1
|
Stavrou M, Kagiava A, Choudury SG, Jennings MJ, Wallace LM, Fowler AM, Heslegrave A, Richter J, Tryfonos C, Christodoulou C, Zetterberg H, Horvath R, Harper SQ, Kleopa KA. A translatable RNAi-driven gene therapy silences PMP22/Pmp22 genes and improves neuropathy in CMT1A mice. J Clin Invest 2022; 132:159814. [PMID: 35579942 PMCID: PMC9246392 DOI: 10.1172/jci159814] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), the most common inherited demyelinating peripheral neuropathy, is caused by PMP22 gene duplication. Overexpression of WT PMP22 in Schwann cells destabilizes the myelin sheath, leading to demyelination and ultimately to secondary axonal loss and disability. No treatments currently exist that modify the disease course. The most direct route to CMT1A therapy will involve reducing PMP22 to normal levels. To accomplish this, we developed a gene therapy strategy to reduce PMP22 using artificial miRNAs targeting human PMP22 and mouse Pmp22 mRNAs. Our lead therapeutic miRNA, miR871, was packaged into an adeno-associated virus 9 (AAV9) vector and delivered by lumbar intrathecal injection into C61-het mice, a model of CMT1A. AAV9-miR871 efficiently transduced Schwann cells in C61-het peripheral nerves and reduced human and mouse PMP22 mRNA and protein levels. Treatment at early and late stages of the disease significantly improved multiple functional outcome measures and nerve conduction velocities. Furthermore, myelin pathology in lumbar roots and femoral motor nerves was ameliorated. The treated mice also showed reductions in circulating biomarkers of CMT1A. Taken together, our data demonstrate that AAV9-miR871–driven silencing of PMP22 rescues a CMT1A model and provides proof of principle for treating CMT1A using a translatable gene therapy approach.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sarah G Choudury
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Matthew J Jennings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Amanda Heslegrave
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Jan Richter
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Tryfonos
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- Department of Molecular Virology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Henrik Zetterberg
- Institute of Laboratory Medicine, Göteborgs University, Göteborg, Sweden
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, United States of America
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
2
|
Curcumin and Ethanol Effects in Trembler-J Schwann Cell Culture. Biomolecules 2022; 12:biom12040515. [PMID: 35454103 PMCID: PMC9025918 DOI: 10.3390/biom12040515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) syndrome is the most common progressive human motor and sensory peripheral neuropathy. CMT type 1E is a demyelinating neuropathy affecting Schwann cells due to peripheral-myelin-protein-22 (PMP22) mutations, modelized by Trembler-J mice. Curcumin, a natural polyphenol compound obtained from turmeric (Curcuma longa), exhibits dose- and time-varying antitumor, antioxidant and neuroprotective properties, however, the neurotherapeutic actions of curcumin remain elusive. Here, we propose curcumin as a possible natural treatment capable of enhancing cellular detoxification mechanisms, resulting in an improvement of the neurodegenerative Trembler-J phenotype. Using a refined method for obtaining enriched Schwann cell cultures, we evaluated the neurotherapeutic action of low dose curcumin treatment on the PMP22 expression, and on the chaperones and autophagy/mammalian target of rapamycin (mTOR) pathways in Trembler-J and wild-type genotypes. In wild-type Schwann cells, the action of curcumin resulted in strong stimulation of the chaperone and macroautophagy pathway, whereas the modulation of ribophagy showed a mild effect. However, despite the promising neuroprotective effects for the treatment of neurological diseases, we demonstrate that the action of curcumin in Trembler-J Schwann cells could be impaired due to the irreversible impact of ethanol used as a common curcumin vehicle necessary for administration. These results contribute to expanding our still limited understanding of PMP22 biology in neurobiology and expose the intrinsic lability of the neurodegenerative Trembler-J genotype. Furthermore, they unravel interesting physiological mechanisms of cellular resilience relevant to the pharmacological treatment of the neurodegenerative Tremble J phenotype with curcumin and ethanol. We conclude that the analysis of the effects of the vehicle itself is an essential and inescapable step to comprehensibly assess the effects and full potential of curcumin treatment for therapeutic purposes.
