis but not neurogenesis are alleviated by chronic testosterone therapy in R6/1 Huntington's disease mice. J Neuroendocrinol 2012; 24:341-56. [PMID: 21988129 DOI: 10.1111/j.1365-2826.2011.02238.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Despite the well established central pathophysiology of Huntington's disease (HD), less is known about systemic impairments that are emerging as significant contributors to the morbidity of this neurodegenerative condition. Given the evidence of neuroendocrine dysfunction in HD patients and the pro-neural properties of sex-hormones, we explored the therapeutic potential of hormone therapy in the HD R6/1 mouse model (HD mice). HD mice over-express exon-1 of the defective human HD gene and replicate many of the clinical behavioural, biochemical and physiological impairments. Seven-week-old HD and wild-type littermate mice had either saline (control) or testosterone (treatment; 160μg/day over 90days) pellets implanted s.c. and were subsequently subjected to behavioural, molecular and cellular analysis. Separate mice were used to establish a decrease in serum testosterone concentrations in HD mice at 12weeks of age. Baseline serum testosterone was significantly reduced in control 19-week-old HD mice, whereas treatment significantly raised serum testosterone in both wild-type and HD mice. Testosterone treatment had a limited effect on the development of rotarod deficiencies in HD mice and no effect on progressive body weight loss or the development of central mutant huntingtin-containing aggregates. Testosterone treatment induced hypo-locomotion in both genotypes. Deficits in hippocampal-dependent cognition and neurogenesis were not rescued in testosterone-treated HD mice. By contrast, wild-type-treatment mice experienced significantly increased neuronal survival and differentiation. Testosterone treatment in HD mice did rescue androgen receptor levels in the hippocampus and testes, significantly improved severe testicular atrophy and restored spermatogenesis. We conclude that chronic testosterone provides systemic efficacy in treating spermatogenesis deficits and testicular atrophy but not central cellular and behavioural pathologies in R6/1 HD mice.
Collapse
Affiliation(s)
- A J Hannan
- Florey Neurosciences Institutes, Melbourne Brain Centre, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
15
|
Mitochondrial Importance in Alzheimer’s, Huntington’s and Parkinson’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:205-21. [DOI: 10.1007/978-1-4614-0653-2_16] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Mills JD, Janitz M. Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol Aging 2011; 33:1012.e11-24. [PMID: 22118946 DOI: 10.1016/j.neurobiolaging.2011.10.030] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 12/15/2022]
Abstract
Alternative splicing (AS) is a post-transcriptional process that occurs in multiexon genes, and errors in this process have been implicated in many human diseases. Until recently, technological limitations prevented AS from being examined at the genome-wide scale. With the advent of new technologies, including exon arrays and next-generation sequencing (NGS) techniques (e.g., RNA-Seq), a higher resolution view of the human transcriptome is now available. This is particularly applicable in the study of neurodegenerative brain diseases (NBDs), such as Alzheimer's disease and Parkinson's disease, because the brain has the greatest amount of alternative splicing of all human tissues. Although many of the AS events associated with these disorders were initially identified using low-throughput methodologies, genome-wide analysis allows for more in-depth studies, marking a new chapter in transcript exploration. In this review, the latest technologies used to study the transcriptome and the AS genes that have been associated with a number of neurodegenerative brain diseases are discussed.
Collapse
Affiliation(s)
- James Dominic Mills
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | |
Collapse
|
17
|
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiol Rev 2010; 90:905-81. [DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 626] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
18
|
Klöppel S, Henley SM, Hobbs NZ, Wolf RC, Kassubek J, Tabrizi SJ, Frackowiak RSJ. Magnetic resonance imaging of Huntington's disease: preparing for clinical trials. Neuroscience 2009; 164:205-19. [PMID: 19409230 PMCID: PMC2771270 DOI: 10.1016/j.neuroscience.2009.01.045] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 02/01/2023]
Abstract
The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)–based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.
