1
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
2
|
Extracellular CIRP Activates the IL-6Rα/STAT3/Cdk5 Pathway in Neurons. Mol Neurobiol 2021; 58:3628-3640. [PMID: 33783711 PMCID: PMC10404139 DOI: 10.1007/s12035-021-02368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) stimulates microglial inflammation causing neuronal damage during ischemic stroke and is a critical mediator of alcohol-induced cognitive impairment. However, the precise role of eCIRP in mediating neuroinflammation remains unknown. In this study, we report that eCIRP activates neurotoxic cyclin-dependent kinase-5 (Cdk5)/p25 through the induction of IL-6Rα/STAT3 pathway in neurons. Amyloid β (Aβ)-mediated neuronal stress, which is associated with Alzheimer's disease, increased the levels of eCIRP released from BV2 microglial cells. The released eCIRP levels from BV2 cells increased 3.2-fold upon stimulation with conditioned medium from Neuro-2a (N2a) cells containing Aβ compared to control N2a supernatant in a time-dependent manner. Stimulation of N2a cells and primary neurons with eCIRP upregulated the neuronal Cdk5 activator p25 expression in a dose- and time-dependent manner. eCIRP directly induced neuronal STAT3 phosphorylation and p25 increase via its novel receptor IL-6Rα. Next, we showed using surface plasmon resonance that eCIRP-derived peptide C23 inhibited the binding of eCIRP to IL-6Rα at 25 μM, with a 40-fold increase in equilibrium dissociation constant (Kd) value (from 8.08 × 10-8 M to 3.43 × 10-6 M), and completely abrogated the binding at 50 μM. Finally, C23 reversed the eCIRP-induced increase in neuronal STAT3 phosphorylation and p25 levels. In conclusion, the current study demonstrates that the upregulation of neuronal IL-6Rα/STAT3/Cdk5 pathway is a key mechanism of eCIRP's role in neuroinflammation and that C23 as a potent inhibitor of this pathway has translational potential in neurodegenerative pathologies controlled by eCIRP.
Collapse
|
3
|
Bhowmick S, D'Mello V, Abdul-Muneer PM. Synergistic Inhibition of ERK1/2 and JNK, Not p38, Phosphorylation Ameliorates Neuronal Damages After Traumatic Brain Injury. Mol Neurobiol 2018; 56:1124-1136. [PMID: 29873042 DOI: 10.1007/s12035-018-1132-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/15/2018] [Indexed: 01/14/2023]
Abstract
Mitogen-activated protein (MAP) kinases are serine/threonine protein kinases that play a critical role in signal transduction and are activated by phosphorylation in response to a variety of pathophysiology stimuli. While MAP kinase signaling has a significant role in the pathophysiology of several neurodegenerative diseases, the precise function of activation of MAP kinase in traumatic brain injury (TBI) is unknown. Therefore, it is important to study the role of MAP kinase signaling in TBI-associated neurological ailments. In this study, using an in vitro stretch injury model in rat embryo neuronal cultures and the in vivo fluid percussion injury (FPI) model in rats, we explored the role of MAP kinase signaling in the mechanisms of cell death in TBI. Our study demonstrated that the stretch injury in vitro and FPI in vivo upregulated the phosphorylation of MAP kinase proteins ERK1/2 and JNK, but not p38. Using ERK1/2 inhibitor U0126, JNK inhibitor SP600125, and p38 inhibitor SB203580, we validated the role of MAP kinase proteins in the activation of NF-kB and caspase-3. By immunofluorescence and western blotting, further, we demonstrated the role of ERK1/2 and JNK phosphorylation in neurodegeneration by analyzing cell death proteins annexin V and Poly-ADP-Ribose-Polymerase p85. Interestingly, combined use of ERK1/2 and JNK inhibitors further attenuated the cell death in stretch-injured neurons. In conclusion, this study could establish the significance of MAP kinase signaling in the pathophysiology of TBI and may have significant implications for developing therapeutic strategies using ERK1/2 and JNK inhibitors for TBI-associated neurological complications.
