1
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
2
|
Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. NPJ Regen Med 2021; 6:25. [PMID: 34001907 PMCID: PMC8128894 DOI: 10.1038/s41536-021-00135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate specialized cell lineages that have great potential for regenerative therapies and disease modeling. However, the developmental stage of the lineages generated from conventional hPSC cultures in vitro are embryonic in phenotype, and may not possess the cellular maturity necessary for corrective regenerative function in vivo in adult recipients. Here, we present the scientific evidence for how adult human tissues could generate human–animal interspecific chimeras to solve this problem. First, we review the phenotypes of the embryonic lineages differentiated from conventional hPSC in vitro and through organoid technologies and compare their functional relevance to the tissues generated during normal human in utero fetal and adult development. We hypothesize that the developmental incongruence of embryo-stage hPSC-differentiated cells transplanted into a recipient adult host niche is an important mechanism ultimately limiting their utility in cell therapies and adult disease modeling. We propose that this developmental obstacle can be overcome with optimized interspecies chimeras that permit the generation of adult-staged, patient-specific whole organs within animal hosts with human-compatible gestational time-frames. We suggest that achieving this goal may ultimately have to await the derivation of alternative, primitive totipotent-like stem cells with improved embryonic chimera capacities. We review the scientific challenges of deriving alternative human stem cell states with expanded embryonic potential, outline a path forward for conducting this emerging research with appropriate ethical and regulatory oversight, and defend the case of why current federal funding restrictions on this important category of biomedical research should be liberalized.
Collapse
|
3
|
Mechanistic Analysis of Physicochemical Cues in Promoting Human Pluripotent Stem Cell Self-Renewal and Metabolism. Int J Mol Sci 2018; 19:ijms19113459. [PMID: 30400347 PMCID: PMC6275035 DOI: 10.3390/ijms19113459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
We have previously reported that a porous membrane of polyethylene terephthalate (PET) enables significant augmentation of human pluripotent stem cell (hPSC) proliferation and differentiation. The interaction between hPSCs and the PET surface induces β-catenin-mediated wingless/integrated (Wnt) signaling, leading to upregulation of the expression of adhesion molecules in hPSCs. In this study, we sought to unveil mechanisms underlying the role of the PET membrane in hPSC self-renewal and metabolism. We discovered that physicochemical cues of the PET membrane considerably alter hPSC metabolism by increasing the cell yield and suppressing the generation of toxic byproduct, indicating an effective cell self-renewal and a less apoptotic culture environment in the membrane culture system. Furthermore, we discovered that a caspase-8 medicated apoptotic pathway plays a profound role in obstructing hPSCs grown on a traditional tissue culture plate (TCP). Treating hPSCs seeded on a TCP surface with a caspase-8 inhibitor significantly suppressed cellular apoptotic pathway and improved cell proliferation and metabolism. Our experimental results provided valuable insights into signal pathways influencing hPSC self-renewal during routine maintenance and expansion, which would shed light on large-scale preparation of hPSCs for clinical applications.
Collapse
|
4
|
WNT9A Is a Conserved Regulator of Hematopoietic Stem and Progenitor Cell Development. Genes (Basel) 2018; 9:genes9020066. [PMID: 29382179 PMCID: PMC5852562 DOI: 10.3390/genes9020066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) differentiate into all cell types of the blood and can be used therapeutically to treat hematopoietic cancers and disorders. Despite decades of research, it is not yet possible to derive therapy-grade HSCs from pluripotent precursors. Analysis of HSC development in model organisms has identified some of the molecular cues that are necessary to instruct hematopoiesis in vivo, including Wnt9A, which is required during an early time window in zebrafish development. Although bona fide HSCs cannot be derived in vitro, it is possible to model human hematopoietic progenitor development by differentiating human pluripotent stem cells to hematopoietic cells. Herein, we modulate WNT9A expression during the in vitro differentiation of human embryonic stem cells to hematopoietic progenitor cells and demonstrate that WNT9A also regulates human hematopoietic progenitor cell development in vitro. Overexpression of WNT9A only impacts differentiation to CD34+/CD45+ cells during early time windows and does so in a dose-dependent manner. The cells that receive the Wnt signal—not the cells that secrete WNT9A—differentiate most efficiently to hematopoietic progenitors; this mimics the paracrine action of Wnt9a during in vivo hematopoiesis. Taken together, these data indicate that WNT9A is a conserved regulator of zebrafish and human hematopoietic development.