Collapse
Affiliation(s)
- S Klöppel
- Department of Psychiatry and Psychotherapy, Freiburg Brain Imaging, University Clinic Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Niclis JC, Trounson AO, Dottori M, Ellisdon AM, Bottomley SP, Verlinsky Y, Cram DS. Human embryonic stem cell models of Huntington disease. Reprod Biomed Online 2009; 19:106-13. [DOI: 10.1016/s1472-6483(10)60053-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Bakota L, Brandt R. Chapter 2 Live‐Cell Imaging in the Study of Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:49-103. [DOI: 10.1016/s1937-6448(09)76002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
21
|
Bossy-Wetzel E, Petrilli A, Knott AB. Mutant huntingtin and mitochondrial dysfunction. Trends Neurosci 2008; 31:609-16. [PMID: 18951640 PMCID: PMC2613540 DOI: 10.1016/j.tins.2008.09.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/27/2008] [Accepted: 09/08/2008] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is a fatal, inherited neurodegenerative disorder that gradually robs affected individuals of memory, cognitive skills and normal movements. Although research has identified a single faulty gene, the huntingtin gene, as the cause of the disease, a cure remains elusive. Strong evidence indicates that mitochondrial impairment plays a key part in HD pathogenesis. Here, we highlight how mutant huntingtin (mtHtt) might cause mitochondrial dysfunction by either perturbing transcription of nuclear-encoded mitochondrial proteins or by direct interaction with the organelle and modulation of respiration, mitochondrial membrane potential and Ca(2+) buffering. In addition, we propose that mtHtt might convey its neurotoxicity by evoking defects in mitochondrial dynamics, organelle trafficking and fission and fusion, which, in turn, might result in bioenergetic failure and HD-linked neuronal dysfunction and cell death. Finally, we speculate how mitochondria might dictate selective vulnerability of long projection neurons, such as medium spiny neurons, which are particularly affected in HD.
Collapse
Affiliation(s)
- Ella Bossy-Wetzel
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA.
| | | | | |
Collapse
|
22
|
Spresser CR, Marshall SE, Carlson KA. Characterization of gene expression regulated by human OTK18 using Drosophila melanogaster as a model system for innate immunity. J Genet 2008; 87:109-17. [DOI: 10.1007/s12041-008-0017-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Huntington's disease: genetics lends a hand. Nature 2008; 453:863-4. [PMID: 18488017 DOI: 10.1038/nature06365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington's disease. Bioorg Med Chem 2008; 16:5695-703. [PMID: 18406155 DOI: 10.1016/j.bmc.2008.03.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 03/14/2008] [Accepted: 03/25/2008] [Indexed: 11/23/2022]
Abstract
REST/NRSF is a multifunctional transcription factor that represses or silences many neuron-specific genes in both neural and non-neural cells by recruitment to its cognate RE1/NRSE regulatory sites. An increase in RE1/NRSE genomic binding is found in Huntington's disease (HD), resulting in the repression of REST/NRSF regulated gene transcription, among which BDNF, thus representing one of the possible detrimental effectors in HD. Three 2-aminothiazole derivatives were recently identified as potent modulators of the RE1/NRSE silencing activity through a cell-based gene reporter assay. In this study, the structure-activity relationships (SAR) of a library of commercially available 2-aminoisothiazoles diversely substituted at the amino group or at position 4 has been evaluated. A quantitative structure-activity relationship analysis performed using the Phase strategy yielded highly predictive 3D-QSAR pharmacophore model for in silico drug screening.
Collapse
|
25
|
Rigamonti D, Bolognini D, Mutti C, Zuccato C, Tartari M, Sola F, Valenza M, Kazantsev AG, Cattaneo E. Loss of Huntingtin Function Complemented by Small Molecules Acting as Repressor Element 1/Neuron Restrictive Silencer Element Silencer Modulators. J Biol Chem 2007; 282:24554-62. [PMID: 17565993 DOI: 10.1074/jbc.m609885200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Increased levels of the repressor element 1/neuron restrictive silencer element (RE1/NRSE) silencing activity promoter, and a consequent reduction in the transcription of many RE1/NRSE-bearing neuronal genes, including brain-derived neurotrophic factor (BDNF), have been demonstrated in Huntington disease (HD) and represent one possible effector of its selective neuronal vulnerability. Restoring the expression levels of neuronal genes in diseased neurons therefore seems to be an attractive therapeutic approach. To this end, we have developed a cell-based reporter assay for monitoring RE1/NRSE silencing activity and validated it by genetically inactivating the RE1/NRSE or pharmacologically stimulating global transcription. In a pilot compound screen, we identified three closely related structural analogues that up-regulate reporter expression at low nanomolar concentrations, and follow-up studies have shown that they efficaciously increase endogenous BDNF levels in HD cells. Moreover, one of the compounds increases the viability of HD cells. Our findings suggest a new avenue for the development of drugs for HD and other neurodegenerative disorders based on the pharmacological up-regulation of the production of the neuronal survival factor BDNF and of other RE1/NRSE-regulated neuronal genes.