Collapse
|
3
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
4
|
Boutary S, Echaniz-Laguna A, Adams D, Loisel-Duwattez J, Schumacher M, Massaad C, Massaad-Massade L. Treating PMP22 gene duplication-related Charcot-Marie-Tooth disease: the past, the present and the future. Transl Res 2021; 227:100-111. [PMID: 32693030 DOI: 10.1016/j.trsl.2020.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited neuropathy, affecting 1/1500 to 1/10000. CMT1A represents 60%-70% of all CMT and is caused by a duplication on chromosome 17p11.2 leading to an overexpression of the Peripheral Myelin Protein 22 (PMP22). PMP22 gene is under tight regulation and small changes in its expression influences myelination and affect motor and sensory functions. To date, CMT1A treatment is symptomatic and classic pharmacological options have been disappointing. Here, we review the past, present, and future treatment options for CMT1A, with a special emphasis on the highly promising potential of PMP22-targeted small interfering RNA and antisense oligonucleotides.
Collapse
Affiliation(s)
- Suzan Boutary
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Andoni Echaniz-Laguna
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - David Adams
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Julien Loisel-Duwattez
- U 1195, INSERM and Paris-Saclay University, Le Kremlin-Bicêtre, France; Neurology Department, AP-HP, Paris-Saclay Universityand French Referent Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CRMR-NNERF), Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | | | - Charbel Massaad
- Faculty of Basic and Biomedical Sciences, Paris Descartes University, INSERM UMRS 1124, Paris, France
| | | |
Collapse
|
5
|
Liu Q, Gao J, Deng J, Xiao J. Current Studies and Future Directions of Exercise Therapy for Muscle Atrophy Induced by Heart Failure. Front Cardiovasc Med 2020; 7:593429. [PMID: 33195482 PMCID: PMC7644508 DOI: 10.3389/fcvm.2020.593429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle atrophy is a common complication of heart failure. At present, there is no specific treatment to reverse the course of muscle atrophy. Exercise training, due to the safety and easy operation, is a recommended therapy for muscle atrophy induced by heart failure. However, the patients with muscle atrophy are weak in mobility and may not be able to train for a long time. Therefore, it is necessary to explore novel targets of exercise protection for muscle atrophy, so as to improve the quality of life and survival rate of patients with muscular atrophy induced by heart failure. This article aims to review latest studies, summarize the evidence and limitations, and provide a glimpse into the future of exercise for the treatment of muscle atrophy induced by heart failure. We wish to highlight some important findings about the essential roles of exercise sensors in muscle atrophy induced by heart failure, which might be helpful for searching potential therapeutic targets for muscle wasting induced by heart failure.
Collapse
Affiliation(s)
- Qi Liu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Juan Gao
- School of Medicine, Shanghai University, Shanghai, China
| | - Jiali Deng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.,School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
6
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
7
|
Myelinating Glia-Specific Deletion of Fbxo7 in Mice Triggers Axonal Degeneration in the Central Nervous System Together with Peripheral Neuropathy. J Neurosci 2019; 39:5606-5626. [PMID: 31085610 DOI: 10.1523/jneurosci.3094-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022] Open
Abstract
Myelination of axons facilitates the rapid propagation of electrical signals and the long-term integrity of axons. The ubiquitin-proteasome system is essential for proper protein homeostasis, which is particularly crucial for interactions of postmitotic cells. In our study, we examined how the E3 ubiquitin ligase FBXO7-SCF (SKP1, Cul1, F-box protein) expressed in myelinating cells affects the axon-myelin unit. Deletion of Fbxo7 in oligodendrocytes and Schwann cells in mice using the Cnp1-Cre driver line led to motor impairment due to hindlimb paresis. It did not result in apoptosis of myelinating cells, nor did it affect the proper myelination of axons or lead to demyelination. It however triggered axonal degeneration in the CNS and resulted in the severe degeneration of axons in the PNS, inducing a full-blown neuropathy. Both the CNS and PNS displayed inflammation, while the PNS was also characterized by fibrosis, massive infiltration of macrophages, and edema. Tamoxifen-induced deletion of Fbxo7, after myelination using the Plp1-CreERT2 line, led to a small number of degenerated axons and hence a very mild peripheral neuropathy. Interestingly, loss of Fbxo7 also resulted in reduced proteasome activity in Schwann cells but not in cerebellar granule neurons, indicating a specific sensitivity of the former cell type. Together, our results demonstrate an essential role for FBXO7 in myelinating cells to support associated axons, which is fundamental to the proper developmental establishment and the long-term integrity of the axon-myelin unit.SIGNIFICANCE STATEMENT The myelination of axons facilitates the fast propagation of electrical signals and the trophic support of the myelin-axon unit. Here, we report that deletion of Fbxo7 in myelinating cells in mice triggered motor impairment but had no effect on myelin biogenesis. Loss of Fbxo7 in myelinating glia, however, led to axonal degeneration in the CNS and peripheral neuropathy of the axonal type. In addition, we found that Schwann cells were particularly sensitive to Fbxo7 deficiency reflected by reduced proteasome activity. Based on these findings, we conclude that Fbxo7 is essential for the support of the axon-myelin unit and long-term axonal health.
