1
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
2
|
Mylonas KS, Karangelis D, Androutsopoulou V, Chalikias G, Tziakas D, Mikroulis D, Iliopoulos DC, Nikiteas N, Schizas D. Stem cell genes in atheromatosis: The role of
Klotho
,
HIF1α
,
OCT4
, and
BMP4. IUBMB Life 2022; 74:1003-1011. [DOI: 10.1002/iub.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Konstantinos S. Mylonas
- Department of Cardiac Surgery Onassis Cardiac Surgery Center Athens Greece
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimos Karangelis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Vasiliki Androutsopoulou
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - George Chalikias
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Tziakas
- Cardiology Department, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios Mikroulis
- Department of Cardiac Surgery, Democritus University of Thrace University Hospital of Alexandroupolis Alexandroupolis Greece
| | - Dimitrios C. Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research “N.S. Christeas”, School of Medicine National and Kapodistrian University of Athens Athens Greece
- Fourth Department of Cardiac Surgery HYGEIA Hospital Athens Greece
| | - Nikolaos Nikiteas
- Second Propaedeutic Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital, School of Medicine National and Kapodistrian University of Athens Athens Greece
| |
Collapse
|
3
|
Abstract
Treatment with bone morphogenetic protein 4 (BMP4) in human primed pluripotent stem cells (PSCs) for generating trophoblast lineage cells has sparked debate that the resulting cells are closer to amnion lineage cells rather than trophoblast. This study reports that trophoblast stem-like cells (TSLCs) can be generated from human primed PSCs by a short-term treatment of BMP4 without amnion lineage marker expression. In addition, we describe that TSLCs are self-renewing in long-term culture and bipotent as they can differentiate into functional extravillous trophoblasts and syncytiotrophoblasts. We propose an alternative method to generate an available model for studying human placental development from human primed PSCs. The placenta is a transient but important multifunctional organ crucial for healthy pregnancy for both mother and fetus. Nevertheless, limited access to human placenta samples and the paucity of a proper in vitro model system have hampered our understanding of the mechanisms underlying early human placental development and placenta-associated pregnancy complications. To overcome these constraints, we established a simple procedure with a short-term treatment of bone morphogenetic protein 4 (BMP4) in trophoblast stem cell culture medium (TSCM) to convert human primed pluripotent stem cells (PSCs) to trophoblast stem-like cells (TSLCs). These TSLCs show not only morphology and global gene expression profiles comparable to bona fide human trophoblast stem cells (TSCs) but also long-term self-renewal capacity with bipotency that allows the cells to differentiate into functional extravillous trophoblasts (EVT) and syncytiotrophoblasts (ST). These indicate that TSLCs are equivalent to genuine human TSCs. Our data suggest a straightforward approach to make human TSCs directly from preexisting primed PSCs and provide a valuable opportunity to study human placenta development and pathology from patients with placenta-related diseases.
Collapse
|
4
|
Luijkx D, Shankar V, van Blitterswijk C, Giselbrecht S, Vrij E. From Mice to Men: Generation of Human Blastocyst-Like Structures In Vitro. Front Cell Dev Biol 2022; 10:838356. [PMID: 35359453 PMCID: PMC8963787 DOI: 10.3389/fcell.2022.838356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/04/2023] Open
Abstract
Advances in the field of stem cell-based models have in recent years lead to the development of blastocyst-like structures termed blastoids. Blastoids can be used to study key events in mammalian pre-implantation development, as they mimic the blastocyst morphologically and transcriptionally, can progress to the post-implantation stage and can be generated in large numbers. Blastoids were originally developed using mouse pluripotent stem cells, and since several groups have successfully generated blastocyst models of the human system. Here we provide a comparison of the mouse and human protocols with the aim of deriving the core requirements for blastoid formation, discuss the models’ current ability to mimic blastocysts and give an outlook on potential future applications.