Collapse
Affiliation(s)
- Dorotea Rigamonti
- Centre for Stem Cell Research and Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Battista N, Bari M, Tarditi A, Mariotti C, Bachoud-Lévi AC, Zuccato C, Finazzi-Agrò A, Genitrini S, Peschanski M, Di Donato S, Cattaneo E, Maccarrone M. Severe deficiency of the fatty acid amide hydrolase (FAAH) activity segregates with the Huntington's disease mutation in peripheral lymphocytes. Neurobiol Dis 2007; 27:108-16. [PMID: 17553686 DOI: 10.1016/j.nbd.2007.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/25/2007] [Accepted: 04/27/2007] [Indexed: 11/22/2022] Open
Abstract
The search for peripheral markers of neurodegenerative diseases aims at identifying molecules that could help in monitoring the effects of future therapeutics in easily accessible cells. Here we focused on the involvement of the endocannabinoid system in Huntington's disease (HD). We assayed peripheral lymphocytes from HD patients and healthy controls, and found that the activity of the fatty acid amide hydrolase (FAAH), the enzyme that degrades the endocannabinoid anandamide (AEA), was dramatically decreased (down to less than 10%) in HD compared to healthy subjects. Concomitantly, the endogenous levels of AEA were approximately 6-fold higher in HD versus healthy lymphocytes, while the other elements of the endocannabinoid system were not affected by HD. Low FAAH activity in HD lymphocytes was not due to down-regulation of protein expression, but rather to blockage of enzyme activity by a cytosolic and irreversible inhibitor. Finally, pre-HD patients showed defective FAAH activity, as did the brain of HD patients compared with healthy controls. Taken together, our data indicate that FAAH activity in lymphocytes mirrors some of the metabolic changes which take place in the brain, it is a measurable non-genetic peripheral marker that segregates with the HD mutation, and it might serve as a target to test chemicals active on the widespread toxic effects of the mutant protein.
Collapse
Affiliation(s)
- Natalia Battista
- Department of Biomedical Sciences, University of Teramo, Piazza A Moro 45, Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Westergard L, Christensen HM, Harris DA. The cellular prion protein (PrP(C)): its physiological function and role in disease. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:629-44. [PMID: 17451912 PMCID: PMC1986710 DOI: 10.1016/j.bbadis.2007.02.011] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/13/2022]
Abstract
Prion diseases are caused by conversion of a normal cell-surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is infectious in the absence of nucleic acid. Although a great deal has been learned about PrP(Sc) and its role in prion propagation, much less is known about the physiological function of PrP(C). In this review, we will summarize some of the major proposed functions for PrP(C), including protection against apoptotic and oxidative stress, cellular uptake or binding of copper ions, transmembrane signaling, formation and maintenance of synapses, and adhesion to the extracellular matrix. We will also outline how loss or subversion of the cytoprotective or neuronal survival activities of PrP(C) might contribute to the pathogenesis of prion diseases, and how similar mechanisms are probably operative in other neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - David A. Harris
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110
| |
Collapse
|
28
|
Pollard S, Conti L, Smith A. Exploitation of adherent neural stem cells in basic and applied neurobiology. Regen Med 2007; 1:111-8. [PMID: 17465825 DOI: 10.2217/17460751.1.1.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evidence for neurogenesis within the adult brain has challenged traditional views that this tissue is devoid of stem cell activity. This raises the possibility of introducing new cells through cell transplantation or stimulating endogenous neurogenesis as routes to treat disease and injury. Fetal and adult neural stem/progenitor cells can be isolated and expanded in vitro and might provide a cell source for such transplantations. Embryonic stem (ES) cells, which can generate any adult tissues, offer an alternative unlimited supply of neural tissue. We recently showed that both mouse and human ES cells can be converted to adherent neural stem (NS) cell lines [1] . Here we discuss the benefits of working with NS cell lines and how they might be exploited for studies of fundamental cellular processes, such as neuronal specification and differentiation. NS cells also serve as versatile models of disease processes, either through genetic manipulations or direct isolation from disease carriers and can be exploited in pharmaceutical drug screening. Longer term, NS cells offer an opportunity to rigorously test the efficacy of cell-based therapies and develop strategies for tissue engineering.