Collapse
|
8
|
Jouaud M, Mathis S, Richard L, Lia AS, Magy L, Vallat JM. Rodent models with expression of PMP22: Relevance to dysmyelinating CMT and HNPP. J Neurol Sci 2019; 398:79-90. [PMID: 30685714 DOI: 10.1016/j.jns.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Charcot-Marie-Tooth diseases (CMT) are due to abnormalities of many genes, the most frequent being linked to PMP22 (Peripheral Myelin Protein 22). In the past, only spontaneous genetic anomalies occurring in mouse mutants such as Trembler (Tr) mice were available; more recently, several rodent models have been generated for exploration of the pathophysiological mechanisms underlying these neuropathies. METHODS Based on the personal experience of our team, we describe here the pathological hallmarks of most of these animal models and compare them to the pathological features observed in some CMT patient nerves (CMT types 1A and E; hereditary neuropathy with liability to pressure palsies, HNPP). RESULTS We describe clinical data and detailed pathological analysis mainly by electron microscopy of the sciatic nerves of these animal models conducted in our laboratory; lesions of PMP22 deficient animals (KO and mutated PMP22) and PMP22 overexpressed models are described and compared to ultrastructural anomalies of nerve biopsies from CMT patients due to PMP22 gene anomalies. It is of note that while there are some similarities, there are also significant differences between the lesions in animal models and human cases. Such observations highlight the complex roles played by PMP22 in nerve development. CONCLUSION It should be borne in mind that we require additional correlations between animal models of hereditary neuropathies and CMT patients to rationalize the development of efficient drugs.
Collapse
Affiliation(s)
- Maxime Jouaud
- Equipe d'accueil 6309, Maintenance myélinique et Neuropathies périphériques, University of Limoges, 2 rue du Docteur Raymond Marcland, 87000 Limoges, France
| | - Stéphane Mathis
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin University Hospital), place Amélie Raba-Léon, 33000 Bordeaux, France; National Reference Center 'maladies neuromusculaires du Grand Sud-ouest', CHU Bordeaux (Pellegrin University Hospital), place Amélie Raba-Léon, 33000 Bordeaux, France
| | - Laurence Richard
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Anne-Sophie Lia
- Equipe d'accueil 6309, Maintenance myélinique et Neuropathies périphériques, University of Limoges, 2 rue du Docteur Raymond Marcland, 87000 Limoges, France; Department of Biochemistry and Molecular Genetics, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Laurent Magy
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Jean-Michel Vallat
- Department of Neurology, CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France; National Reference Center for 'Rare Peripheral Neuropathies', CHU Limoges, Dupuytren University Hospital, 2 avenue Martin Luther King, 87042 Limoges, France.