Collapse
Affiliation(s)
| | | | | | | | - Erik Vrij
- *Correspondence: Erik Vrij, ; Stefan Giselbrecht,
| |
Collapse
|
5
|
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology 2021; 163:363-376. [PMID: 34021586 DOI: 10.1111/imm.13372] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD) and leucine-rich repeat (LRR)-containing receptors or NOD-like receptors (NLRs) are cytosolic pattern recognition receptors, which sense conserved microbial patterns and host-derived danger signals to elicit innate immune responses. The activation of several prototypic NLRs, including NLR and pyrin domain (PYD) containing (NLRP) 1, NLRP3 and NLR and caspase recruitment domain (CARD) containing (NLRC) 4, results in the assembly of inflammasomes, which are large, cytoplasmic multiprotein signalling platforms responsible for the maturation and release of the pro-inflammatory cytokines IL-1β and IL-18, and for the induction of a specialized form of inflammatory cell death called pyroptosis. However, the function of other members of the NLR family, including NLRP7, are less well understood. NLRP7 has been linked to innate immune signalling, but its precise role is still controversial as it has been shown to positively and negatively affect inflammasome responses. Inflammasomes are essential for homeostasis and host defence, but inappropriate inflammasome responses due to hereditary mutations and somatic mosaicism in inflammasome components and defective regulation have been linked to a broad spectrum of human diseases. A compelling connection between NLRP7 mutations and reproductive diseases, and in particular molar pregnancy, has been established. However, the molecular mechanisms by which NLRP7 mutations contribute to reproductive diseases are largely unknown. In this review, we focus on NLRP7 and discuss the current evidence of its role in inflammasome regulation and its implication in human reproductive diseases.
Collapse
Affiliation(s)
- Jessica Carriere
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Dorfleutner
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Christian Stehlik
- Department of Academic Pathology, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Ogoyama M, Ohkuchi A, Takahashi H, Zhao D, Matsubara S, Takizawa T. LncRNA H19-Derived miR-675-5p Accelerates the Invasion of Extravillous Trophoblast Cells by Inhibiting GATA2 and Subsequently Activating Matrix Metalloproteinases. Int J Mol Sci 2021; 22:ijms22031237. [PMID: 33513878 PMCID: PMC7866107 DOI: 10.3390/ijms22031237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The invasion of extravillous trophoblast (EVT) cells into the maternal decidua, which plays a crucial role in the establishment of a successful pregnancy, is highly orchestrated by a complex array of regulatory mechanisms. Non-coding RNAs (ncRNAs) that fine-tune gene expression at epigenetic, transcriptional, and post-transcriptional levels are involved in the regulatory mechanisms of EVT cell invasion. However, little is known about the characteristic features of EVT-associated ncRNAs. To elucidate the gene expression profiles of both coding and non-coding transcripts (i.e., mRNAs, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs)) expressed in EVT cells, we performed RNA sequencing analysis of EVT cells isolated from first-trimester placentae. RNA sequencing analysis demonstrated that the lncRNA H19 and its derived miRNA miR-675-5p were enriched in EVT cells. Although miR-675-5p acts as a placental/trophoblast growth suppressor, there is little information on the involvement of miR-675-5p in trophoblast cell invasion. Next, we evaluated a possible role of miR-675-5p in EVT cell invasion using the EVT cell lines HTR-8/SVneo and HChEpC1b; overexpression of miR-675-5p significantly promoted the invasion of both EVT cell lines. The transcription factor gene GATA2 was shown to be a target of miR-675-5p; moreover, small interfering RNA-mediated GATA2 knockdown significantly promoted cell invasion. Furthermore, we identified MMP13 and MMP14 as downstream effectors of miR-675-5p/GATA2-dependent EVT cell invasion. These findings suggest that miR-675-5p-mediated GATA2 inhibition accelerates EVT cell invasion by upregulating matrix metalloproteinases.
Collapse
Affiliation(s)
- Manabu Ogoyama
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Dongwei Zhao
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Shigeki Matsubara
- Department of Obstetrics and Gynecology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498, Japan; (M.O.); (A.O.); (H.T.); (S.M.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
- Correspondence: ; Tel.: +81-3-3822-2131
| |
Collapse
|
7
|
Cheng LC, Zheng D, Baljinnyam E, Sun F, Ogami K, Yeung PL, Hoque M, Lu CW, Manley JL, Tian B. Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun 2020; 11:3182. [PMID: 32576858 PMCID: PMC7311474 DOI: 10.1038/s41467-020-16959-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Most eukaryotic genes produce alternative polyadenylation (APA) isoforms. Here we report that, unlike previously characterized cell lineages, differentiation of syncytiotrophoblast (SCT), a cell type critical for hormone production and secretion during pregnancy, elicits widespread transcript shortening through APA in 3'UTRs and in introns. This global APA change is observed in multiple in vitro trophoblast differentiation models, and in single cells from placentas at different stages of pregnancy. Strikingly, the transcript shortening is unrelated to cell proliferation, a feature previously associated with APA control, but instead accompanies increased secretory functions. We show that 3'UTR shortening leads to transcripts with higher mRNA stability, which augments transcriptional activation, especially for genes involved in secretion. Moreover, this mechanism, named secretion-coupled APA (SCAP), is also executed in B cell differentiation to plasma cells. Together, our data indicate that SCAP tailors the transcriptome during formation of secretory cells, boosting their protein production and secretion capacity.