Collapse
Affiliation(s)
- Steven Pollard
- University of Edinburgh, Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
29
|
Gonzalez-Alegre P. Therapeutic RNA interference for neurodegenerative diseases: From promise to progress. Pharmacol Ther 2007; 114:34-55. [PMID: 17316816 DOI: 10.1016/j.pharmthera.2007.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 12/28/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) has emerged as a powerful tool to manipulate gene expression in the laboratory. Due to its remarkable discriminating properties, individual genes, or even alleles can be targeted with exquisite specificity in cultured cells or living animals. Among its many potential biomedical applications, silencing of disease-linked genes stands out as a promising therapeutic strategy for many incurable disorders. Neurodegenerative diseases represent one of the more attractive targets for the development of therapeutic RNAi. In this group of diseases, the progressive loss of neurons leads to the gradual appearance of disabling neurological symptoms and premature death. Currently available therapies aim to improve the symptoms but not to halt the process of neurodegeneration. The increasing prevalence and economic burden of some of these diseases, such as Alzheimer's disease (AD) or Parkinson's disease (PD), has boosted the efforts invested in the development of interventions, such as RNAi, aimed at altering their natural course. This review will summarize where we stand in the therapeutic application of RNAi for neurodegenerative diseases. The basic principles of RNAi will be reviewed, focusing on features important for its therapeutic manipulation. Subsequently, a stepwise strategy for the development of therapeutic RNAi will be presented. Finally, the different preclinical trials of therapeutic RNAi completed in disease models will be summarized, stressing the experimental questions that need to be addressed before planning application in human disease.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, 2-RCP, Carver College of Medicine at The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
30
|
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 2007; 6:919-30. [PMID: 16288298 DOI: 10.1038/nrn1806] [Citation(s) in RCA: 444] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | |
Collapse
|
31
|
Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. BMC Genomics 2006; 7:288. [PMID: 17092333 PMCID: PMC1636649 DOI: 10.1186/1471-2164-7-288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 11/08/2006] [Indexed: 01/20/2023] Open
Abstract
Background To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed. Results The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons. Conclusion During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements.
Collapse
|
32
|
Valenza M, Cattaneo E. Cholesterol dysfunction in neurodegenerative diseases: Is Huntington's disease in the list? Prog Neurobiol 2006; 80:165-76. [PMID: 17067733 DOI: 10.1016/j.pneurobio.2006.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/22/2006] [Accepted: 09/26/2006] [Indexed: 11/18/2022]
Abstract
Brain cholesterol is an essential component of cell membranes, and involved in a number of biological functions such as membrane trafficking, signal transduction, myelin formation and synaptogenesis. Given these widespread activities and the knowledge that all brain cholesterol derives from local synthesis, it is not surprising that dysfunctions in cholesterol synthesis, storage, transport and removal may lead to human brain diseases. Some of these diseases emerge as a consequence of genetic defects in the enzymes involved in cholesterol biosynthesis; in other cases, such as Alzheimer's disease, there is a link between cholesterol metabolism and the formation and deposition of amyloid-beta peptide. Emerging evidence indicates that changes in cholesterol synthesis may also occur in Huntington's disease, an inherited, autosomal dominant neurodegenerative disorder that primarily affects striatal neurons of the brain. We here provide an overview of the involvement of cholesterol in normal brain function and its impact on neurodegenerative diseases. In particular, we consider the available clinical, biological and molecular evidence indicating a potential dysregulation of cholesterol homeostasis in Huntington's disease.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Via Balzaretti 9, 20133 Milano, Italy
| | | |
Collapse
|
33
|
Pattison LR, Kotter MR, Fraga D, Bonelli RM. Apoptotic cascades as possible targets for inhibiting cell death in Huntington's disease. J Neurol 2006; 253:1137-42. [PMID: 16998646 DOI: 10.1007/s00415-006-0198-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 02/20/2006] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a devastating autosomal dominant disorder characterized by progressive motor and neuropsychological symptoms. Evidence implicating the apoptotic cascades as a possible cause for the neurodegeneration seen in HD has directed researchers toward investigating therapeutic treatments targeting caspases and other proapoptotic factors. Cellular and murine models, which have demonstrated that caspase-mediated cleavage could be the cause for the neurodegeneration seen in HD, have evoked more research investigating the possible inhibition of apoptosis in HD. In particular, minocycline, a tetracycline-derived antibiotic that has been shown to increase survival in transgenic mouse models of HD, exhibits a neuroprotective feature in HD and demonstrates an anti-inflammatory as well as an anti-microbial effect by inhibiting microglial activation known to cause apoptosis.