Collapse
|
5
|
Zimmerlin L, Park TS, Zambidis ET. Capturing Human Naïve Pluripotency in the Embryo and in the Dish. Stem Cells Dev 2017; 26:1141-1161. [PMID: 28537488 DOI: 10.1089/scd.2017.0055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although human embryonic stem cells (hESCs) were first derived almost 20 years ago, it was only recently acknowledged that they share closer molecular and functional identity to postimplantation lineage-primed murine epiblast stem cells than to naïve preimplantation inner cell mass-derived mouse ESCs (mESCs). A myriad of transcriptional, epigenetic, biochemical, and metabolic attributes have now been described that distinguish naïve and primed pluripotent states in both rodents and humans. Conventional hESCs and human induced pluripotent stem cells (hiPSCs) appear to lack many of the defining hallmarks of naïve mESCs. These include important features of the naïve ground state murine epiblast, such as an open epigenetic architecture, reduced lineage-primed gene expression, and chimera and germline competence following injection into a recipient blastocyst-stage embryo. Several transgenic and chemical methods were recently reported that appear to revert conventional human PSCs to mESC-like ground states. However, it remains unclear if subtle deviations in global transcription, cell signaling dependencies, and extent of epigenetic/metabolic shifts in these various human naïve-reverted pluripotent states represent true functional differences or alternatively the existence of distinct human pluripotent states along a spectrum. In this study, we review the current understanding and developmental features of various human pluripotency-associated phenotypes and discuss potential biological mechanisms that may support stable maintenance of an authentic epiblast-like ground state of human pluripotency.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Tea Soon Park
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| | - Elias T Zambidis
- 1 Institute for Cell Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.,2 Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins , Baltimore, Maryland
| |
Collapse
|
6
|
Richter J, Traver D, Willert K. The role of Wnt signaling in hematopoietic stem cell development. Crit Rev Biochem Mol Biol 2017; 52:414-424. [PMID: 28508727 DOI: 10.1080/10409238.2017.1325828] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jenna Richter
- a Department of Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA , USA
| | - David Traver
- a Department of Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA , USA
| | - Karl Willert
- a Department of Cellular and Molecular Medicine , University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
7
|
Zhang L, Jambusaria A, Hong Z, Marsboom G, Toth PT, Herbert BS, Malik AB, Rehman J. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34 + Progenitor Cells. Circulation 2017; 135:2505-2523. [PMID: 28381471 PMCID: PMC5472005 DOI: 10.1161/circulationaha.116.025722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. Methods: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. Results: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. Conclusions: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.
Collapse
Affiliation(s)
- Lianghui Zhang
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Ankit Jambusaria
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Zhigang Hong
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Glenn Marsboom
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Peter T Toth
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Brittney-Shea Herbert
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Asrar B Malik
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.)
| | - Jalees Rehman
- From Department of Pharmacology (L.Z., A.J., Z.H., G.M., P.T.T., A.B.M., J.R.), Department of Medicine, Division of Cardiology (J.R.), The University of Illinois College of Medicine, Chicago; and Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis (B.-S.H.).