Collapse
Affiliation(s)
- Larry C Cheng
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Erdene Baljinnyam
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Fangzheng Sun
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Koichi Ogami
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Percy Luk Yeung
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Chi-Wei Lu
- Robert Wood Johnson Medical School and Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Bin Tian
- Graduate Program in Quantitative Biomedicine, School of Graduate Studies, Rutgers University, New Brunswick, NJ 08901, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Program in Gene Expression and Regulation, and Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Unique transcriptomic landscapes identified in idiopathic spontaneous and infection related preterm births compared to normal term births. PLoS One 2019; 14:e0225062. [PMID: 31703110 PMCID: PMC6839872 DOI: 10.1371/journal.pone.0225062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Preterm birth (PTB) is leading contributor to infant death in the United States and globally, yet the underlying mechanistic causes are not well understood. Histopathological studies of preterm birth suggest advanced villous maturity may have a role in idiopathic spontaneous preterm birth (isPTB). To better understand pathological and molecular basis of isPTB, we compared placental villous transcriptomes from carefully phenotyped cohorts of PTB due to infection or isPTB between 28–36 weeks gestation and healthy term placentas. Transcriptomic analyses revealed a unique expression signature for isPTB distinct from the age-matched controls that were delivered prematurely due to infection. This signature included the upregulation of three IGF binding proteins (IGFBP1, IGFBP2, and IGFBP6), supporting a role for aberrant IGF signaling in isPTB. However, within the isPTB expression signature, we detected secondary signature of inflammatory markers including TNC, C3, CFH, and C1R, which have been associated with placental maturity. In contrast, the expression signature of the gestational age-matched infected samples included upregulation of proliferative genes along with cell cycling and mitosis pathways. Together, these data suggest an isPTB molecular signature of placental hypermaturity, likely contributing to the premature activation of inflammatory pathways associated with birth and providing a molecular basis for idiopathic spontaneous birth.
Collapse
|
9
|
Sosa-Madrid BS, Santacreu MA, Blasco A, Fontanesi L, Pena RN, Ibáñez-Escriche N. A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits. J Anim Breed Genet 2019; 137:123-138. [PMID: 31657065 DOI: 10.1111/jbg.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Uterine capacity (UC), defined as the total number of kits from unilaterally ovariectomized does at birth, has a high genetic correlation with litter size. The aim of our research was to identify genomic regions associated with litter size traits through a genomewide association study using rabbits from a divergent selection experiment for UC. A high-density SNP array (200K) was used to genotype 181 does from a control population, high and low UC lines. Traits included total number born (TNB), number born alive (NBA), number born dead, ovulation rate (OR), implanted embryos (IE) and embryo, foetal and prenatal survivals at second parity. We implemented the Bayes B method and the associations were tested by Bayes factors and the percentage of genomic variance (GV) explained by windows. Different genomic regions associated with TNB, NBA, IE and OR were found. These regions explained 7.36%, 1.27%, 15.87% and 3.95% of GV, respectively. Two consecutive windows on chromosome 17 were associated with TNB, NBA and IE. This genomic region accounted for 6.32% of GV of TNB. In this region, we found the BMP4, PTDGR, PTGER2, STYX and CDKN3 candidate genes which presented functional annotations linked to some reproductive processes. Our findings suggest that a genomic region on chromosome 17 has an important effect on litter size traits. However, further analyses are needed to validate this region in other maternal rabbit lines.