Collapse
Affiliation(s)
- Lindsay R Pattison
- Department of Biochemistry and Molecular Biology, The College of Wooster, 1189 Beall Avenue, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
34
|
Zhai W, Jeong H, Cui L, Krainc D, Tjian R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2006; 123:1241-53. [PMID: 16377565 DOI: 10.1016/j.cell.2005.10.030] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/31/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Transcriptional dysregulation has emerged as a potentially important pathogenic mechanism in Huntington's disease, a neurodegenerative disorder associated with polyglutamine expansion in the huntingtin (htt) protein. Here, we report the development of a biochemically defined in vitro transcription assay that is responsive to mutant htt. We demonstrate that both gene-specific activator protein Sp1 and selective components of the core transcription apparatus, including TFIID and TFIIF, are direct targets inhibited by mutant htt in a polyglutamine-dependent manner. The RAP30 subunit of TFIIF specifically interacts with mutant htt both in vitro and in vivo to interfere with formation of the RAP30-RAP74 native complex. Importantly, overexpression of RAP30 in cultured primary striatal cells protects neurons from mutant htt-induced cellular toxicity and alleviates the transcriptional inhibition of the dopamine D2 receptor gene by mutant htt. Our results suggest a mutant htt-directed repression mechanism involving multiple specific components of the basal transcription apparatus.
Collapse
Affiliation(s)
- Weiguo Zhai
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
35
|
Chang DTW, Rintoul GL, Pandipati S, Reynolds IJ. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis 2006; 22:388-400. [PMID: 16473015 DOI: 10.1016/j.nbd.2005.12.007] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/29/2005] [Accepted: 12/04/2005] [Indexed: 01/08/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a polyglutamine repeat in the huntingtin gene (Htt). Mitochondrial defects and protein aggregates are characteristic of affected neurons. Recent studies suggest that these aggregates impair cellular transport mechanisms by interacting with cytoskeletal components and molecular motors. Here, we investigated whether mutant Htt alters mitochondrial trafficking and morphology in primary cortical neurons. We demonstrate that full-length mutant Htt was more effective than N-terminal mutant Htt in blocking mitochondrial movement, an effect that correlated with its heightened expression in the cytosolic compartment. Aggregates impaired the passage of mitochondria along neuronal processes, causing mitochondria to accumulate adjacent to aggregates and become immobilized. Furthermore, mitochondrial trafficking was reduced specifically at sites of aggregates while remaining unaltered in regions lacking aggregates. We conclude that in cortical neurons, an early event in HD pathophysiology is the aberrant mobility and trafficking of mitochondria caused by cytosolic Htt aggregates.
Collapse
Affiliation(s)
- Diane T W Chang
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
36
|
Wang W, Duan W, Igarashi S, Morita H, Nakamura M, Ross CA. Compounds blocking mutant huntingtin toxicity identified using a Huntington's disease neuronal cell model. Neurobiol Dis 2006; 20:500-8. [PMID: 15908226 DOI: 10.1016/j.nbd.2005.03.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/27/2005] [Accepted: 03/31/2005] [Indexed: 10/25/2022] Open
Abstract
Neuronal cell death in HD is believed to be largely a dominant cell-autonomous effect of the mutant huntingtin protein. We previously developed an inducible PC12 cell model which expresses an N-terminal huntingtin fragment with an expanded poly Q repeat (N63-148Q) under the control of the tet-off system. In order to evaluate the ability of compounds to protect against mutant huntingtin toxicity in our model, we measured LDH released by dead cells into the medium. We have now screened the library of 1040 compounds from the NINDS Custom Collection as part of a National Institute of Neurological Disorders and Stroke (NINDS) collaborative project. Each positive compound was tested at 3-8 concentrations. Five compounds significantly attenuated mutant huntingtin (htt)-induced LDH release without affecting the expression level of huntingtin and independent of effect on aggregates. We also tested a broad spectrum caspase inhibitor Z-VAD-fmk and previously proposed candidate compounds. This cell model can provide a method to screen potential therapeutic compounds for treating Huntington's disease.