Collapse
Affiliation(s)
- Saurav Bhowmick
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - Veera D'Mello
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA
| | - P M Abdul-Muneer
- Laboratory of CNS Injury and Repair, JFK Neuroscience Institute, Hackensack Meridian Health JFK Medical Center, 65 James St., Edison, NJ, 08820, USA.
| |
Collapse
|
4
|
Henning RK, Varghese JO, Das S, Nag A, Tang G, Tang K, Sutherland AM, Heath JR. Degradation of Akt using protein-catalyzed capture agents. J Pept Sci 2016; 22:196-200. [PMID: 26880702 DOI: 10.1002/psc.2858] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022]
Abstract
Abnormal signaling of the protein kinase Akt has been shown to contribute to human diseases such as diabetes and cancer, but Akt has proven to be a challenging target for drugging. Using iterative in situ click chemistry, we recently developed multiple protein-catalyzed capture (PCC) agents that allosterically modulate Akt enzymatic activity in a protein-based assay. Here, we utilize similar PCCs to exploit endogenous protein degradation pathways. We use the modularity of the anti-Akt PCCs to prepare proteolysis targeting chimeric molecules that are shown to promote the rapid degradation of Akt in live cancer cells. These novel proteolysis targeting chimeric molecules demonstrate that the epitope targeting selectivity of PCCs can be coupled with non-traditional drugging moieties to inhibit challenging targets.
Collapse
Affiliation(s)
- Ryan K Henning
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Joseph O Varghese
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Samir Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Arundhati Nag
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Grace Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Kevin Tang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - Alexander M Sutherland
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 127-72, Pasadena, CA 91125
| |
Collapse
|
5
|
Biomolecular bases of the senescence process and cancer. A new approach to oncological treatment linked to ageing. Ageing Res Rev 2015; 23:125-38. [PMID: 25847820 DOI: 10.1016/j.arr.2015.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/07/2023]
Abstract
Human ageing is associated with a gradual decline in the physiological functions of the body at multiple levels and it is a key risk factor for many diseases, including cancer. Ageing process is intimately related to widespread cellular senescence, characterised by an irreversible loss of proliferative capacity and altered functioning associated with telomere attrition, accumulation of DNA damage and compromised mitochondrial and metabolic function. Tumour and senescent cells may be generated in response to the same stimuli, where either cellular senescence or transformation would constitute two opposite outcomes of the same degenerative process. This paper aims to review the state of knowledge on the biomolecular relationship between cellular senescence, ageing and cancer. Importantly, many of the cell signalling pathways that are found to be altered during both cellular senescence and tumourigenesis are regulated through shared epigenetic mechanisms and, therefore, they are potentially reversible. MicroRNAs are emerging as pivotal players linking ageing and cancer. These small RNA molecules have generated great interest from the point of view of future clinical therapy for cancer because successful experimental results have been obtained in animal models. Micro-RNA therapies for cancer are already being tested in clinical phase trials. These findings have potential importance in cancer treatment in aged people although further research-based knowledge is needed to convert them into an effective molecular therapies for cancer linked to ageing.
Collapse
|
6
|
Skupien A, Konopka A, Trzaskoma P, Labus J, Gorlewicz A, Swiech L, Babraj M, Dolezyczek H, Figiel I, Ponimaskin E, Wlodarczyk J, Jaworski J, Wilczynski GM, Dzwonek J. CD44 regulates dendrite morphogenesis through Src tyrosine kinase-dependent positioning of the Golgi. J Cell Sci 2014; 127:5038-51. [PMID: 25300795 DOI: 10.1242/jcs.154542] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The acquisition of proper dendrite morphology is a crucial aspect of neuronal development towards the formation of a functional network. The role of the extracellular matrix and its cellular receptors in this process has remained enigmatic. We report that the CD44 adhesion molecule, the main hyaluronan receptor, is localized in dendrites and plays a crucial inhibitory role in dendritic tree arborization in vitro and in vivo. This novel function is exerted by the activation of Src tyrosine kinase, leading to the alteration of Golgi morphology. The mechanism operates during normal brain development, but its inhibition might have a protective influence on dendritic trees under toxic conditions, during which the silencing of CD44 expression prevents dendritic shortening induced by glutamate exposure. Overall, our results indicate a novel role for CD44 as an essential regulator of dendritic arbor complexity in both health and disease.