Collapse
Affiliation(s)
| | - María Antonia Santacreu
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Agustín Blasco
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Bologna, Italy
| | - Romi Natacha Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Center, Lleida, Spain
| | - Noelia Ibáñez-Escriche
- Institute for Animal Science and Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
10
|
Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, Ellinger A, Burkard TR, Fiala C, Pollheimer J, Mendjan S, Latos PA, Knöfler M. Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports 2018; 11:537-551. [PMID: 30078556 PMCID: PMC6092984 DOI: 10.1016/j.stemcr.2018.07.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/14/2023] Open
Abstract
Defective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling. Derivation of cytotrophoblast organoids from human placenta Long-term expansion of trophoblast organoids in a chemically defined medium Formation of the extravillous trophoblast lineage under defined culture conditions
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Viktoria Kunihs
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Ulrich Kaindl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Nandi P, Lim H, Torres-Garcia EJ, Lala PK. Human trophoblast stem cell self-renewal and differentiation: Role of decorin. Sci Rep 2018; 8:8977. [PMID: 29895842 PMCID: PMC5997742 DOI: 10.1038/s41598-018-27119-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/24/2018] [Indexed: 12/18/2022] Open
Abstract
The origin and regulation of stem cells sustaining trophoblast renewal in the human placenta remain unclear. Decorin, a leucine-rich proteoglycan restrains trophoblast proliferation, migration/invasiveness and endovascular differentiation, and local decorin overproduction is associated with preeclampsia (PE). Here, we tested the role of decorin in human trophoblast stem cell self-renewal and differentiation, using two models: an immortalized first trimester trophoblast cell line HTR-8/SVneo (HTR) and freshly isolated primary trophoblast (p-trophoblast) from early first trimester (6-9 weeks) placentas. Self-renewal capacity was measured by spheroid forming ability of single cells on ultra-low attachment plates for multiple generations. Markers of embryonic stem (ES) cells, trophoblast stem (TS) cells and trophoblast were used to identify stem cell hierarchy. Differentiation markers for syncytial and extravillous (EVT) pathways were employed to identify differentiated cells. Bewo cells were additionally used to explore DCN effects on syncytialization. Results reveal that the incidence of spheroid forming stem-like cells was 13-15% in HTR and 0.1-0.4%, in early first trimester p-trophoblast, including a stem cell hierarchy of two populations of ES and TS-like cells. DCN restrained ES cell self-renewal, promoted ES to TS transition and maintenance of TS cell stem-ness, but inhibited TS cell differentiation into both syncytial and EVT pathways.
Collapse
Affiliation(s)
- Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Hyobin Lim
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Eloy Jose Torres-Garcia
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
- Associate Scientist, Children's Health Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
12
|
Chang CW, Wakeland AK, Parast MM. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol 2018; 236:R43-R56. [PMID: 29259074 PMCID: PMC5741095 DOI: 10.1530/joe-17-0402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Development of the early embryo takes place under low oxygen tension. Under such conditions, the embryo implants and the trophectoderm, the outer layer of blastocyst, proliferate, forming the cytotrophoblastic shell, the early placenta. The cytotrophoblasts (CTBs) are the so-called epithelial 'stem cells' of the placenta, which, depending on the signals they receive, can differentiate into either extravillous trophoblast (EVT) or syncytiotrophoblast (STB). EVTs anchor the placenta to the uterine wall and remodel maternal spiral arterioles in order to provide ample blood supply to the growing fetus. STBs arise through CTB fusion, secrete hormones necessary for pregnancy maintenance and form a barrier across which nutrient and gas exchange can take place. The bulk of EVT differentiation occurs during the first trimester, before the onset of maternal arterial blood flow into the intervillous space of the placenta, and thus under low oxygen tension. These conditions affect numerous signaling pathways, including those acting through hypoxia-inducible factor, the nutrient sensor mTOR and the endoplasmic reticulum stress-induced unfolded protein response pathway. These pathways are known to be involved in placental development and disease, and specific components have even been identified as directly involved in lineage-specific trophoblast differentiation. Nevertheless, much controversy surrounds the role of hypoxia in trophoblast differentiation, particularly with EVT. This review summarizes previous studies on this topic, with the intent of integrating these results and synthesizing conclusions that resolve some of the controversy, but then also pointing to remaining areas, which require further investigation.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Anna K Wakeland
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Mana M Parast
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Nemashkalo A, Ruzo A, Heemskerk I, Warmflash A. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells. Development 2017; 144:3042-3053. [PMID: 28760810 DOI: 10.1242/dev.153239] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation.
