1
|
Wang Z, An R, Zhang L, Li X, Zhang C. Exposure to Bisphenol A jeopardizes decidualization and consequently triggers preeclampsia by up-regulating CYP1B1. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137032. [PMID: 39740546 DOI: 10.1016/j.jhazmat.2024.137032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Preeclampsia (PE) is a pregnancy-related disease that poses a significant threat to the health of both the mother and the fetus. Previous studies have primarily focused on the role of the placenta in PE pathogenesis; however, normal decidualization is crucial for the subsequent development of the placenta and pregnancy. Bisphenol A (BPA) is an environmental endocrine disruptor commonly used in the synthesis of polycarbonate and epoxy resins. Overexposure to BPA can result in severe reproductive issues. To further investigate the effects of BPA exposure on pregnancy, C57BL/6 mice were continuously exposed to either 0 or 100 mg/kg of BPA in this study. As a result, these mice developed symptoms of hypertension and proteinuria, indicative of PE. Additionally, their decidualization process was impaired. Transcriptome sequencing of artificially induced decidua revealed a significant upregulation in the expression of CYP1B1 within the BPA-treated group. This upregulation accelerated the metabolism of estrogen and progesterone, leading to significant decreases in their levels. Furthermore, the expression levels of estrogen and progesterone receptors and their responding genes were significantly reduced. These findings suggest that BPA exposure can negatively impact decidualization and placental development, potentially contributing to the development of PE.
Collapse
Affiliation(s)
- Zongting Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ruohe An
- Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaohui Li
- Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China; Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
2
|
Lee S, Arffman RK, Komsi EK, Lindgren O, Kemppainen J, Kask K, Saare M, Salumets A, Piltonen TT. Dynamic changes in AI-based analysis of endometrial cellular composition: Analysis of PCOS and RIF endometrium. J Pathol Inform 2024; 15:100364. [PMID: 38445292 PMCID: PMC10914580 DOI: 10.1016/j.jpi.2024.100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Background The human endometrium undergoes a monthly cycle of tissue growth and degeneration. During the mid-secretory phase, the endometrium establishes an optimal niche for embryo implantation by regulating cellular composition (e.g., epithelial and stromal cells) and differentiation. Impaired endometrial development observed in conditions such as polycystic ovary syndrome (PCOS) and recurrent implantation failure (RIF) contributes to infertility. Surprisingly, despite the importance of the endometrial lining properly developing prior to pregnancy, precise measures of endometrial cellular composition in these two infertility-associated conditions are entirely lacking. Additionally, current methods for measuring the epithelial and stromal area have limitations, including intra- and inter-observer variability and efficiency. Methods We utilized a deep-learning artificial intelligence (AI) model, created on a cloud-based platform and developed in our previous study. The AI model underwent training to segment both areas populated by epithelial and stromal endometrial cells. During the training step, a total of 28.36 mm2 areas were annotated, comprising 2.56 mm2 of epithelium and 24.87 mm2 of stroma. Two experienced pathologists validated the performance of the AI model. 73 endometrial samples from healthy control women were included in the sample set to establish cycle phase-dependent dynamics of the endometrial epithelial-to-stroma ratio from the proliferative (PE) to secretory (SE) phases. In addition, 91 samples from PCOS cases, accounting for the presence or absence of ovulation and representing all menstrual cycle phases, and 29 samples from RIF patients on day 5 after progesterone administration in the hormone replacement treatment cycle were also included and analyzed in terms of cellular composition. Results Our AI model exhibited reliable and reproducible performance in delineating epithelial and stromal compartments, achieving an accuracy of 92.40% and 99.23%, respectively. Moreover, the performance of the AI model was comparable to the pathologists' assessment, with F1 scores exceeding 82% for the epithelium and >96% for the stroma. Next, we compared the endometrial epithelial-to-stromal ratio during the menstrual cycle in women with PCOS and in relation to endometrial receptivity status in RIF patients. The ovulatory PCOS endometrium exhibited epithelial cell proportions similar to those of control and healthy women's samples in every cycle phase, from the PE to the late SE, correlating with progesterone levels (control SE, r2 = 0.64, FDR < 0.001; PCOS SE, r2 = 0.52, FDR < 0.001). The mid-SE endometrium showed the highest epithelial percentage compared to both the early and late SE endometrium in both healthy women and PCOS patients. Anovulatory PCOS cases showed epithelial cellular fractions comparable to those of PCOS cases in the PE (Anovulatory, 14.54%; PCOS PE, 15.56%, p = 1.00). We did not observe significant differences in the epithelial-to-stroma ratio in the hormone-induced endometrium in RIF patients with different receptivity statuses. Conclusion The AI model rapidly and accurately identifies endometrial histology features by calculating areas occupied by epithelial and stromal cells. The AI model demonstrates changes in epithelial cellular proportions according to the menstrual cycle phase and reveals no changes in epithelial cellular proportions based on PCOS and RIF conditions. In conclusion, the AI model can potentially improve endometrial histology assessment by accelerating the analysis of the cellular composition of the tissue and by ensuring maximal objectivity for research and clinical purposes.