Collapse
Affiliation(s)
- Anna Skupien
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Anna Konopka
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - PaweI Trzaskoma
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Josephine Labus
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Adam Gorlewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Lukasz Swiech
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Matylda Babraj
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Hubert Dolezyczek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Center of Physiology, Hannover Medical School, 30625 Hannover, Germany
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-190 Warsaw, Poland
| | - Grzegorz M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
8
|
Lee J, Ryu H. Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker? BMB Rep 2011; 43:649-55. [PMID: 21034526 DOI: 10.5483/bmbrep.2010.43.10.649] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid ß protein (Aß), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.
Collapse
Affiliation(s)
- Junghee Lee
- WCU Neurocytomics Group, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | |
Collapse
|
9
|
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int J Mol Sci 2009; 10:2510-2557. [PMID: 19582217 PMCID: PMC2705504 DOI: 10.3390/ijms10062510] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/11/2022] Open
Abstract
The term neurodegenerative disorders, encompasses a variety of underlying conditions, sporadic and/or familial and are characterized by the persistent loss of neuronal subtypes. These disorders can disrupt molecular pathways, synapses, neuronal subpopulations and local circuits in specific brain regions, as well as higher-order neural networks. Abnormal network activities may result in a vicious cycle, further impairing the integrity and functions of neurons and synapses, for example, through aberrant excitation or inhibition. The most common neurodegenerative disorders are Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease. The molecular features of these disorders have been extensively researched and various unique neurotherapeutic interventions have been developed. However, there is an enormous coercion to integrate the existing knowledge in order to intensify the reliability with which neurodegenerative disorders can be diagnosed and treated. The objective of this review article is therefore to assimilate these disorders’ in terms of their neuropathology, neurogenetics, etiology, trends in pharmacological treatment, clinical management, and the use of innovative neurotherapeutic interventions.
Collapse
|
10
|
Soto C, Martin Z. Therapeutic strategies against protein misfolding in neurodegenerative diseases. Expert Opin Drug Discov 2008; 4:71-84. [DOI: 10.1517/13543770802630455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Paley EL, Denisova G, Sokolova O, Posternak N, Wang X, Brownell AL. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models. Neuromolecular Med 2008; 9:55-82. [PMID: 17114825 DOI: 10.1385/nmm:9:1:55] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 05/08/2006] [Accepted: 05/09/2006] [Indexed: 01/24/2023]
Abstract
The neuropathological hallmarks of Alzheimer's disease (AD) and other taupathies include neurofibrillary tangles and plaques. Despite the fact that only 2-10% of AD cases are associated with genetic mutations, no nontransgenic or metabolic models have been generated to date. The findings of tryptophanyl-tRNA synthetase (TrpRS) in plaques of the AD brain were reported recently by the authors. Here it is shown that expression of cytoplasmic-TrpRS is inversely correlated with neurofibrillary degeneration, whereas a nonionic detergent-insoluble presumably aggregated TrpRS is simultaneously accumulated in human cells treated by tryptamine, a metabolic tryptophan analog that acts as a competitive inhibitor of TrpRS. TrpRSN- terminal peptide self-assembles in double-helical fibrils in vitro. Herein, tryptamine causes neuropathy characterized by motor and behavioral deficits, hippocampal neuronal loss, neurofibrillary tangles, amyloidosis, and glucose decrease in mice. Tryptamine induced the formation of helical fibrillary tangles in both hippocampal neurons and glia. Taken together with the authors' previous findings of