Collapse
Affiliation(s)
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA .,Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
14
|
Saadeldin IM, Swelum AAA, Elsafadi M, Moumen AF, Alzahrani FA, Mahmood A, Alfayez M, Alowaimer AN. Isolation and characterization of the trophectoderm from the Arabian camel (Camelus dromedarius). Placenta 2017; 57:113-122. [PMID: 28863999 DOI: 10.1016/j.placenta.2017.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 12/12/2022]
Abstract
We isolated and characterized trophoblast from in vivo-derived camel embryos and compared with embryonic stem-like cells. Camel embryos were flushed on day 8 post-insemination and used to derive trophectoderm and embryonic stem-like cells under feeder-free culture conditions using a basement membrane matrix. Embryos were evaluated for the expression of POU5F1, MYC, KLF4, SOX2, CDX2, and KRT8 mRNA transcripts by relative quantitative polymerase chain reaction. Camel embryos grew and expanded to ∼4.5 mm and maintained their vesicular shape in vitro for 21 days post-insemination. Trophoblast and embryonic stem-like cell lines grew under feeder-free culture conditions and showed distinct morphological criteria and normal chromosomal counts. Embryonic stem-like cells showed positive staining in the alkaline phosphatase reaction. Trophoblast cells showed a significant increase in CDX2, KRT8, KLF4, and SOX2 expression compared with embryonic stem-like cells and whole embryos. Embryonic stem-like cells showed a significant decrease in CDX2 expression and increase in SOX2 and KRT8 expression compared to embryonic expression. POU5F1 and MYC expression showed no difference between embryos and both cell lines. We characterized embryo survival in vitro, particularly the derivation of trophectoderm and embryonic stem-like cells, providing a foundation for further analysis of early embryonic development and placentation in camels.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogeneology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Moumen
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh Branch, Rabigh 21911, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Morgani S, Nichols J, Hadjantonakis AK. The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC DEVELOPMENTAL BIOLOGY 2017; 17:7. [PMID: 28610558 PMCID: PMC5470286 DOI: 10.1186/s12861-017-0150-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
Pluripotency defines the propensity of a cell to differentiate into, and generate, all somatic, as well as germ cells. The epiblast of the early mammalian embryo is the founder population of all germ layer derivatives and thus represents the bona fide in vivo pluripotent cell population. The so-called pluripotent state spans several days of development and is lost during gastrulation as epiblast cells make fate decisions towards a mesoderm, endoderm or ectoderm identity. It is now widely recognized that the features of the pluripotent population evolve as development proceeds from the pre- to post-implantation period, marked by distinct transcriptional and epigenetic signatures. During this period of time epiblast cells mature through a continuum of pluripotent states with unique properties. Aspects of this pluripotent continuum can be captured in vitro in the form of stable pluripotent stem cell types. In this review we discuss the continuum of pluripotency existing within the mammalian embryo, using the mouse as a model, and the cognate stem cell types that can be derived and propagated in vitro. Furthermore, we speculate on embryonic stage-specific characteristics that could be utilized to identify novel, developmentally relevant, pluripotent states.
Collapse
Affiliation(s)
- Sophie Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
16
|
Rhee C, Edwards M, Dang C, Harris J, Brown M, Kim J, Tucker HO. ARID3A is required for mammalian placenta development. Dev Biol 2017; 422:83-91. [PMID: 27965054 PMCID: PMC5540318 DOI: 10.1016/j.ydbio.2016.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 11/17/2022]
Abstract
Previous studies in the mouse indicated that ARID3A plays a critical role in the first cell fate decision required for generation of trophectoderm (TE). Here, we demonstrate that ARID3A is widely expressed during mouse and human placentation and essential for early embryonic viability. ARID3A localizes to trophoblast giant cells and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Conventional Arid3a knockout embryos suffer restricted intrauterine growth with severe defects in placental structural organization. Arid3a null placentas show aberrant expression of subtype-specific markers as well as significant alteration in cytokines, chemokines and inflammatory response-related genes, including previously established markers of human placentation disorders. BMP4-mediated induction of trophoblast stem (TS)-like cells from human induced pluripotent stem cells results in ARID3A up-regulation and cytoplasmic to nuclear translocation. Overexpression of ARID3A in BMP4-mediated TS-like cells up-regulates TE markers, whereas pluripotency markers are down-regulated. Our results reveal an essential, conserved function for ARID3A in mammalian placental development through regulation of both intrinsic and extrinsic developmental programs.