Collapse
Affiliation(s)
- Wenfei Wang
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2109, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zuccato C, Liber D, Ramos C, Tarditi A, Rigamonti D, Tartari M, Valenza M, Cattaneo E. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery. Pharmacol Res 2005; 52:133-9. [PMID: 15967378 DOI: 10.1016/j.phrs.2005.01.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 01/16/2023]
Abstract
Huntingtin is a protein of 348 kDa that is mutated in Huntington's disease (HD), a dominantly inherited neurodegenerative disorder. Previous data have led us to propose that aspects of the disease arise from both a loss of the neuroprotective function of the wild-type protein, and a toxic activity gained by the mutant protein. In particular, we have shown that wild-type huntingtin stimulates the production of brain-derived neurotrophic factor (BDNF), a pro-survival factor for the striatal neurons that die in the pathology. Wild-type huntingtin controls BDNF gene transcription in cerebral cortex, which is then delivered to its striatal targets. In the disease state, supply of cortical BDNF to the striatum is strongly reduced, possibly leading to striatal vulnerability. Here we show that a reduction in cortical BDNF messenger level correlates with the progression of the disease in a mouse model of HD. In particular, we show that the progressive loss of mRNAs transcribed from BDNF exon II, III and IV follows a different pattern that may reflect different upstream mechanisms impaired by mutation in huntingtin. On this basis, we also discuss the possibility that delivery of BDNF may represent an useful strategy for Huntington's disease treatment.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milano, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Spinal and bulbar muscular atrophy (Kennedy's disease): a sex-limited, polyglutamine repeat expansion disorder. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Hillion JA, Takahashi K, Maric D, Ruetzler C, Barker JL, Hallenbeck JM. Development of an ischemic tolerance model in a PC12 cell line. J Cereb Blood Flow Metab 2005; 25:154-162. [PMID: 15647748 PMCID: PMC1378216 DOI: 10.1038/sj.jcbfm.9600003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later. Flow cytometry analysis of cells labeled with specific markers for apoptosis, Annexin V, and Hoechst 33342, and of DNA content, revealed that apoptosis is involved in OGD-induced PC12 cell death and that preconditioning of the cells mainly counteracts the effect of apoptosis. Immunocytochemistry of caspase-3, a central executioner in the apoptotic process, further confirmed the activation of apoptotic pathways in OGD-induced PC12 cell death. This model may be useful to investigate the cellular mechanisms involved in neuronal transient tolerance following ischemia.
Collapse
Affiliation(s)
- Joëlle A Hillion
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenzo Takahashi
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Christl Ruetzler
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffery L Barker
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - John M Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med 2004; 10 Suppl:S2-9. [PMID: 15272266 DOI: 10.1038/nm1067] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 05/24/2004] [Indexed: 12/21/2022]
Abstract
The molecular bases underlying the pathogenesis of neurodegenerative diseases are gradually being disclosed. One problem that investigators face is distinguishing primary from secondary events. Rare, inherited mutations causing familial forms of these disorders have provided important insights into the molecular networks implicated in disease pathogenesis. Increasing evidence indicates that accumulation of aberrant or misfolded proteins, protofibril formation, ubiquitin-proteasome system dysfunction, excitotoxic insult, oxidative and nitrosative stress, mitochondrial injury, synaptic failure, altered metal homeostasis and failure of axonal and dendritic transport represent unifying events in many slowly progressive neurodegenerative disorders.
Collapse
Affiliation(s)
- Ella Bossy-Wetzel
- Center for Neuroscience & Aging, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
41
|
Ségalat L, Néri C. C. elegans comme modèle pour les maladies dégénératives héréditaires humaines. Med Sci (Paris) 2003; 19:1218-25. [PMID: 14691746 DOI: 10.1051/medsci/200319121218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The nematode C. elegans is an established model for developmental biology. Since the early 90's, this simple model organism has been increasingly used for studying human disease pathogenesis. C. elegans models based either on the mutagenesis of human disease genes conserved in this nematode or transgenesis with disease genes not conserved in C. elegans show several features that are observed in mammalian models. These observations suggest that the genetic dissection and pharmacological manipulation of disease-like phenotypes in C. elegans will shed light on the cellular mechanisms that are altered in human diseases, and the compounds that may be used as drugs. This review illustrates these aspects by commenting on two inherited degenerative diseases, Duchenne's muscular dystrophy and Huntington's neurodegenerative disease.