Collapse
Affiliation(s)
- Seungbaek Lee
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu 90220, Finland
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
| | - Riikka K. Arffman
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu 90220, Finland
| | - Elina K. Komsi
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu 90220, Finland
| | - Outi Lindgren
- Department of Pathology, Oulu University Hospital, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
| | - Janette Kemppainen
- Department of Pathology, Oulu University Hospital, Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
| | - Keiu Kask
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
- Competence Centre on Health Technologies, Tartu 51014, Estonia
| | - Merli Saare
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
- Competence Centre on Health Technologies, Tartu 51014, Estonia
| | - Andres Salumets
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia
- Competence Centre on Health Technologies, Tartu 51014, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm 14152, Sweden
| | - Terhi T. Piltonen
- Department of Obstetrics and Gynaecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu 90220, Finland
| |
Collapse
|
3
|
Basanta S, Stadtmauer DJ, Maziarz JD, McDonough-Goldstein CE, Cole AG, Dagdas G, Wagner GP, Pavličev M. Hallmarks of uterine receptivity predate placental mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621939. [PMID: 39574771 PMCID: PMC11580939 DOI: 10.1101/2024.11.04.621939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Embryo implantation requires tightly coordinated signaling between the blastocyst and the endometrium, and is crucial for the establishment of a uteroplacental unit that persists until term in eutherian mammals. In contrast, marsupials, with a unique life cycle and short gestation, make only brief fetal-maternal contact and lack implantation. To better understand the evolutionary link between eutherian implantation and its ancestral equivalent in marsupials, we compare single-cell transcriptomes from the receptive and non-receptive endometrium of the mouse and guinea pig with that of the opossum, a marsupial. We identify substantial differences between rodent peri-implantation endometrium and opossum placental attachment, including differences in the diversity and abundance of stromal and epithelial cells which parallel the difference between histotrophic and hemotrophic provisioning strategies. We also identify a window of conserved epithelial gene expression between the opossum shelled blastocyst stage and rodent peri-implantation, including IHH and LIF . We find strong conservation of blastocyst proteases, steroid synthetases, Wnt and BMP signals between eutherians and the opossum despite its lack of implantation. Finally, we show that the signaling repertoire of the maternal uterine epithelium during implantation displays substantial overlap with that of the post-implantation placental trophoblast, suggesting that the fetal trophoblast can compensate for the loss of endometrial epithelium in eutherian invasive placentation. Together, our results suggest that eutherian implantation primarily involved the re-wiring of maternal signaling networks, some of which were already present in the therian ancestor, and points towards an essential role of maternal innovations in the evolution of invasive placentation.