Collapse
Affiliation(s)
- Catherine Rhee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Melissa Edwards
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States; Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Christine Dang
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - June Harris
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Mark Brown
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, United States
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Haley O Tucker
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|
17
|
Chang CW, Parast MM. Human trophoblast stem cells: Real or not real? Placenta 2017; 60 Suppl 1:S57-S60. [PMID: 28087122 DOI: 10.1016/j.placenta.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 10/24/2022]
Abstract
Abnormal trophoblast differentiation is the root cause of many placenta-based pregnancy complications, including preeclampsia and fetal growth restriction. Human trophoblast differentiation is difficult to study due to the lack of a stem cell model. Such a multipotent "trophoblast stem" (TS) cell, with the ability to differentiate into all trophoblast subtypes, has been derived from mouse blastocysts, but attempts to derive similar human cells have failed. We consider here several possibilities for the TS cell niche in the human placenta. Aside from discussion of such a niche in the pre-implantation blastocyst, we discuss evidence for these TS cells residing in the post-implantation villous cytotrophoblast layer, or even in the non-trophoblast portions, of the human placenta. It is our hope that recognition of the niche would lead to successful derivation and in vitro establishment of such cells, which could then be disseminated widely to the placental biology community for advancing the field. Availability of self-renewing human TS cells, whose gene expression and environment could be manipulated, will provide a platform, not just for the study of pathophysiology of placental disease, but also for the discovery of diagnostic biomarkers and therapeutic targets for common pregnancy complications.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
18
|
Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc Natl Acad Sci U S A 2016; 113:E7710-E7719. [PMID: 27849611 DOI: 10.1073/pnas.1612335113] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Development of the human placenta and its different epithelial trophoblasts is crucial for a successful pregnancy. Besides fusing into a multinuclear syncytium, the exchange surface between mother and fetus, progenitors develop into extravillous trophoblasts invading the maternal uterus and its spiral arteries. Migration into these vessels promotes remodelling and, as a consequence, adaption of blood flow to the fetal-placental unit. Defects in remodelling and trophoblast differentiation are associated with severe gestational diseases, such as preeclampsia. However, mechanisms controlling human trophoblast development are largely unknown. Herein, we show that Notch1 is one such critical regulator, programming primary trophoblasts into progenitors of the invasive differentiation pathway. At the 12th wk of gestation, Notch1 is exclusively detected in precursors of the extravillous trophoblast lineage, forming cell columns anchored to the uterine stroma. At the 6th wk, Notch1 is additionally expressed in clusters of villous trophoblasts underlying the syncytium, suggesting that the receptor initiates the invasive differentiation program in distal regions of the developing placental epithelium. Manipulation of Notch1 in primary trophoblast models demonstrated that the receptor promotes proliferation and survival of extravillous trophoblast progenitors. Notch1 intracellular domain induced genes associated with stemness of cell columns, myc and VE-cadherin, in Notch1- fusogenic precursors, and bound to the myc promoter and enhancer region at RBPJκ cognate sequences. In contrast, Notch1 repressed syncytialization and expression of TEAD4 and p63, two regulators controlling self-renewal of villous cytotrophoblasts. Our results revealed Notch1 as a key factor promoting development of progenitors of the extravillous trophoblast lineage in the human placenta.
Collapse
|
19
|
Heemskerk I, Warmflash A. Pluripotent stem cells as a model for embryonic patterning: From signaling dynamics to spatial organization in a dish. Dev Dyn 2016; 245:976-90. [PMID: 27404482 DOI: 10.1002/dvdy.24432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
In vivo studies have identified the signaling pathways and transcription factors involved in patterning the vertebrate embryo, but much remains unknown about how these are organized in space and time to orchestrate embryogenesis. Recently, embryonic stem cells have been established as a platform for studying spatial pattern formation and differentiation dynamics in the early mammalian embryo. The ease of observing and manipulating stem cell systems promises to fill gaps in our understanding of developmental dynamics and identify aspects that are uniquely human. Developmental Dynamics 245:976-990, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Idse Heemskerk
- Department of Biosciences, Rice University, Houston, Texas
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas. .,Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
20
|
Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A 2016; 113:E3882-91. [PMID: 27325764 DOI: 10.1073/pnas.1604747113] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trophoblast is the primary epithelial cell type in the placenta, a transient organ required for proper fetal growth and development. Different trophoblast subtypes are responsible for gas/nutrient exchange (syncytiotrophoblasts, STBs) and invasion and maternal vascular remodeling (extravillous trophoblasts, EVTs). Studies of early human placental development are severely hampered by the lack of a representative trophoblast stem cell (TSC) model with the capacity for self-renewal and the ability to differentiate into both STBs and EVTs. Primary cytotrophoblasts (CTBs) isolated from early-gestation (6-8 wk) human placentas are bipotential, a phenotype that is lost with increasing gestational age. We have identified a CDX2(+)/p63(+) CTB subpopulation in the early postimplantation human placenta that is significantly reduced later in gestation. We describe a reproducible protocol, using defined medium containing bone morphogenetic protein 4 by which human pluripotent stem cells (hPSCs) can be differentiated into CDX2(+)/p63(+) CTB stem-like cells. These cells can be replated and further differentiated into STB- and EVT-like cells, based on marker expression, hormone secretion, and invasive ability. As in primary CTBs, differentiation of hPSC-derived CTBs in low oxygen leads to reduced human chorionic gonadotropin secretion and STB-associated gene expression, instead promoting differentiation into HLA-G(+) EVTs in an hypoxia-inducible, factor-dependent manner. To validate further the utility of hPSC-derived CTBs, we demonstrated that differentiation of trisomy 21 (T21) hPSCs recapitulates the delayed CTB maturation and blunted STB differentiation seen in T21 placentae. Collectively, our data suggest that hPSCs are a valuable model of human placental development, enabling us to recapitulate processes that result in both normal and diseased pregnancies.