| |
Collapse
|
9
|
Shi L, Huang L, He R, Huang W, Wang H, Lai X, Zou Z, Sun J, Ke Q, Zheng M, Lu X, Pei Z, Su H, Xiang AP, Li W, Yao X. Modeling the Pathogenesis of Charcot-Marie-Tooth Disease Type 1A Using Patient-Specific iPSCs. Stem Cell Reports 2017; 10:120-133. [PMID: 29276154 PMCID: PMC5768917 DOI: 10.1016/j.stemcr.2017.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 01/27/2023] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A), one of the most frequent inherited peripheral neuropathies, is associated with PMP22 gene duplication. Previous studies of CMT1A mainly relied on rodent models, and it is not yet clear how PMP22 overexpression leads to the phenotype in patients. Here, we generated the human induced pluripotent stem cell (hiPSC) lines from two CMT1A patients as an in vitro cell model. We found that, unlike the normal control cells, CMT1A hiPSCs rarely generated Schwann cells through neural crest stem cells (NCSCs). Instead, CMT1A NCSCs produced numerous endoneurial fibroblast-like cells in the Schwann cell differentiation system, and similar results were obtained in a PMP22-overexpressing iPSC model. Therefore, despite the demyelination-remyelination and/or dysmyelination theory for CMT1A pathogenesis, developmental disabilities of Schwann cells may be considered as an underlying cause of CMT1A. Our results may have important implications for the uncovering of the underlying mechanism and the development of a promising therapeutic strategy for CMT1A neuropathy. Modeling CMT1A disease with PMP22 duplication using hiPSC-derived NCSCs PMP22 duplication may lead to Schwann cell developmental defect of NCSCs PMP22-overexpressing NCSCs recapitulate the phenotype of CMT1A NCSCs
Collapse
Affiliation(s)
- Lei Shi
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Division of Neurosurgical Intensive Care Unit, Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lihua Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruojie He
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huiyan Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengwei Zou
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiaqi Sun
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Minying Zheng
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xilin Lu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
10
|
Scurry AN, Heredia DJ, Feng CY, Gephart GB, Hennig GW, Gould TW. Structural and Functional Abnormalities of the Neuromuscular Junction in the Trembler-J Homozygote Mouse Model of Congenital Hypomyelinating Neuropathy. J Neuropathol Exp Neurol 2016; 75:334-46. [PMID: 26921370 DOI: 10.1093/jnen/nlw004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mutations in peripheral myelin protein 22 (PMP22) result in the most common form of Charcot-Marie-Tooth (CMT) disease, CMT1A. This hereditary peripheral neuropathy is characterized by dysmyelination of peripheral nerves, reduced nerve conduction velocity, and muscle weakness. APMP22 point mutation in L16P (leucine 16 to proline) underlies a form of human CMT1A as well as the Trembler-J mouse model of CMT1A. Homozygote Trembler-J mice (Tr(J)) die early postnatally, fail to make peripheral myelin, and, therefore, are more similar to patients with congenital hypomyelinating neuropathy than those with CMT1A. Because recent studies of inherited neuropathies in humans and mice have demonstrated that dysfunction and degeneration of neuromuscular synapses or junctions (NMJs) often precede impairments in axonal conduction, we examined the structure and function of NMJs in Tr(J)mice. Although synapses appeared to be normally innervated even in end-stage Tr(J)mice, the growth and maturation of the NMJs were altered. In addition, the amplitudes of nerve-evoked muscle endplate potentials were reduced and there was transmission failure during sustained nerve stimulation. These results suggest that the severe congenital hypomyelinating neuropathy that characterizes Tr(J)mice results in structural and functional deficits of the developing NMJ.
Collapse
Affiliation(s)
- Alexandra N Scurry
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Dante J Heredia
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Cheng-Yuan Feng
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Gregory B Gephart
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Grant W Hennig
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Thomas W Gould
- From the Departments of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada.
| |
Collapse
|
11
|
Long-term analyses of innervation and neuromuscular integrity in the Trembler-J mouse model of Charcot-Marie-Tooth disease. J Neuropathol Exp Neurol 2013; 72:942-54. [PMID: 24042197 DOI: 10.1097/nen.0b013e3182a5f96e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A large fraction of hereditary demyelinating neuropathies, classified as Charcot-Marie-Tooth disease type 1A, is associated with misexpression of peripheral myelin protein 22. In this study, we characterized morphologic and biochemical changes that occur with diseaseprogression in neuromuscular tissue of Trembler-J mice, a spontaneous rodent model of Charcot-Marie-Tooth disease type 1A. Using age-matched, 2- and 10-month-old, wild-type and Trembler-J mice, we observed neuromuscular deficits that progress from distal to proximal regions. The impairments in motor performance are underlined by degenerative events at distal nerve segments and structural alterations at nerve-muscle synapses. Furthermore, skeletal muscle of affected mice showed reduced myofiber diameter, increased expression of the muscle atrophy marker muscle ring-finger protein 1, and fiber type switching. A dietary intervention of intermittent fasting attenuated these progressive changes and supported distal nerve myelination and neuromuscular junction integrity. In addition to the well-characterized demyelination aspects of this model, our investigations identified distinct degenerative events in distal nerves and muscle of affected neuropathic mice. Therefore, therapeutic studies aimed at slowing or reversing the neuropathic features of these disorders should include the examination of muscle tissue, as well as neuromuscular contact sites.