Collapse
Affiliation(s)
- Silvia Basanta
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Daniel J. Stadtmauer
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jamie D. Maziarz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Caitlin E. McDonough-Goldstein
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Integrative Biology, University of Wisconsin-Madison, WI, USA
| | - Alison G. Cole
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Günter P. Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mihaela Pavličev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
4
|
Chen S, Shi W, Ran F, Liu C, Luo H, Wu L, Wu Y, Zhang T, Yang Z. The activation of cGAS-STING pathway causes abnormal uterine receptivity in aged mice. Aging Cell 2024; 23:e14303. [PMID: 39113346 PMCID: PMC11561655 DOI: 10.1111/acel.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 11/15/2024] Open
Abstract
Maternal age is one of the most important factors affecting the success of maternal pregnancy. Uterine aging is the leading cause of pregnancy failure in older women. However, how uterine aging affects uterine receptivity and decidualization is unclear. In this study, naturally aged one-year-old female mice were used to investigate effects of maternal age on embryo implantation during early pregnancy. In our study, we found abnormal uterine receptivity in aged mice. Aged mouse uterus indicates a decrease in nuclear LAMIN A, and an increase in PRELAMIN A and PROGERIN. In aged mouse uterus, double-stranded DNA (dsDNA) in cytoplasmic fraction is significantly increased. PROGERIN overexpression in mouse uterine epithelial cells and epithelial organoids leads to nuclear DNA leakage and impaired uterine receptivity. DNase I, DNase II, and TREX1 are obviously reduced in aged mouse uterus. Treatments with foreign DNA or STING agonist significantly downregulate uterine receptivity markers and activate cGAS-STING pathway. Uterine estrogen (E2) concentration is significantly increased in aged mice. After ovariectomized mice are treated with a high level of E2, there are significant increase of PROGERIN and cytoplasmic DNA, and activation of cGAS-STING pathway. CD14 is significantly increased in aged uterus. Intrauterine CD14 injection inhibits embryo implantation. In vitro CD14 treatment of cultured epithelial cells or epithelial organoids decreases uterine receptivity. Uterine abnormality in aged mouse can be partially rescued by STING inhibitor. In conclusion, uterine PROGERIN increase in aged mouse uterus results in cytoplasmic DNA accumulation and cGAS-STING pathway activation. CD14 secretion in aged uterus impairs uterine receptivity.
Collapse
Affiliation(s)
- Si‐Ting Chen
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of EducationGuizhou UniversityGuiyangChina
- College of Animal ScienceGuizhou UniversityGuiyangChina
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Wen‐Wen Shi
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Feng Ran
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of EducationGuizhou UniversityGuiyangChina
- College of Animal ScienceGuizhou UniversityGuiyangChina
| | - Cheng‐Kan Liu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Hui‐Na Luo
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Li‐Juan Wu
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of EducationGuizhou UniversityGuiyangChina
- College of Animal ScienceGuizhou UniversityGuiyangChina
| | - Ying Wu
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Tong‐Tong Zhang
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| | - Zeng‐Ming Yang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of EducationGuizhou UniversityGuiyangChina
- College of Animal ScienceGuizhou UniversityGuiyangChina
- College of Veterinary MedicineSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
5
|
Liu CK, He YY, Chen ST, Shi WW, Wang Y, Luo HN, Yang ZM. Histamine promotes mouse decidualization through stimulating epithelial amphiregulin release. FEBS J 2024; 291:3924-3937. [PMID: 38973142 DOI: 10.1111/febs.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Accumulating evidence shows that inflammation is essential for embryo implantation and decidualization. Histamine, a proinflammatory factor that is present in almost all mammalian tissues, is synthesized through decarboxylating histidine by histidine decarboxylase (HDC). Although histamine is known to be essential for decidualization, the underlying mechanism remains undefined. In the present study, histamine had no obvious direct effects on in vitro decidualization in mice. However, the obvious differences in HDC protein levels between day 4 of pregnancy and day 4 of pseudopregnancy, as well as between delayed and activated implantation, suggested that the blastocyst may be involved in regulating HDC expression. Furthermore, blastocyst-derived tumor necrosis factor α (TNFα) significantly increased HDC levels in the luminal epithelium. Histamine increased the levels of amphiregulin (AREG) and disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) proteins, which was abrogated by treatment with famotidine, a specific histamine type 2 receptor (H2R) inhibitor, or by TPAI-1 (a specific inhibitor of ADAM17). Intraluminal injection of urocanic acid (HDC inhibitor) on day 4 of pregnancy significantly reduced the number of implantation sites on day 5 of pregnancy. TNFα-stimulated increases in HDC, AREG and ADAM17 protein levels was abrogated by urocanic acid, a specific inhibitor of HDC. Additionally, AREG treatment significantly promoted in vitro decidualization. Collectively, our data suggests that blastocyst-derived TNFα induces luminal epithelial histamine secretion, and histamine increases mouse decidualization through ADAM17-mediated AREG release.