tryptamine-induced nephrotoxicity and filamentous tangle formation in kidney cells, the authors' data indicates a general role of tryptamine in cell degeneration and loss. It is concluded that tryptamine as a component of a normal diet can induce neurodegeneration at the concentrations, which might be consumed along with food. Tryptophan-dependent tRNAtrp aminoacylation catalyzed by TrpRS can be inhibited by its substrate tryptophan at physiological concentrations was demonstrated. These findings indicate that the dietary supplementation with tryptophan as a tryptamine competitor may not counteract the deleterious influence of tryptamine. The pivotal role of TrpRS in protecting against neurodegeneration is suggested, providing an insight into the pathogenesis and a possible treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Su Z, Li H, Li Y, Ni F. Inhibition of the Pathogenically Related Morphologic Transition in Candida albicans by Disrupting Cdc42 Binding to Its Effectors. ACTA ACUST UNITED AC 2007; 14:1273-82. [DOI: 10.1016/j.chembiol.2007.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/13/2007] [Accepted: 10/09/2007] [Indexed: 12/30/2022]
|
13
|
Abstract
Most proteins in the cell adopt a compact, globular fold that determines their stability and function. Partial protein unfolding under conditions of cellular stress results in the exposure of hydrophobic regions normally buried in the interior of the native structure. Interactions involving the exposed hydrophobic surfaces of misfolded protein conformers lead to the formation of toxic aggregates, including oligomers, protofibrils and amyloid fibrils. A significant number of human disorders (e.g. Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis and type II diabetes) are characterised by protein misfolding and aggregation. Over the past five years, outstanding progress has been made in the development of therapeutic strategies targeting these diseases. Three promising approaches include: (1) inhibiting protein aggregation with peptides or small molecules identified via structure-based drug design or high-throughput screening; (2) interfering with post-translational modifications that stimulate protein misfolding and aggregation; and (3) upregulating molecular chaperones or aggregate-clearance mechanisms. Ultimately, drug combinations that capitalise on more than one therapeutic strategy will constitute the most effective treatment for patients with these devastating illnesses.
Collapse
Affiliation(s)
- Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, RHPH 410A, West Lafayette, IN 47907, USA.
| |
Collapse
|
14
|
Scappini E, Koh TW, Martin NP, O'Bryan JP. Intersectin enhances huntingtin aggregation and neurodegeneration through activation of c-Jun-NH2-terminal kinase. Hum Mol Genet 2007; 16:1862-71. [PMID: 17550941 DOI: 10.1093/hmg/ddm134] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Huntingon's disease is a progressive neurodegenerative disease arising from expansion of a polyglutamine (polyQ) tract in the protein huntingtin (Htt) resulting in aggregation of mutant Htt into nuclear and/or cytosolic inclusions in neurons. Mutant Htt affects multiple processes including protein degradation, transcription, signal transduction, fast axonal transport and endocytosis [reviewed in Ross, C.A. and Poirier, M.A. (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat. Rev. Mol. Cell. Biol., 6, 891-898]. Here, we report that the endocytic and signal transduction scaffold intersectin (ITSN) increased aggregate formation by mutant Htt through activation of the c-Jun-NH(2)-terminal kinase (JNK)-MAPK pathway. Conversely, silencing ITSN or inhibiting JNK attenuated aggregate formation. Using a Drosophila model for polyQ repeat disease, we observed that ITSN enhanced polyQ-mediated neurotoxicity. A reciprocal relationship was observed between ITSN and Htt. While ITSN enhanced Htt aggregation and toxicity, Htt, in turn, inhibited the cooperativity between ITSN and the epidermal growth factor receptor signal transduction pathway. Finally, we observed that ITSN overexpression enhanced aggregation of polyQ-expanded androgen receptor (AR) as well as wild-type versions of both Htt and AR suggesting a broader involvement of ITSN in neurodegenerative diseases through destabilization of polyQ-containing proteins.