Collapse
|
21
|
Piechowski J. Trophoblastic-like transdifferentiation: A key to oncogenesis. Crit Rev Oncol Hematol 2016; 101:1-11. [DOI: 10.1016/j.critrevonc.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/29/2015] [Accepted: 01/19/2016] [Indexed: 12/18/2022] Open
|
22
|
|
23
|
Genbačev O, Vićovac L, Larocque N. The role of chorionic cytotrophoblasts in the smooth chorion fusion with parietal decidua. Placenta 2015; 36:716-22. [PMID: 26003500 DOI: 10.1016/j.placenta.2015.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND/PURPOSE Human placenta and chorion are rapidly growing transient embryonic organs built from diverse cell populations that are of either, ectodermal [placenta and chorion specific trophoblast (TB) cells], or mesodermal origin [villous core and chorionic mesenchyme]. The development of placenta and chorion is synchronized from the earliest phase of implantation. Little is known about the formative stages of the human chorion, in particular the steps between the formation of a smooth chorion and its fusion with the parietal decidua. METHODS We examined the available histological material using immunohistochemistry, and further analyzed in vitro the characteristics of the recently established and reported human self-renewing trophoblast progenitor cells (TBPC) derived from chorionic mesoderm. RESULTS Here, we provided evidence that the mechanism by which smooth chorion fuses with parietal decidua is the invasion of smooth chorionic cytotrophoblasts (schCTBs) into the uterine wall opposite to the implantation side. This process, which partially replicates some of the mechanisms of the blastocyst implantation, leads to the formation of a new zone of contacts between fetal and maternal cells. CONCLUSION We propose the schCTBs invasion of the parietal decidua as a mechanism of 'fusion' of the membranes, and that schCTBs in vivo contribute to the pool of the invasive schCTB.
Collapse
Affiliation(s)
- O Genbačev
- The Ely and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, USA; Center for Reproductive Sciences, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - L Vićovac
- Laboratory for Biology of Reproduction, Institute INEP, University of Belgrade, Belgrade, Serbia
| | - N Larocque
- The Ely and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, USA; Center for Reproductive Sciences, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Biology, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
24
|
Soncin F, Natale D, Parast MM. Signaling pathways in mouse and human trophoblast differentiation: a comparative review. Cell Mol Life Sci 2014; 72:1291-302. [PMID: 25430479 DOI: 10.1007/s00018-014-1794-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/02/2014] [Accepted: 11/20/2014] [Indexed: 12/01/2022]
Abstract
The mouse is often used as a model for understanding human placentation and offers multiple advantages, including the ability to manipulate gene expression in specific compartments and to derive trophoblast stem cells, which can be maintained or differentiated in vitro. Nevertheless, there are numerous differences between the mouse and human placentas, only the least of which are structural. This review aims to compare mouse and human placentation, with a focus on signaling pathways involved in trophoblast lineage-specific differentiation.
Collapse
Affiliation(s)
- Francesca Soncin
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, 9500 Gilman Drive, MC 0695, La Jolla, CA, 92093, USA,
| | | | | |
Collapse
|