Collapse
Affiliation(s)
- Cheng-Kan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yu-Ying He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hui-Na Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zeng-Ming Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Lu Y, Shao Y, Cui W, Jia Z, Zhang Q, Zhao Q, Chen Z, Yan J, Chu B, Yuan J. Excessive Lipid Peroxidation in Uterine Epithelium Causes Implantation Failure and Pregnancy Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302887. [PMID: 38044324 PMCID: PMC10811501 DOI: 10.1002/advs.202302887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/06/2023] [Indexed: 12/05/2023]
Abstract
The uterine epithelium undergoes a dramatic spatiotemporal transformation to enter a receptive state, involving a complex interaction between ovarian hormones and signals from stromal and epithelial cells. Redox homeostasis is critical for cellular physiological steady state; emerging evidence reveals that excessive lipid peroxides derail redox homeostasis, causing various diseases. However, the role of redox homeostasis in early pregnancy remains largely unknown. It is found that uterine deletion of Glutathione peroxidase 4 (GPX4), a key factor in repairing oxidative damage to lipids, confers defective implantation, leading to infertility. To further pinpoint Gpx4's role in different cell types, uterine epithelial-specific Gpx4 is deleted by a lactotransferrin (Ltf)-Cre driver; the resultant females are infertile, suggesting increased lipid peroxidation levels in uterine epithelium compromises receptivity and implantation. Lipid peroxidation inhibitor administration failed to rescue implantation due to carbonylation of major receptive-related proteins underlying high lipid reactive oxygen species. Intriguingly, superimposition of Acyl-CoA synthetase long-chain family member 4 (ACSL4), an enzyme that promotes biosynthesis of phospholipid hydroperoxides, along with uterine epithelial GPX4 deletion, preserves reproductive capacity. This study reveals the pernicious impact of unbalanced redox signaling on embryo implantation and suggests the obliteration of lipid peroxides as a possible therapeutic approach to prevent implantation defects.
Collapse
Affiliation(s)
- Yafang Lu
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yuhan Shao
- Center for Reproductive MedicineShandong UniversityJinanShandong250021China
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandong250021China
| | - Weiwei Cui
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Zhaoyu Jia
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qian Zhang
- Center for Reproductive MedicineShandong UniversityJinanShandong250021China
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandong250021China
| | - Qing Zhao
- Center for Reproductive MedicineShandong UniversityJinanShandong250021China
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandong250021China
| | - Zi‐Jiang Chen
- Center for Reproductive MedicineShandong UniversityJinanShandong250021China
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandong250021China
| | - Junhao Yan
- Center for Reproductive MedicineShandong UniversityJinanShandong250021China
- Key Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinanShandong250021China
| | - Bo Chu
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jia Yuan
- Advanced Medical Research InstituteCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
7
|
Beal JR, Ma Q, Bagchi IC, Bagchi MK. Role of Endometrial Extracellular Vesicles in Mediating Cell-to-Cell Communication in the Uterus: A Review. Cells 2023; 12:2584. [PMID: 37998319 PMCID: PMC10670844 DOI: 10.3390/cells12222584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
There are several critical events that occur in the uterus during early pregnancy which are necessary for the establishment and maintenance of pregnancy. These events include blastocyst implantation, uterine decidualization, uterine neoangiogenesis, differentiation of trophoblast stem cells into different trophoblast cell lineages, and formation of a placenta. These processes involve several different cell types within the pregnant uterus. Communication between these cell types must be intricately coordinated for successful embryo implantation and the formation of a functional maternal-fetal interface in the placenta. Understanding how this intricate coordination transpires has been a focus of researchers in the field for many years. It has long been understood that maternal endometrial tissue plays a key role in intercellular signaling during early pregnancy, sending signals to nearby tissues in a paracrine manner. Recently, insights have been obtained into the mechanisms by which these signaling events occur. Notably, the endometrium has been shown to secrete extracellular vesicles (EVs) that contain crucial cargo (proteins, lipids, RNA, miRNA) that are taken up by recipient cells to initiate a response leading to the occurrence of critical events during implantation and placentation. In this review, we aim to summarize the role that endometrium-derived EVs play in mediating cell-to-cell communications within the pregnant uterus to orchestrate the events that must occur to establish and maintain pregnancy. We will also discuss how aberrant endometrial EV signaling may lead to pathophysiological conditions, such as endometriosis and infertility.