Collapse
Affiliation(s)
- Erica Scappini
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
15
|
Abstract
When properly controlled, Ca2+ fluxes across the plasma membrane and between intracellular compartments play critical roles in fundamental functions of neurons, including the regulation of neurite outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell survival. During aging, and particularly in neurodegenerative disorders, cellular Ca2+-regulating systems are compromised resulting in synaptic dysfunction, impaired plasticity and neuronal degeneration. Oxidative stress, perturbed energy metabolism and aggregation of disease-related proteins (amyloid beta-peptide, alpha-synuclein, huntingtin, etc.) adversely affect Ca2+ homeostasis by mechanisms that have been elucidated recently. Alterations of Ca2+-regulating proteins in the plasma membrane (ligand- and voltage-gated Ca2+ channels, ion-motive ATPases, and glucose and glutamate transporters), endoplasmic reticulum (presenilin-1, Herp, and ryanodine and inositol triphosphate receptors), and mitochondria (electron transport chain proteins, Bcl-2 family members, and uncoupling proteins) are implicated in age-related neuronal dysfunction and disease. The adverse effects of aging on neuronal Ca2+ regulation are subject to modification by genetic (mutations in presenilins, alpha-synuclein, huntingtin, or Cu/Zn-superoxide dismutase; apolipoprotein E isotype, etc.) and environmental (dietary energy intake, exercise, exposure to toxins, etc.) factors that may cause or affect the risk of neurodegenerative disease. A better understanding of the cellular and molecular mechanisms that promote or prevent disturbances in cellular Ca2+ homeostasis during aging may lead to novel approaches for therapeutic intervention in neurological disorders such as Alzheimer's and Parkinson's diseases and stroke.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA.
| |
Collapse
|
16
|
Schneider B, Pietri M, Mouillet-Richard S, Ermonval M, Mutel V, Launay JM, Kellermann O. Control of Bioamine Metabolism by 5-HT2Band α1DAutoreceptors through Reactive Oxygen Species and Tumor Necrosis Factor-α Signaling in Neuronal Cells. Ann N Y Acad Sci 2006; 1091:123-41. [PMID: 17341609 DOI: 10.1196/annals.1378.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Homeostasis of the central nervous system relies on the proper integration of cell-signaling pathways recruited by a variety of neuronal and non-neuronal factors, with the aim of tightly controlling neurotransmitter metabolism, storage, and transport. We took advantage of the 1C11 neuroectodermal cell line, endowed with the capacity to selectively differentiate into serotonergic (1C11(5-HT)) or noradrenergic (1C11(NE)) neurons, to identify functional targets of serotonin (5-hydroxytryptamine [5-HT]) and norepinephrine (NE) autoreceptors possibly involved in the control of neuronal functions. We demonstrate that 5-HT(2B) and adreno alpha(1D) receptors are coupled to reactive oxygen species (ROS) production through NADPH oxidase activation in 1C11(5-HT) and 1C11(NE) neuronal cells, respectively. In the signaling cascade linking 5-HT(2B) receptors to NADPH oxidase, phospholipase A2-mediated arachidonic acid production is required for ROS synthesis. ROS, in turn, act as second message signals and control the activation of TACE (TNF-alpha converting enzyme), a member of a disintegrin and metalloproteinase family. 5-HT(2B) and alpha(1D) receptor stimulation triggers TACE-dependent TNF-alpha shedding in the surrounding milieu of 1C11(5-HT) and 1C11(NE) cells. In these cells, shed TNF-alpha triggers degradation of 5-HT and NE into 5-HIAA and MHPG, respectively. Finally, we observe that 5-HT(2B) and alpha(1D) receptor couplings to the NADPH oxidase-TACE cascade are strictly restricted to 1C11-derived progenies that have implemented a complete neuronal phenotype. Altogether, our data indicate that couplings of 5-HT(2B) and alpha(1D) autoreceptors to ROS and TNF-alpha signaling control neurotransmitter metabolism in 1C11-derived neuronal cells. Eventually, we might explain the origin of oxidative stress and high level of TNF-alpha in neurodegenerative diseases as a consequence of deviation of normal signaling pathways coupled to neurotransmitters.