| |
Collapse
|
8
|
Capellera-Garcia S, Flygare J. Direct lineage reprogramming: a useful addition to the blood cell research toolbox. Expert Rev Hematol 2016; 10:107-109. [PMID: 27967256 DOI: 10.1080/17474086.2017.1272409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sandra Capellera-Garcia
- a Department of Molecular Medicine and Gene Therapy , Lund Stem Cell Center, Lund University , Lund , Sweden
| | - Johan Flygare
- a Department of Molecular Medicine and Gene Therapy , Lund Stem Cell Center, Lund University , Lund , Sweden
| |
Collapse
|
9
|
McMahan ZH, Cottrell TR, Wigley FM, Antiochos B, Zambidis ET, Park TS, Halushka MK, Gutierrez-Alamillo L, Cimbro R, Rosen A, Casciola-Rosen L. Enrichment of Scleroderma Vascular Disease-Associated Autoantigens in Endothelial Lineage Cells. Arthritis Rheumatol 2016; 68:2540-9. [PMID: 27159521 PMCID: PMC5042822 DOI: 10.1002/art.39743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 04/28/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Scleroderma patients with autoantibodies to CENPs and/or interferon-inducible protein 16 (IFI-16) are at increased risk of severe vascular complications. This study was undertaken to determine whether these autoantigens are enriched in cells of the vasculature. METHODS Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI-16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI-16 and CD31 expression were defined in paraffin-embedded skin sections from scleroderma patients and from healthy controls. IFI-16 expression was determined by flow cytometric analysis in circulating endothelial cells (CECs) and circulating hematopoietic progenitor cells. RESULTS Expression of CENP-A, IFI-16, and CD31 was enriched in EBs on days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI-16, CD31, and CENPs A and B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of paraffin-embedded skin sections showed enrichment of IFI-16 in CD31-positive vascular endothelial cells in biopsy specimens from scleroderma patients and normal controls. Flow cytometric analysis revealed IFI-16 expression in circulating hematopoietic progenitor cells but minimal expression in CECs. CONCLUSION Our findings indicate that expression of the scleroderma autoantigens IFI-16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens.
Collapse
Affiliation(s)
| | | | | | | | - Elias T Zambidis
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tea Soon Park
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc K Halushka
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Raffaello Cimbro
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Antony Rosen
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
10
|
Julien E, El Omar R, Tavian M. Origin of the hematopoietic system in the human embryo. FEBS Lett 2016; 590:3987-4001. [DOI: 10.1002/1873-3468.12389] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/19/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Emmanuelle Julien
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Reine El Omar
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| | - Manuela Tavian
- Inserm UMR-S949; Etablissement Français du Sang-ALCA; University of Strasbourg; France
| |
Collapse
|
11
|
Ackermann M, Liebhaber S, Klusmann JH, Lachmann N. Lost in translation: pluripotent stem cell-derived hematopoiesis. EMBO Mol Med 2016; 7:1388-402. [PMID: 26174486 PMCID: PMC4644373 DOI: 10.15252/emmm.201505301] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage.
Collapse
Affiliation(s)
- Mania Ackermann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany Institute of Experimental Hematology Hannover Medical School, Hannover, Germany
| | - Steffi Liebhaber
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany Institute of Experimental Hematology Hannover Medical School, Hannover, Germany
| | | | - Nico Lachmann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany Institute of Experimental Hematology Hannover Medical School, Hannover, Germany JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes? Stem Cells Int 2016; 2016:1803989. [PMID: 27313624 PMCID: PMC4903148 DOI: 10.1155/2016/1803989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 04/18/2016] [Indexed: 12/24/2022] Open
Abstract
Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs) in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF) treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.
Collapse
|
13
|
Ganji F, Abroun S, Baharvand H, Aghdami N, Ebrahimi M. Differentiation potential of o bombay human-induced pluripotent stem cells and human embryonic stem cells into fetal erythroid-like cells. CELL JOURNAL 2015; 16:426-39. [PMID: 25685733 PMCID: PMC4297481 DOI: 10.22074/cellj.2015.489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 11/06/2013] [Indexed: 12/05/2022]
Abstract
Objective There is constant difficulty in obtaining adequate supplies of blood components, as well as disappointing performance of "universal" red blood cells. Advances in
somatic cell reprogramming of human-induced pluripotent stem cells (hiPSCs) have provided a valuable alternative source to differentiate into any desired cell type as a therapeutic promise to cure many human disease.
Materials and Methods In this experimental study, we examined the erythroid differentiation potential of normal Bombay hiPSCs (B-hiPSCs) and compared results
to human embryonic stem cell (hESC) lines. Because of lacking ABO blood group
expression in B-hiPSCs, it has been highlighted as a valuable source to produce any
cell type in vitro.