Collapse
Affiliation(s)
- Jacob R. Beal
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiuyan Ma
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Abdelkareem AO, Iews MS, Ait-Allah AS, Rasheed SM, Helmy YA, Habte R, Abdelhafez FF, Bedaiwy MA. Immunohistochemistry of Leukemia Inhibitory Factor and Integrin αVβ3 in Mouse Endometrium Following Kisspeptin-54 Ovulation Trigger. Reprod Sci 2023; 30:3084-3091. [PMID: 37126206 DOI: 10.1007/s43032-023-01243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/09/2023] [Indexed: 05/02/2023]
Abstract
Kisspeptin (KP) is a group of hypothalamic neuropeptides encoded by KISS-1 gene. KP-54, a 54-amino-acid peptide, helps regulate the hypothalamic-pituitary-ovarian axis and plays a potential role in implantation. C57BL/6 J female mice were superovulated via intraperitoneal injection of 5 International Units (IU) pregnant mare serum gonadotrophin (day 1). Forty-eight hours later, mice (5/group) were injected with phosphate-buffered saline (PBS) (group A), 5 IU human chorionic gonadotrophin (hCG) (group B), or 3 nmol KP-54 (group C). On day 7, mice were euthanized and uteri excised to create paraformaldehyde-fixed paraffin-embedded sections that were immunostained for the implantation markers: leukemia inhibitory factor (LIF) and integrin αVβ3 (ITG αVβ3). Slides were scored for intensity of staining in endometrial glandular epithelium (GE) and stromal cells (SCs) via histoscore (H-score). Data were analyzed using the Kruskal-Wallis test followed by the Mann-Whitney U test for pairwise comparisons. LIF expression was significantly higher in GE and SCs of mice triggered with KP-54 compared to placebo (P = .009 for both), but only higher than hCG trigger group in SCs (P = .009). Meanwhile, ITG αVβ3 expression was significantly higher in SCs of mice triggered with KP-54 compared to placebo (P = .028). In conclusion, using KP-54 as an ovulation trigger resulted in higher expression of the implantation markers LIF and ITG αVβ3 in mice endometrium compared to hCG or placebo. This suggests a potential role for KP-54 trigger in improving embryo implantation in clinical IVF. However, further studies are needed to correlate these results with clinical implantation rates and pregnancy outcomes.
Collapse
Affiliation(s)
- Amr O Abdelkareem
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mahmoud S Iews
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abdou S Ait-Allah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Salah M Rasheed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Yasser A Helmy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ruth Habte
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Faten F Abdelhafez
- Department of Obstetrics and Gynecology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Bedaiwy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Kannan A, Beal JR, Neff AM, Bagchi MK, Bagchi IC. Runx1 regulates critical factors that control uterine angiogenesis and trophoblast differentiation during placental development. PNAS NEXUS 2023; 2:pgad215. [PMID: 37416873 PMCID: PMC10321400 DOI: 10.1093/pnasnexus/pgad215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.
Collapse
Affiliation(s)
- Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, 2001 S Lincoln, Urbana, IL 61802, USA
| | - Jacob R Beal
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 407 S Goodwin, Urbana, IL 61801, USA
| | - Alison M Neff
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, 407 S Goodwin, Urbana, IL 61801, USA
| | | | | |
Collapse
|
10
|
Godakumara K, Heath PR, Fazeli A. Rhythm of the First Language: Dynamics of Extracellular Vesicle-Based Embryo-Maternal Communication in the Pre-Implantation Microenvironment. Int J Mol Sci 2023; 24:ijms24076811. [PMID: 37047784 PMCID: PMC10095160 DOI: 10.3390/ijms24076811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
One of the most critical steps in mammalian reproduction is implantation. Embryos with an impaired capacity for embryo-maternal crosstalk are thought to have a reduced potential for implantation. One agent of embryo-maternal communication is extracellular vesicles (EV). EVs are lipid bilayer-bound biological nanoparticles implicated in intercellular communication between many of the known cell types. In the current study, we isolated EVs from trophoblast analogue JAr spheroids and supplemented the EVs with receptive endometrium analogue RL95-2 cells to simulate pre-implantation embryo-maternal dialogue. The transcriptome of the endometrial cells was examined at 30 min, 4 h and 48 h intervals using Oxford Nanopore® technology. At the time points, 30 min, 4 h and 48 h, the endometrial cells showed a significantly altered transcriptome. It seems trophoblast EVs induce a swift and drastic effect on the endometrial transcriptome. The effect peaks at around 4 h of EV supplementation, indicating a generalized effect on cell physiology. Alterations are especially apparent in biological pathways critical to embryonic implantation, such as extracellular matrix-receptor interactions and cytokine-receptor interactions. These observations can be helpful in elucidating the dynamics of embryo-maternal communication in the pre-implantation period.