Collapse
|
12
|
|
13
|
Ali YO, Li-Kroeger D, Bellen HJ, Zhai RG, Lu HC. NMNATs, evolutionarily conserved neuronal maintenance factors. Trends Neurosci 2013; 36:632-40. [PMID: 23968695 DOI: 10.1016/j.tins.2013.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Proper brain function requires neuronal homeostasis over a range of environmental challenges. Neuronal activity, injury, and aging stress the nervous system, and lead to neuronal dysfunction and degeneration. Nevertheless, most organisms maintain healthy neurons throughout life, implying the existence of active maintenance mechanisms. Recent studies have revealed a key neuronal maintenance and protective function for nicotinamide mononucleotide adenylyl transferases (NMNATs). We review evidence that NMNATs protect neurons through multiple mechanisms in different contexts, and highlight functions that either require or are independent of NMNAT catalytic activity. We then summarize data supporting a role for NMNATs in neuronal maintenance and raise intriguing questions on how NMNATs preserve neuronal integrity and facilitate proper neural function throughout life.
Collapse
Affiliation(s)
- Yousuf O Ali
- The Cain Foundation Laboratories, Texas Children's Hospital, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
14
|
Rosso G, Negreira C, Sotelo JR, Kun A. Myelinating and demyelinating phenotype of Trembler-J mouse (a model of Charcot-Marie-Tooth human disease) analyzed by atomic force microscopy and confocal microscopy. J Mol Recognit 2012; 25:247-55. [PMID: 22528185 DOI: 10.1002/jmr.2176] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The accumulation of misfolded proteins is associated with various neurodegenerative conditions. Mutations in PMP-22 are associated with the human peripheral neuropathy, Charcot-Marie-Tooth Type 1A (CMT1A). PMP-22 is a short-lived 22 kDa glycoprotein, which plays a key role in the maintenance of myelin structure and compaction, highly expressed by Schwann cells. It forms aggregates when the proteasome is inhibited or the protein is mutated. This study reports the application of atomic force microscopy (AFM) as a detector of profound topographical and mechanical changes in Trembler-J mouse (CMT1A animal model). AFM images showed topographical differences in the extracellular matrix and basal lamina organization of Tr-J/+ nerve fibers. The immunocytochemical analysis indicated that PMP-22 protein is associated with type IV collagen (a basal lamina ubiquitous component) in the Tr-J/+ Schwann cell perinuclear region. Changes in mechanical properties of single myelinating Tr-J/+ nerve fibers were investigated, and alterations in cellular stiffness were found. These results might be associated with F-actin cytoskeleton organization in Tr-J/+ nerve fibers. AFM nanoscale imaging focused on topography and mechanical properties of peripheral nerve fibers might provide new insights into the study of peripheral nervous system diseases.
Collapse
Affiliation(s)
- Gonzalo Rosso
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | |
Collapse
|
15
|
Kinter J, Lazzati T, Schmid D, Zeis T, Erne B, Lützelschwab R, Steck AJ, Pareyson D, Peles E, Schaeren-Wiemers N. An essential role of MAG in mediating axon-myelin attachment in Charcot-Marie-Tooth 1A disease. Neurobiol Dis 2012; 49:221-31. [PMID: 22940629 DOI: 10.1016/j.nbd.2012.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/30/2012] [Accepted: 08/16/2012] [Indexed: 10/28/2022] Open
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is a hereditary demyelinating peripheral neuropathy caused by the duplication of the PMP22 gene. Demyelination precedes the occurrence of clinical symptoms that correlate with axonal degeneration. It was postulated that a disturbed axon-glia interface contributes to altered myelination consequently leading to axonal degeneration. In this study, we examined the expression of MAG and Necl4, two critical adhesion molecules that are present at the axon-glia interface, in sural nerve biopsies of CMT1A patients and in peripheral nerves of mice overexpressing human PMP22, an animal model for CMT1A. We show an increase in the expression of MAG and a strong decrease of Necl4 in biopsies of CMT1A patients as well as in CMT1A mice. Expression analysis revealed that MAG is strongly upregulated during peripheral nerve maturation, whereas Necl4 expression remains very low. Ablating MAG in CMT1A mice results in separation of axons from their myelin sheath. Our data show that MAG is important for axon-glia contact in a model for CMT1A, and suggest that its increased expression in CMT1A disease has a compensatory role in the pathology of the disease. Thus, we demonstrate that MAG together with other adhesion molecules such as Necl4 is important in sustaining axonal integrity.