Results Similar to hESC lines, hemangioblasts derived from B-hiPSCs expressed approximately 9% KDR+CD31+ and approximately 5% CD31+CD34+. In semisolid media,
iPSC and hESC-derived hemangioblast formed mixed type of hematopoietic colony. In
mixed colonies, erythroid progenitors were capable to express CD71+GPA+HbF+ and accompanied by endothelial cells differentiation. Conclusion Finally, iPS and ES cells have been directly induced to erythropoiesis without hemangioblast formation that produced CD71+HbF+ erythroid cells. Although we observed
some variations in the efficiency of hematopoietic differentiation between iPSC and ES cells,
the pattern of differentiation was similar among all three tested lines.
Collapse
Affiliation(s)
- Fatemeh Ganji
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeid Abroun
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Liu S, Xu Y, Zhou Z, Feng B, Huang H. Progress and challenges in generating functional hematopoietic stem/progenitor cells from human pluripotent stem cells. Cytotherapy 2015; 17:344-58. [PMID: 25680303 DOI: 10.1016/j.jcyt.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/03/2015] [Accepted: 01/06/2015] [Indexed: 11/25/2022]
Abstract
The generation of hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) in vitro holds great potential for providing alternative sources of donor cells for clinical HSC transplantation. However, the low efficiency of current protocols for generating blood lineages and the dysfunction identified in hPSC-derived hematopoietic cells limit their use for full hematopoietic reconstitution in clinics. This review outlines the current understanding of in vitro hematopoietic differentiation from hPSCs, emphasizes the intrinsic and extrinsic molecular mechanisms that are attributed to the aberrant phenotype and function in hPSC-derived hematopoietic cells, pinpoints the current challenges to develop the truly functional HSCs from hPSCs for clinical applications and explores their potential solutions.
Collapse
Affiliation(s)
- Senquan Liu
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yulin Xu
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zijing Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; SBS Core Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - He Huang
- Bone Marrow Transplantation Centre, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
15
|
Uz B, Tatonyan SÇ, Sayitoğlu M, Erbilgin Y, Hatırnaz O, Aksu S, Büyükaşık Y, Sayınalp N, Göker H, Ozcebe Oİ, Ozbek U, Haznedaroğlu IC. Local Renin-Angiotensin system in normal hematopoietic and multiple myeloma-related progenitor cells. Turk J Haematol 2014; 31:136-42. [PMID: 25035670 PMCID: PMC4102040 DOI: 10.4274/tjh.2013.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/17/2013] [Indexed: 12/01/2022] Open
Abstract
Objective: The prominent functions of the local renin-angiotensin system (RAS) in primitive hematopoiesis further support the hypothesis that local autocrine bone marrow RAS could also be active in neoplastic hematopoiesis. The aim of this study is to examine critical RAS elements in normal CD34+ hematopoietic stem cells and multiple myeloma (MM)-related progenitor cells. Materials and Methods: The study group comprised the total bone marrow cells (CBM) of 10 hematologically normal people, the CD34+ stem cell samples (CD34+CBM) of 9 healthy donors for allogeneic peripheral stem cell transplantation, and the CD34+ stem cell samples (CD34+MM) of 9 MM patients undergoing autologous peripheral stem cell transplantation. We searched for the gene expression of the major RAS components in healthy hematopoietic cells and myeloma cells by quantitative real-time polymerase chain reaction analysis. Results: RENIN, angiotensinogen (ANGTS), and angiotensin converting enzyme-I (ACE I) mRNA expression levels of CBM were significantly higher than those in myeloma patients (p=0.03, p=0.002, and p=0.0008, respectively). Moreover, RENIN and ANGTS mRNA expression levels were significantly higher in CD34+ stem cell samples of healthy allogeneic donors compared to those in myeloma patients (p=0.001 and p=0.01). However, ACE I expression levels were similar in CD34+CBM and CD34+MM hematopoietic cells (p=0.89). Conclusion: Although found to be lower than in the CBM and CD34+CBM hematopoietic cells, the local RAS components were also expressed in CD34+MM hematopoietic cells. This point should be kept in mind while focusing on the immunobiology of MM and the processing of autologous cells during the formation of transplantation treatment protocols.