Collapse
Affiliation(s)
- Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITRAN), University of Sheffield, 385a Glossop Rd., Broomhall, Sheffield S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 50411 Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 14B Ravila, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
11
|
Kannan A, Beal JR, Neff AM, Bagchi MK, Bagchi IC. Runx1 regulates critical factors that control uterine angiogenesis and trophoblast differentiation during placental development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.532831. [PMID: 36993295 PMCID: PMC10055213 DOI: 10.1101/2023.03.21.532831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. SIGNIFICANCE A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.
Collapse
|
12
|
Ali R, Iqbal MUN, Rehman R, Khan TA. Interplay of "leukemia inhibitory factor receptor gene" (rs3099124) polymorphism, leukemia inhibitory factor and ovarian steroids with unexplained infertility. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:718-730. [PMID: 36924393 DOI: 10.1080/15257770.2023.2188911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE OF THE STUDY To explore the association of leukemia inhibitory factor receptor (LIFR) gene variant rs3099124, ovarian steroids, and leukemia inhibitory factor with unexplained infertility in Pakistani females. METHODOLOGY A case-control investigation in which eighty-one (81) females with unexplained infertility and one hundred and sixty-two (162) fertile counterparts (age and body mass index compared) were recruited between October 2016 and 2018. Ten milliliters of venous blood was collected from all participants. "Genomic DNA" was taken out from lymphocytes in peripheral blood samples. "Tetra Amplification Refractory Mutation System Polymerase Chain Reaction (T-ARMS-PCR)" was constructed through software "Primer-I". Amplification was carried out by "T-ARMS-PCR" followed by subsequent sequencing for confirmation and extensive consonance. Estradiol, Progesterone and Leukemia Inhibitory Factor (LIF) were measured in serum by ELISA. RESULTS Statistically significant difference was noticed in genotype frequency in "LIFR-gene variant; rs3099124" (χ2 = 28.222, P value < 0.01) between research participants. Although, rs "3099124" "AA" (OR = 0.000; 95%CI = 0-0) and "GA" genotypes (OR = 0.525; 95%CI = 0.226-1.22) showed non-significant safety/protection against unexplained infertility yet minor/risk allele "A" frequency was greater in women with unexplained infertility suggesting a possible explanation of implantation failure. LIF concentration varied between fertile and infertile groups (χ2 = 9.857, P < 0.05) revealing significant threat of unexplained infertility in women with decreased LIF concentration (OR = 2.316, 95%CI = 1.214-4.416). Progesterone was significantly related to unexplained infertility in both study groups (χ2 = 20.347, P < 0.05). High progesterone reduced the possibility of unexplained infertility (OR = 0.306; 95% CI = 0.166-0.567). CONCLUSION LIFR gene variation (rs3099124) and reduced LIF secretion may cause implantation failure in women with unexplained infertility.
Collapse
Affiliation(s)
- Rabiya Ali
- Department of Physiology, Karachi Institute of Medical Sciences (KIMS), CMH, Malir Cantt., Karachi, Pakistan
| | | | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | | |
Collapse
|
13
|
Cheng J, Sha Z, Li J, Li B, Luo X, Zhang Z, Zhou Y, Chen S, Wang Y. Progress on the Role of Estrogen and Progesterone Signaling in Mouse Embryo Implantation and Decidualization. Reprod Sci 2023; 30:1746-1757. [PMID: 36694081 DOI: 10.1007/s43032-023-01169-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
Embryo implantation and decidualization are key steps in establishing a successful pregnancy. Defects in embryo implantation and decidualization can cause a series of adverse chain reactions which can contribute to harmful pregnancy outcomes, such as embryo growth retardation, preeclampsia, miscarriage, premature birth, and so on. Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Decidualization, characterized by proliferation and differentiation of uterine stromal cells, is one of the essential conditions for blastocyst implantation, placental formation, and maintenance of pregnancy and is indispensable for the establishment of pregnancy in many species. Embryo implantation and decidualization are closely regulated by estrogen and progesterone secreted by the ovaries. Many cellular events and molecular signaling network pathways are involved in this process. This article reviews the recent advances in the molecular mechanisms of estrogen- and progesterone-regulating uterine receptivity establishment, blastocyst implantation, and decidualization, in order to better understand the underlying molecular mechanisms of hormonal regulation of embryo implantation and to develop new strategies for preventing or treating embryo implantation defects and improving the pregnancy rate of women.