Collapse
Affiliation(s)
- Jochen Kinter
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Lazzati
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Daniela Schmid
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Thomas Zeis
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Beat Erne
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Roland Lützelschwab
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Andreas J Steck
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| | - Davide Pareyson
- IRCCS Foundation, C. Besta Neurological Institute, Milan, Italy.
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, Rehovot 76100, Israel.
| | - Nicole Schaeren-Wiemers
- Neurobiology, Department of Biomedicine, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland; Department of Neurology, University Hospital Basel, University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland.
| |
Collapse
|
16
|
Fledrich R, Stassart RM, Sereda MW. Murine therapeutic models for Charcot-Marie-Tooth (CMT) disease. Br Med Bull 2012; 102:89-113. [PMID: 22551516 DOI: 10.1093/bmb/lds010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION OR BACKGROUND Charcot-Marie-Tooth (CMT) disease represents a broad group of inherited motor and sensory neuropathies which can originate from various genetic aberrations, e.g. mutations, deletions and duplications. SOURCES OF DATA We performed a literature review on murine animal models of CMT disease with regard to experimental therapeutic approaches. Hereby, we focussed on the demyelinating subforms of CMT (CMT1). PubMed items were CMT, animal model, demyelination and therapy. AREAS OF AGREEMENT Patients affected by CMT suffer from slowly progressive, distally pronounced muscle atrophy caused by an axonal loss. The disease severity is highly variable and impairments may result in wheelchair boundness. No therapy is available yet. AREAS OF CONTROVERSY Numerous rodent models for the various CMT subtypes are available today. The selection of the correct animal model for the specific CMT subtype provides an important prerequisite for the successful translation of experimental findings in patients. GROWING POINTS Despite more than 20 years of remarkable progress in CMT research, the disease is still left untreatable. There is a growing number of experimental therapeutic strategies that may be translated into future clinical trials in patients with CMT. AREAS TIMELY FOR DEVELOPING RESEARCH The slow disease progression and insensitive outcome measures hamper clinical therapy trials in CMT. Biomarkers may provide powerful tools to monitor therapeutic efficacy. Recently, we have shown that transcriptional profiling can be utilized to assess and predict the disease severity in a transgenic rat model and in affected humans.
Collapse
Affiliation(s)
- Robert Fledrich
- Research Group 'Molecular and Translational Neurology', Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | |
Collapse
|
17
|
Kun A, Canclini L, Rosso G, Bresque M, Romeo C, Hanusz A, Cal K, Calliari A, Sotelo Silveira J, Sotelo JR. F-actin distribution at nodes of Ranvier and Schmidt-Lanterman incisures in mammalian sciatic nerves. Cytoskeleton (Hoboken) 2012; 69:486-95. [PMID: 22328339 DOI: 10.1002/cm.21011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 11/10/2022]
Abstract
Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model.
Collapse
Affiliation(s)
- Alejandra Kun
- Department of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rosso G, Cal K, Canclini L, Damián JP, Ruiz P, Rodríguez H, Sotelo JR, Vazquez C, Kun A. Early phenotypical diagnoses in Trembler-J mice model. J Neurosci Methods 2010; 190:14-9. [PMID: 20416338 DOI: 10.1016/j.jneumeth.2010.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22<Tr-J>/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice.
Collapse
Affiliation(s)
- Gonzalo Rosso
- Departamento de Proteínas y Acidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schardt A, Brinkmann BG, Mitkovski M, Sereda MW, Werner HB, Nave KA. The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia. J Neurosci Res 2010; 87:3465-79. [PMID: 19170188 DOI: 10.1002/jnr.22005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface-directed transport vesicles. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP-29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP-29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two-hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N-terminal domain of SNAP-29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP-29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP-29 pools were redistributed upon coexpression with Rab3A, and surface-directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP-29 and Rab3A. Interestingly, the abundance of SNAP-29 in sciatic nerves was increased during remyelination and in a rat model of Charcot-Marie-Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP-29-mediated membrane fusion during myelination.