Collapse
Affiliation(s)
- Benoit Schneider
- Institut André Lwoff-Institut Pasteur, CNRS FRE 2937, Laboratoire Différenciation Cellulaire et Prions, 7 rue Guy Môquet, 94801 Villejuif Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The interaction of Abeta with synaptosomal plasma membranes decreases membrane fluidity. Using model membrane/liposome systems the interaction of Abeta with specific lipids (e.g. phospholipids, gangliosides, cholesterol) has been defined. The formation of the beta-sheet structure of Abeta when undergoing peptide aggregation is important for Abeta's membrane perturbing properties. This effect can be correlated with the peptide length of Abeta, the longer Abeta1-42 having the greatest effect on membrane fluidity and on neurotoxicity.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, ZAFES, Biocenter University of Frankfurt, Germany
| | | | | |
Collapse
|
18
|
Strom A, Diecke S, Hunsmann G, Stuke AW. Identification of prion protein binding proteins by combined use of far-Western immunoblotting, two dimensional gel electrophoresis and mass spectrometry. Proteomics 2006; 6:26-34. [PMID: 16294306 DOI: 10.1002/pmic.200500066] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular prion protein (PrP(C)), a highly conserved glycoprotein predominantly expressed by neuronal cells, can convert into an abnormal isoform (PrP(Sc)) and provoke a transmissible spongiform encephalopathy. In spite of many studies, the physiological function of PrP(C) remains unknown. Recent findings suggest that PrP(C) is a multifunctional protein participating in several cellular processes. Using recombinant human PrP as a probe, we performed far-Western immunoblotting (protein overlay assay) to detect cellular PrP(C) interactors. Brain extracts of wild-type and PrP knockout mice were screened by far-Western immunoblotting for PrP-specific interactions. Subsequently, putative ligands were isolated by 2-DE and identified by MALDI-TOF MS, enabling identification of heterogeneous nuclear ribonucleoprotein A2/B1 and aldolase C as novel interaction partners of PrP(C). These data provide the first evidence of a molecule indicating a mechanism for the predicted involvement of PrP(C) in nucleic acid metabolisms. In summary, we have shown the successful combination of 2-DE with far-Western immunoblotting and MALDI-TOF MS for identification of new cellular binding partners of a known protein. Especially the application of this technique to investigate other neurodegenerative diseases is promising.
Collapse
Affiliation(s)
- Alexander Strom
- Molecular Medicine, Ottawa Health Research Institute, Lab N1, Box 221, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada.
| | | | | | | |
Collapse
|
19
|
Chang JY, Lu BY, Li L. Conformational impurity of disulfide proteins: Detection, quantification, and properties. Anal Biochem 2005; 342:78-85. [PMID: 15958183 DOI: 10.1016/j.ab.2005.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 03/13/2005] [Accepted: 03/22/2005] [Indexed: 11/24/2022]
Abstract
The conformations of native proteins are in principle, and in most cases, dictated by the law of thermodynamics. Accordingly, a native protein must always exist in equilibrium with a minor concentration of nonnative (denatured) conformational isomers even at nondenaturing conditions. The presence of an infinitesimal quantity of nonnative conformational isomers at physiological conditions is biologically relevant due to their propensity to aggregate, which is an underlying cause of many neurodegenerative diseases. However, their detection and quantification are inherently difficult. In this article, we describe a simple strategy using the technique of disulfide scrambling to identify and quantify such minute concentrations of nonnative isomers. It is demonstrated that even for small stable proteins such as epidermal growth factor and hirudin, approximately 1% of heterogeneous nonnative isomers coexist with the native proteins under physiological conditions.
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas, Houston, TX 77030, USA.