Collapse
Affiliation(s)
- Jianghong Cheng
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Zizhuo Sha
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Junyang Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Bixuan Li
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Zhiming Zhang
- Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China.,Department of Breast Surgery, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.,Teaching Hospital of Fujian Medical University, Fuzhou, Fujian, 350004, People's Republic of China
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China. .,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, 361003, China.
| | - Yang Wang
- Xi'An Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'An Medical University, Xi'An 710021, China.
| |
Collapse
|
14
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
15
|
Koel M, Krjutškov K, Saare M, Samuel K, Lubenets D, Katayama S, Einarsdottir E, Vargas E, Sola-Leyva A, Lalitkumar PG, Gemzell-Danielsson K, Blesa D, Simon C, Lanner F, Kere J, Salumets A, Altmäe S. Human endometrial cell-type-specific RNA sequencing provides new insights into the embryo-endometrium interplay. Hum Reprod Open 2022; 2022:hoac043. [PMID: 36339249 PMCID: PMC9632455 DOI: 10.1093/hropen/hoac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/21/2022] [Indexed: 08/17/2023] Open
Abstract
STUDY QUESTION Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin β1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.
Collapse
Affiliation(s)
- Mariann Koel
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Merli Saare
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Dmitri Lubenets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Shintaro Katayama
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Elisabet Einarsdottir
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Science for Life Laboratory, Department of Gene Technology, KTH-Royal Institute of Technology, Solna, Sweden
| | - Eva Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Alberto Sola-Leyva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Parameswaran Grace Lalitkumar
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women’s and Children’s Health, Division of Obstetrics and Gynecology, Karolinska Institutet, and Karolinska Univeristy Hospital, Stockholm,Sweden
| | - David Blesa
- Department of Product Development, IGENOMIX, Valencia, Spain
| | - Carlos Simon
- Department of Obstetrics and Gynecology, Valencia University and INCLIVA in Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, BIDMC, Harvard University, Boston, MA, USA
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
- Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| | - Signe Altmäe
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm,Sweden
| |
Collapse
|
16
|
Park DR, Yeo CH, Yoon JE, Hong EY, Choi BR, Lee YJ, Ha IH. Polygonatum sibiricum improves menopause symptoms by regulating hormone receptor balance in an ovariectomized mouse model. Biomed Pharmacother 2022; 153:113385. [DOI: 10.1016/j.biopha.2022.113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
|
17
|
P38α MAPK is a gatekeeper of uterine progesterone responsiveness at peri-implantation via Ube3c-mediated PGR degradation. Proc Natl Acad Sci U S A 2022; 119:e2206000119. [PMID: 35914132 PMCID: PMC9371708 DOI: 10.1073/pnas.2206000119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Estrogen and progesterone specify the establishment of uterine receptivity mainly through their respective nuclear receptors, ER and PR. PR is transcriptionally induced by estrogen-ER signaling in the endometrium, but how the protein homeostasis of PR in the endometrium is regulated remains elusive. Here, we demonstrated that the uterine-selective depletion of P38α derails normal uterine receptivity ascribed to the dramatic down-regulation of PR protein and disordered progesterone responsiveness in the uterine stromal compartment, leading to defective implantation and female infertility. Specifically, Ube3c, an HECT family E3 ubiquitin ligase, targets PR for polyubiquitination and thus proteasome degradation in the absence of P38α. Moreover, we discovered that P38α restrains the polyubiquitination activity of Ube3c toward PR by phosphorylating the Ube3c at serine741 . In summary, we provided genetic evidence for the regulation of PR protein stability in the endometrium by P38α and identified Ube3c, whose activity was modulated by P38α-mediated phosphorylation, as an E3 ubiquitin ligase for PR in the uterus.