Collapse
Affiliation(s)
- Anke Schardt
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Pareyson D, Marchesi C. Diagnosis, natural history, and management of Charcot–Marie–Tooth disease. Lancet Neurol 2009; 8:654-67. [PMID: 19539237 DOI: 10.1016/s1474-4422(09)70110-3] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
21
|
Itou J, Suyama M, Imamura Y, Deguchi T, Fujimori K, Yuba S, Kawarabayasi Y, Kawasaki T. Functional and comparative genomics analyses of pmp22 in medaka fish. BMC Neurosci 2009; 10:60. [PMID: 19534778 PMCID: PMC2714311 DOI: 10.1186/1471-2202-10-60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 06/17/2009] [Indexed: 01/23/2023] Open
Abstract
Background Pmp22, a member of the junction protein family Claudin/EMP/PMP22, plays an important role in myelin formation. Increase of pmp22 transcription causes peripheral neuropathy, Charcot-Marie-Tooth disease type1A (CMT1A). The pathophysiological phenotype of CMT1A is aberrant axonal myelination which induces a reduction in nerve conduction velocity (NCV). Several CMT1A model rodents have been established by overexpressing pmp22. Thus, it is thought that pmp22 expression must be tightly regulated for correct myelin formation in mammals. Interestingly, the myelin sheath is also present in other jawed vertebrates. The purpose of this study is to analyze the evolutionary conservation of the association between pmp22 transcription level and vertebrate myelin formation, and to find the conserved non-coding sequences for pmp22 regulation by comparative genomics analyses between jawed fishes and mammals. Results A transgenic pmp22 over-expression medaka fish line was established. The transgenic fish had approximately one fifth the peripheral NCV values of controls, and aberrant myelination of transgenic fish in the peripheral nerve system (PNS) was observed. We successfully confirmed that medaka fish pmp22 has the same exon-intron structure as mammals, and identified some known conserved regulatory motifs. Furthermore, we found novel conserved sequences in the first intron and 3'UTR. Conclusion Medaka fish undergo abnormalities in the PNS when pmp22 transcription increases. This result indicates that an adequate pmp22 transcription level is necessary for correct myelination of jawed vertebrates. Comparison of pmp22 orthologs between distantly related species identifies evolutionary conserved sequences that contribute to precise regulation of pmp22 expression.
Collapse
Affiliation(s)
- Junji Itou
- Department of Radiation Biomedical Science IV, Radiation Biology Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Myelinating cells, oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system produce an enormous amount of plasma membrane during the myelination process, making them particularly susceptible to disruptions of the secretory pathway. Endoplasmic reticulum stress, initiated by the accumulation of unfolded or misfolded proteins, activates the unfolded protein response, which adapts cells to the stress. If this adaptive response is insufficient, the unfolded protein response activates an apoptotic program to eliminate the affected cells. Recent observations suggest that endoplasmic reticulum stress in myelinating cells is important in the pathogenesis of various disorders of myelin, including Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher disease and Vanishing White Matter Disease, as well as in the most common myelin disorder, multiple sclerosis. A better understanding of endoplasmic reticulum stress in myelinating cells has laid the groundwork for the design of new therapeutic strategies for promoting myelinating cell survival in these disorders.
Collapse
Affiliation(s)
- Wensheng Lin
- Department of Cell Biology & Neuroscience, University of South Alabama, 307 University Blvd, MSB1201, Mobile, AL 36688. ()
| | - Brian Popko
- The Jack Miller Center for Peripheral Neuropathy, Department of Neurology, The University of Chicago, 5841 South Maryland Avenue MC2030, Chicago, IL 60637. ()
| |
Collapse
|
23
|
Fischer S, Weishaupt A, Troppmair J, Martini R. Increase of MCP-1 (CCL2) in myelin mutant Schwann cells is mediated by MEK-ERK signaling pathway. Glia 2008; 56:836-43. [DOI: 10.1002/glia.20657] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Iacobas DA, Iacobas S, Werner P, Scemes E, Spray DC. Alteration of transcriptomic networks in adoptive-transfer experimental autoimmune encephalomyelitis. Front Integr Neurosci 2007; 1:10. [PMID: 18958238 PMCID: PMC2526015 DOI: 10.3389/neuro.07.010.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 12/03/2007] [Indexed: 01/09/2023] Open
Abstract
Adoptive transfer experimental autoimmune encephalomyelitis (AT-EAE) is an inflammatory demyelination that recapitulates in mouse spinal cord (SC) the human multiple sclerosis disease. We now analyze previously reported cDNA array data from age-matched young female adult control and passively myelin antigen-sensitized EAE mice with regard to organizational principles of the SC transcriptome in autoimmune demyelination. Although AT-EAE had a large impact on immune response genes, broader functional and chromosomal gene cohorts were neither significantly regulated nor showed significant changes in expression coordination. However, overall transcriptional control was increased in AT-EAE and the proportions of transcript abundances were perturbed within each cohort. Striking likenesses and oppositions were identified in the coordination profiles of genes related to myelination, calcium signaling, and inflammatory response in controls that were substantially altered in AT-EAE. We propose that up- or down-regulation of genes linked to those targeted by the disease could potentially compensate for the pathological transcriptomic changes.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine USA.