| | | | | |
Collapse
|
20
|
Pietri M, Schneider B, Mouillet-Richard S, Ermonval M, Mutel V, Launay JM, Kellermann O. Reactive oxygen species‐dependent TNF‐α converting enzyme activation through stimulation of 5‐HT2Band α1Dautoreceptors in neuronal cells. FASEB J 2005; 19:1078-87. [PMID: 15985531 DOI: 10.1096/fj.04-3631com] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major determinant of neuronal homeostasis is the proper integration of cell signaling pathways recruited by a variety of neuronal and non-neuronal factors. By taking advantage of a neuroectodermal cell line (1C11) endowed with the capacity to differentiate into serotonergic (1C115-HT) or noradrenergic (1C11NE) neurons, we identified serotonin (5-hydroxytryptamine, 5-HT)- and norepinephrine (NE)-dependent signaling cascades possibly involved in neuronal functions. First, we establish that 5-HT2B receptors and 1D adrenoceptors are functionally coupled to reactive oxygen species (ROS) synthesis through NADPH oxidase activation in 1C115-HT and 1C11NE cells. This observation constitutes the prime evidence that bioaminergic autoreceptors take part in the control of the cellular redox equilibrium in a neuronal context. Second, our data identify TACE (TNF- Converting Enzyme), a member of a disintegrin and metalloproteinase (ADAM) family, as a downstream target of the 5-HT2B and 1D receptor-NADPH oxidase signaling pathways. Upon 5-HT2B or 1D receptor stimulation, ROS fully govern TNF- shedding in the surrounding milieu of 1C115-HT or 1C11NE cells. Third, 5-HT2B and 1Dreceptor couplings to the NADPH oxidase-TACE cascade are strictly restricted to 1C11-derived progenies that have implemented a complete serotonergic or noradrenergic phenotype. Overall, these observations suggest that 5-HT2B and 1D autoreceptors may play a role in the maintenance of neuron- and neurotransmitter-associated functions. Eventually, our study may have implications regarding the origin of oxidative stress as well as up-regulated expression of proinflammatory cytokines in neurodegenerative disorders, which may relate to the deviation of normal signaling pathways.
Collapse
Affiliation(s)
- Mathéa Pietri
- Institut André Lwoff-Institut Pasteur, CNRS UPR 1983, Laboratoire de Différenciation Cellulaire et Prions, Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Mandal PK, McClure RJ, Pettegrew JW. Interactions of A?(1?40) with Glycerophosphocholine and Intact Erythrocyte Membranes: Fluorescence and Circular Dichroism Studies. Neurochem Res 2004; 29:2273-9. [PMID: 15672550 DOI: 10.1007/s11064-004-7036-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Deposition of amyloid beta peptide in human brain in the form of senile plaques is a neuropathological hallmark of Alzheimer's disease (AD). Levels of a phospholipid breakdown product, glycerophosphocholine (GPC), also increase in AD brain. The effect of GPC on amyloid beta(1-40) peptide (Abeta) aggregation in PBS buffer was investigated by circular dichroism and fluoresence spectroscopy; interactions of Abeta and GPC with the intact erythrocyte membrane was examined by fluoresence spectroscopy. Fluorescamine labeled Abeta studies indicate GPC enhances Abeta aggregation. CD spectroscopy reveals that Abeta in the presence of GPC adopts 14% more beta-sheet structure than does Abeta alone. Fluorescamine anisotropy measurements show that GPC and Abeta interact in the phospholipid head-group region of the erythrocyte membrane. In summary, both soluble Abeta and GPC insert into the phospholipid head-group region of the membrane where they interact leading to beta-sheet formation in soluble Abeta which enhances Abeta aggregation.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neurophysics Laboratory, Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
22
|
Geng C, Pellegrino A, Bowman J, Zhu L, Pak WL. Complete RNAi rescue of neuronal degeneration in a constitutively active Drosophila TRP channel mutant. Biochim Biophys Acta Gen Subj 2004; 1674:91-7. [PMID: 15342118 DOI: 10.1016/j.bbagen.2004.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 05/28/2004] [Accepted: 06/04/2004] [Indexed: 11/28/2022]
Abstract
RNA interference has been widely used to reduce the quantity of the proteins encoded by the targeted genes. A constitutively active, dominant allele of trp, TrpP365, causes massive degeneration of photoreceptors through a persistent and excessive Ca2+ influx. Here we show that a substantial reduction of the TRP channel protein by RNAi in TrpP365 heterozygotes completely rescues the neuronal degeneration and significantly improves the light-elicited responses of the eye. The reduction need not be complete, suggesting that rescue of degeneration may be possible with minimal side effects arising from overdepletion of the target protein.
Collapse
Affiliation(s)
- Chaoxian Geng
- Lily Hall of Life Science, Department of Biological Sciences, Purdue University, 915 W. State St., West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|