Collapse
Affiliation(s)
- Burak Uz
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Suzin Çatal Tatonyan
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Müge Sayitoğlu
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Yücel Erbilgin
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Ozden Hatırnaz
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Salih Aksu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Yahya Büyükaşık
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Nilgün Sayınalp
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Hakan Göker
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Osman İ Ozcebe
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| | - Uğur Ozbek
- İstanbul University, Institute for Experimental Medicine Research, Department of Genetics, İstanbul, Turkey
| | - Ibrahim C Haznedaroğlu
- Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Ankara, Turkey
| |
Collapse
|
16
|
Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, Merges C, Reijo-Pera R, Feldman RA, Rassool F, Cooke J, Lutty G, Zambidis ET. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation 2013; 129:359-72. [PMID: 24163065 DOI: 10.1161/circulationaha.113.003000] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The generation of vascular progenitors (VPs) from human induced pluripotent stem cells (hiPSCs) has great potential for treating vascular disorders such as ischemic retinopathies. However, long-term in vivo engraftment of hiPSC-derived VPs into the retina has not yet been reported. This goal may be limited by the low differentiation yield, greater senescence, and poor proliferation of hiPSC-derived vascular cells. To evaluate the potential of hiPSCs for treating ischemic retinopathies, we generated VPs from a repertoire of viral-integrated and nonintegrated fibroblast and cord blood (CB)-derived hiPSC lines and tested their capacity for homing and engrafting into murine retina in an ischemia-reperfusion model. METHODS AND RESULTS VPs from human embryonic stem cells and hiPSCs were generated with an optimized vascular differentiation system. Fluorescence-activated cell sorting purification of human embryoid body cells differentially expressing endothelial/pericytic markers identified a CD31(+)CD146(+) VP population with high vascular potency. Episomal CB-induced pluripotent stem cells (iPSCs) generated these VPs with higher efficiencies than fibroblast-iPSC. Moreover, in contrast to fibroblast-iPSC-VPs, CB-iPSC-VPs maintained expression signatures more comparable to human embryonic stem cell VPs, expressed higher levels of immature vascular markers, demonstrated less culture senescence and sensitivity to DNA damage, and possessed fewer transmitted reprogramming errors. Luciferase transgene-marked VPs from human embryonic stem cells, CB-iPSCs, and fibroblast-iPSCs were injected systemically or directly into the vitreous of retinal ischemia-reperfusion-injured adult nonobese diabetic-severe combined immunodeficient mice. Only human embryonic stem cell- and CB-iPSC-derived VPs reliably homed and engrafted into injured retinal capillaries, with incorporation into damaged vessels for up to 45 days. CONCLUSIONS VPs generated from CB-iPSCs possessed augmented capacity to home, integrate into, and repair damaged retinal vasculature.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, and Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD (T.S.P., L.Z., J.S.H., J.A., E.T.Z.); Wilmer Ophthalmological Institute, Johns Hopkins University School of Medicine, Baltimore, MD (I.B., R.G., C.M., G.L.); Department of Radiation Oncology (P.N., F.R.) and Department of Microbiology/Immunology (D.M., R.A.F.), University of Maryland School of Medicine, Baltimore, MD; Department of Cardiovascular Medicine (A.J.R., J.C.) and Institute for Stem Cell Biology and Regenerative Medicine (A.J.R., R.R.-P., J.C.), Stanford University, Palo Alto, CA; and Institute for Basic Biomedical Science at Johns Hopkins School of Medicine, Baltimore, MD (C.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Clements WK, Traver D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 2013; 13:336-48. [PMID: 23618830 PMCID: PMC4169178 DOI: 10.1038/nri3443] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Haematopoietic stem cells (HSCs) are tissue-specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Clinically, HSCs form the foundation of transplantation-based therapies for leukaemias and congenital blood disorders. Researchers have long been interested in understanding the normal signalling mechanisms that specify HSCs in the embryo, in part because recapitulating these requirements in vitro might provide a means to generate immune-compatible HSCs for transplantation. Recent embryological work has demonstrated the existence of previously unknown signalling requirements. Moreover, it is now clear that gene expression in the nearby somite is integrally involved in regulating the transition of the embryonic endothelium to a haemogenic fate. Here, we review current knowledge of the intraembryonic signals required for the specification of HSCs in vertebrates.