Collapse
Affiliation(s)
- Laurent Ségalat
- Cnrs-CGMC, Université Lyon-1 Claude Bernard, 43, boulevard du 11 Novembre, 69622 Villeurbanne, France
| | | |
Collapse
|
42
|
Varani K, Abbracchio MP, Cannella M, Cislaghi G, Giallonardo P, Mariotti C, Cattabriga E, Cattabeni F, Borea PA, Squitieri F, Cattaneo E. Aberrant A2A receptor function in peripheral blood cells in Huntington's disease. FASEB J 2003; 17:2148-50. [PMID: 12958155 DOI: 10.1096/fj.03-0079fje] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A2A adenosine receptors specifically found on striatal medium spiny neurons play a major role in sensory motor function and may also be involved in neuropsychiatric and neurodegenerative disorders. One hypothesis concerning Huntington's disease (HD) proposes that an imbalance of the cortico-striatal pathway, due to the mutation in the HD gene, leads to striatal vulnerability. An A2A receptor dysfunction has been previously demonstrated in striatal cells engineered to express mutant huntingtin. Here we tested whether a similar dysfunction (i.e., the binding and functional parameters of A2A adenosine receptors) is present in peripheral blood cells (platelets, lymphocytes, and neutrophils) of subjects carrying the mutant gene. This study involved 48 heterozygous and three homozygous patients compared with 58 healthy subjects. Moreover, we selected seven at-risk mutation carriers. A2A receptor density and function are substantially increased in peripheral blood cells from both patients and subjects at the presymptomatic stage. In the neutrophils of the three homozygous HD subjects receptor dysfunction was higher than in heterozygotes. These data indicate the existence of an aberrant A2A receptor phenotype in the peripheral blood cells of subjects carrying the HD mutation. Future studies will assess whether this parameter can be exploited as a peripheral biomarker of Huntington's disease.
Collapse
Affiliation(s)
- Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Unit, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci U S A 2003; 100:9578-83. [PMID: 12881483 PMCID: PMC170960 DOI: 10.1073/pnas.1133382100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NeuroD (ND) is a basic helix-loop-helix transcription factor important for neuronal development and survival. By using a yeast two-hybrid screen, we identified two proteins that interact with ND, huntingtin-associated protein 1 (HAP1) and mixed-lineage kinase 2 (MLK2), both of which are known to interact with huntingtin (Htt). Htt is a ubiquitous protein important for neuronal transcription, development, and survival, and loss of its function has been implicated in the pathogenesis of Huntington's disease, a neurodegenerative disorder. However, the mechanism by which Htt exerts its neuron-specific function at the molecular level is unknown. Here we report that Htt interacts with ND via HAP1, and that MLK2 phosphorylates and stimulates the activity of ND. Furthermore, we show that Htt and HAP1 facilitate the activation of ND by MLK2. To our knowledge, ND is the first example of a neuron-specific transcription factor involved in neuronal development and survival whose activity is modulated by Htt. We propose that Htt, together with HAP1, may function as a scaffold for the activation of ND by MLK2.
Collapse
Affiliation(s)
- Edoardo Marcora
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Campus Box 347, Boulder, CO 80309, USA
| | | | | |
Collapse
|
44
|
Dow JT, Davies SA. Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 2003; 83:687-729. [PMID: 12843407 DOI: 10.1152/physrev.00035.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classically, biologists try to understand their complex systems by simplifying them to a level where the problem is tractable, typically moving from whole animal and organ-level biology to the immensely powerful "cellular" and "molecular" approaches. However, the limitations of this reductionist approach are becoming apparent, leading to calls for a new, "integrative" physiology. Rather than use the term as a rallying cry for classical organismal physiology, we have defined it as the study of how gene products integrate into the function of whole tissues and intact organisms. From this viewpoint, the convergence between integrative physiology and functional genomics becomes clear; both seek to understand gene function in an organismal context, and both draw heavily on transgenics and genetics in genetic models to achieve their goal. This convergence between historically divergent fields provides powerful leverage to those physiologists who can phrase their research questions in a particular way. In particular, the use of appropriate genetic model organisms provides a wealth of technologies (of which microarrays and knock-outs are but two) that allow a new precision in physiological analysis. We illustrate this approach with an epithelial model system, the Malpighian (renal) tubule of Drosophila melanogaster. With the use of the beautiful genetic tools and extensive genomic resources characteristic of this genetic model, it has been possible to gain unique insights into the structure, function, and control of epithelia.
Collapse
Affiliation(s)
- Julian T Dow
- Division of Molecular Genetics, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 6NU, UK.
| | | |
Collapse
|
45
|
Rüb U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RAI, Braak H. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 2003; 25:115-27. [PMID: 12663059 DOI: 10.1016/s0891-0618(02)00099-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nucleus raphe interpositus (RIP) plays an important role in the premotor network for saccades. Its omnipause neurons gate the activity of the burst neurons for vertical saccades lying within the rostral interstitial nucleus of the medial longitudinal fascicle and that for horizontal saccades residing in the caudal subnucleus of the pontine reticular formation. In the present study we investigated the RIP in five patients with clinically diagnosed and genetically confirmed spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease. Polyethylene glycol-embedded 100 microm serial sections stained for lipofuscin pigment and Nissl material as well as paraffin-embedded Nissl stained thin sections revealed the hitherto overlooked involvement of this pontine nucleus in the degenerative process underlying SCA3, whereby in four of our SCA3 patients the RIP underwent a conspicuous loss of presumed omnipause neurons. As observed in other affected brain structures, the RIP of all our SCA3 patients displayed reactive astrocytes and activated microglial cells, while some of the few of its surviving neurons harbored an ataxin-3-immunopositive intranuclear inclusion body. The findings of the present pathoanatomical study suggest that (1) neurodegeneration in the brain stem of terminal SCA3 patients is more widespread than previously thought and is not confined to cranial nerve nuclei involved in the generation of saccades but likewise involves the premotor network for saccades and (2) damage to the RIP may contribute to slowing of horizontal saccades in SCA3 patients but is not associated with saccadic oscillations as occasionally speculated.