| | | | | | | | | |
Collapse
|
25
|
Meyer zu Horste G, Prukop T, Liebetanz D, Mobius W, Nave KA, Sereda MW. Antiprogesterone therapy uncouples axonal loss from demyelination in a transgenic rat model of CMT1A neuropathy. Ann Neurol 2007; 61:61-72. [PMID: 17262851 DOI: 10.1002/ana.21026] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy, and a duplication of the Pmp22 gene causes the most frequent subform CMT1A. Using a transgenic rat model of CMT1A, we tested the hypothesis that long-term treatment with anti-progesterone (Onapristone) reduces Pmp22 overexpression and improves CMT disease phenotype of older animals, thereby extending a previous proof-of-concept observation in a more clinically relevant setting. METHODS We applied placebo-controlled progesterone-antagonist therapy to CMT rats for 5 months and performed grip-strength analysis to assess the motor phenotype. Quantitative Pmp22 RT-PCR and complete histological analysis of peripheral nerves and skin biopsies were performed. RESULTS Anti-progesterone therapy significantly increased muscle strength and muscle mass of CMT rats and reduced the performance difference to wildtype rats by about 50%. Physical improvements can be explained by the prevention of axon loss. Surprisingly, the effects of anti-progesterone were not reflected by improved myelin sheath thickness. Electrophysiology confirmed unaltered NCV, but less reduced CMAP recordings in the treatment group. Moreover, the reduction of Pmp22 mRNA, as quantified in cutaneous nerves, correlated with the clinical phenotype at later stages. INTERPRETATION Progesterone-antagonist long-term therapy reduces [corrected] Pmp22 overexpression to a degree at which the axonal support function of Schwann cells is better maintained than myelination. This suggests that axonal loss in CMT1A is not caused by demyelination, but rather by a Schwann cell defect that has been partially uncoupled by anti-progesterone treatment. Pmp22 expression analysis in skin may provide a prognostic marker for disease severity and for monitoring future clinical trials.
Collapse
Affiliation(s)
- Gerd Meyer zu Horste
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Mutations in a number of genes have been associated with inherited neuropathies (Charcot-Marie-Tooth or CMT disease). This review highlights how animal models of demyelinating CMT have improved our understanding of disease mechanisms. Transgenic CMT models also allow therapies to be developed in a preclinical setting. RECENT FINDINGS Rodent models for the most common subtypes of human CMT disease are now available, and two mouse mutants modeling the rare CMT4B subform have lately extended this repertoire. In a peripheral myelin protein 22 kDa (Pmp22) transgenic rat model of CMT1A, administration of a progesterone receptor antagonist reduced Pmp22 overexpression, axon loss and clinical impairments. Dietary ascorbic acid prevented dysmyelination and premature death in a Pmp22 transgenic mouse line. Neurotrophin-3 promoted small fiber remyelination in CMT1A xenografts and sensory functions in CMT1A patients. Gene expression profiling in rodent models of CMT may identify further therapeutical targets. While original classifications distinguish the demyelinating and axonal forms of CMT, recent findings emphasize that axon loss is a common feature, possibly caused by Schwann cell defects rather than demyelination per se. This supports our model that myelination and long-term axonal support are distinct functions of all myelinating glial cells. SUMMARY Animal models have opened up new perspectives on the pathomechanisms and possible treatment strategies of inherited neuropathies.
Collapse
|