Collapse
Affiliation(s)
- Wilson K Clements
- Department of Hematology, Division of Experimental Hematology, St Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, Tennessee 38105, USA
| | | |
Collapse
|
18
|
Forrester LM, Jackson M. Mechanism of action of HOXB4 on the hematopoietic differentiation of embryonic stem cells. Stem Cells 2012; 30:379-85. [PMID: 22267295 DOI: 10.1002/stem.1036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells can be differentiated into hematopoietic lineages in vitro and hold promise for the future treatment of hematological disease. Differentiation strategies involving defined factors in serum-free conditions have been successful in producing hematopoietic progenitors and some mature cell types from mouse and human embryonic stem cells and induced pluripotent cells. However, these precisely defined protocols are relatively inefficient and have not been used successfully to produce hematopoietic stem cells capable of multilineage long-term reconstitution of the hematopoietic system. More complex differentiation induction strategies including coculture with stromal cells derived from sites of hematopoietic activity in vivo and enforced expression of reprogramming transcription factors, such as HOXB4, have been required to increase the efficiency of the differentiation procedure and to produce these most potent hematopoietic stem cells. We review the studies that have used HOXB4 to improve hematopoietic differentiation from pluripotent cells focusing on studies that have provided some insight into its mechanism of action. A better understanding of the molecular pathways involved in the action of HOXB4 might lead to more defined culture systems and safer protocols for clinical translation.
Collapse
Affiliation(s)
- Lesley M Forrester
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine Building, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
19
|
Cao N, Yao ZX. The hemangioblast: from concept to authentication. Anat Rec (Hoboken) 2011; 294:580-8. [PMID: 21370498 DOI: 10.1002/ar.21360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 01/13/2011] [Indexed: 11/06/2022]
Abstract
The hemangioblast hypothesis has been hotly debated for over a century. Hemangioblasts are defined as multipotent cells that can give rise to both hematopoietic cells and endothelial cells. The existence of hemangioblasts has now been confirmed and many important molecules and several signaling pathways are involved in their generation and differentiation. Fibroblast growth factor, renin-angiotensin system and runt-related transcription factor 1 (Runx1) direct the formation of hemangioblasts through highly selective gene expression patterns. On the other hand, the hemogenic endothelium theory and a newly discovered pattern of hematopoietic/endothelial differentiation make the genesis of hemangioblasts more complicated. But how hemangioblasts are formed and how hematopoietic cells or endothelial cells are derived from remains largely unknown. Here we summarize the current knowledge of the signaling pathways and molecules involved in hemangioblast development and suggest some future clinical applications.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | |
Collapse
|
20
|
Beyazit Y, Purnak T, Guven GS, Haznedaroglu IC. Local bone marrow Renin-Angiotensin system and atherosclerosis. Cardiol Res Pract 2010; 2011:714515. [PMID: 21234405 PMCID: PMC3014698 DOI: 10.4061/2011/714515] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/14/2010] [Accepted: 10/23/2010] [Indexed: 12/13/2022] Open
Abstract
Local hematopoietic bone marrow (BM) renin-angiotensin system (RAS) affects the growth, production, proliferation differentiation, and function of hematopoietic cells. Angiotensin II (Ang II), the dominant effector peptide of the RAS, regulates cellular growth in a wide variety of tissues in pathobiological states. RAS, especially Ang II and Ang II type 1 receptor (AT1R), has considerable proinflammatory and proatherogenic effects on the vessel wall, causing progression of atherosclerosis. Recent investigations, by analyzing several BM chimeric mice whose BM cells were positive or negative for AT1R, disclosed that AT1R in BM cells participates in the pathogenesis of atherosclerosis. Therefore, AT1R blocking not only in vascular cells but also in the BM could be an important therapeutic approach to prevent atherosclerosis. The aim of this paper is to review the function of local BM RAS in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Yavuz Beyazit
- Department of Gastroenterology, Turkiye Yuksek Ihtisas Teaching and Research Hospital, 06100 Ankara, Turkey
| | | | | | | |
Collapse
|