Collapse
Affiliation(s)
- U Rüb
- Department of Clinical Neuroanatomy, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Huntingtin is the protein involved in Huntington disease (HD), an inherited neurodegenerative disease. Research activities have focused on the abnormal functions of mutant huntingtin. However, recent results indicate that wild-type huntingtin has important activities in brain neurons, suggesting that loss of these activities may play a role in HD.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Pharmacological Sciences and Center for Excellence in Neurodegenerative Diseases, University of Milan, 20133 Milan, Italy
| |
Collapse
|
47
|
Affiliation(s)
- Anne B Young
- Neurology Service, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
48
|
Goffredo D, Rigamonti D, Tartari M, De Micheli A, Verderio C, Matteoli M, Zuccato C, Cattaneo E. Calcium-dependent cleavage of endogenous wild-type huntingtin in primary cortical neurons. J Biol Chem 2002; 277:39594-8. [PMID: 12200414 DOI: 10.1074/jbc.c200353200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine expansion in the amino-terminal region of huntingtin. Mutant huntingtin is proteolytically cleaved by caspases, generating amino-terminal aggregates that are toxic for cells. The addition of calpains to total brain homogenates also leads to cleavage of wild-type huntingtin, indicating that proteolysis of mutant and wild-type huntingtin may play a role in HD. Here we report that endogenous wild-type huntingtin is promptly cleaved by calpains in primary neurons. Exposure of primary neurons to glutamate or 3-nitropropionic acid increases intracellular calcium concentration, leading to loss of intact full-length wild-type huntingtin. This cleavage could be prevented by calcium chelators and calpain inhibitors. Degradation of wild-type huntingtin by calcium-dependent proteases thus occurs in HD neurons, leading to loss of wild-type huntingtin neuroprotective activity.
Collapse
Affiliation(s)
- Donato Goffredo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hafezparast M, Ahmad-Annuar A, Wood NW, Tabrizi SJ, Fisher EMC. Mouse models for neurological disease. Lancet Neurol 2002; 1:215-24. [PMID: 12849454 DOI: 10.1016/s1474-4422(02)00100-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.
Collapse
Affiliation(s)
- Majid Hafezparast
- Department of Neurodegenerative Disease, National Hospital for Neurology and Neurosurgery, London, UK
| | | | | | | | | |
Collapse
|
50
|
Blum D, Galas MC, Gall D, Cuvelier L, Schiffmann SN. Striatal and Cortical Neurochemical Changes Induced by Chronic Metabolic Compromise in the 3-Nitropropionic Model of Huntington's Disease. Neurobiol Dis 2002; 10:410-26. [PMID: 12270701 DOI: 10.1006/nbdi.2002.0512] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we aimed to determine the time-course of neurochemical changes occurring following metabolic impairments produced by 3-nitropropionic (3NP) acid in a rat model of Huntington's disease. We found that the occurrence of striatal lesions was accompanied by (1) strong transcriptional alterations within the degenerative lateral striatum, (2) receptor upregulations within the preserved medial striatum, and (3) transcriptional increases within the unaltered cerebral cortex. These phenomena were preceded by transcriptional modifications in striatal subareas prone to degeneration even before the lesion was visible but not in the overlying cortex, known to be spared in this model. Of great interest, the density of A(2A) receptor binding sites, located on striato-pallidal neurons, was (1) downregulated at the time of worsening of symptoms and (2) strongly upregulated within the spared medial striatum after the lesion occurrence. This study therefore highlights the differential neurochemical responses produced by 3NP depending on the fate of the metabolically inhibited area and strongly suggests the involvement of A(2A) receptors in the development of striatal pathology under metabolic compromise.
Collapse
Affiliation(s)
- David Blum
- Laboratoire de Neurophysiologie, ULB-Erasme, CP601, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|