Collapse
|
18
|
Wang X, Chen C, Wang L, Su Y, Li B, Xiao L, Lin Z, Sheng X, Qi X, Ni H, Guo Y. Specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine fate for bovine early implantation. J Reprod Immunol 2022; 153:103677. [PMID: 35907379 DOI: 10.1016/j.jri.2022.103677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Interferon-tau (IFNτ), as an antiluteolytic factor secreted by trophoderm during the pregnancy of ruminants, actually functions by activating the IFNτ receptor 1 (IFNAR1) and IFNτ receptor 2 (IFNAR2). However, it has not been clearly understood how IFNτ-IFNAR cascade regulation processes between the embryo and uterine epithelial cells in ruminants. In this study, we found the expression and location of IFNτ in the bovine blastocysts from different production sources. IFNτ, IFNAR1 and IFNAR2 were all located in the trophoblast cells of the blastocyst. However, the fluorescence intensity of IFNAR1 was consistent with that of IFNτ. Antagonizing the expressions of IFNAR1 and IFNAR2 in embryos and co-culture with endometrial epithelium cells (EECs) reduced the expressions of Integrin αv β3, WNT7A, and ISG15 in EECs. Knocking out IFNAR1 and IFNAR2 reduce the expressions of Integrin αv β3 and WNT7A in EECs, the deletion of IFNAR2 gene has a greater impact than that of IFNAR1 gene. IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- EECs were co-cultured with IVF embryos, the expression of Integrin αv β3 was inhibited, and the inhibition of IFNAR1+/IFNAR2- was much stronger, and the expression of WNT7A was not inhibited. The expressions of Integrin αv β3 and WNT7A did not change significantly after IFNAR1-/IFNAR2+ and IFNAR1+/IFNAR2- co-culture with PA embryos. All of these results strongly suggest that specific activation of embryonic IFNAR1 and endometrial IFNAR2 induced by embryonic IFNτ directs normal uterine preparation for bovine early implantation.
Collapse
Affiliation(s)
- Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Chaolei Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lijuan Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yunze Su
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Boyu Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zili Lin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
19
|
McCoski SR, Cockrum RR, Ealy AD. Short Communication: Maternal obesity alters ovine endometrial gene expression during peri-implantation development. J Anim Sci 2022; 100:skac090. [PMID: 35772750 PMCID: PMC9246656 DOI: 10.1093/jas/skac090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to maternal obesity in utero is associated with marked developmental effects in offspring that may not be evident until adulthood. Mechanisms regulating the programming effects of maternal obesity on fetal development have been reported, but little is known about how maternal obesity affects the earliest periods of embryonic development. This work explored how obesity influences endometrial gene expression during the peri-implantation period using a sheep model. Ewes were assigned randomly to diets that produced an obese state or maintained a lean state. After 4 mo, obese and lean ewes were bred and then euthanized at day 14 post-breeding. The uterus was excised, conceptuses were flushed, and endometrial tissue was collected. Isolated RNA from endometrial tissues (n = 6 ewes/treatment) were sequenced using an Illumina-based platform. Reads were mapped to the Ovis aries genome (Oar_4.0). Differential gene expression was determined, and results were filtered (false discovery rate ≤ 0.05 and ≥2-fold change, ≥0.2 reads/kilobase/million reads). Differentially expressed genes (DEGs) were identified (n = 699), with 171 downregulated and 498 upregulated in obese vs. lean endometrium, respectively. The most pronounced gene ontology categories identified were cellular process, metabolic process, and biological regulation. Enrichments were detected within the DEGs for genes involved with immune system processes, negative regulation of apoptosis, cell growth, and cell adhesion. A literature search revealed that 125 DEGs were associated with either the trophoblast lineage or the placenta. Genes within this grouping were involved with wingless/integrated signaling, angiogenesis, and integrin signaling. In summary, these data indicate that the peri-implantation endometrium is responsive to maternal obesity. Transcript profile analyses suggest that the endometrial immune response, adhesion, and angiogenesis may be especially susceptible to obesity. Thus, alterations in uterine transcript profiles during early embryogenesis may be a mechanism responsible for developmental programming following maternal obesity exposure in utero.
Collapse
Affiliation(s)
- Sarah R McCoski
- Department of Animal and Range Sciences, Montana State University, Bozeman, MT, USA
| | | | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To succinctly review the basic mechanisms of implantation and luteal phase endometrial differentiation, the etiologies of impaired endometrial function and receptivity, and the current methods that exist to evaluate and treat impaired endometrial receptivity. RECENT FINDINGS Human embryo implantation requires bidirectional communication between blastocyst and a receptive endometrium. Etiologies of impaired endometrial receptivity are varied. Some of these include delayed endometrial maturation, structural abnormalities, inflammation, and progesterone resistance. Current methods to evaluate endometrial receptivity include ultrasonography, hysteroscopy, and endometrial biopsy. Treatments are limited, but include operative hysteroscopy, treatment of endometriosis, and personalized timing of embryo transfer. SUMMARY Although some mechanisms of impaired endometrial receptivity are well understood, treatment options remain limited. Future efforts should be directed towards developing interventions targeted towards the known mediators of impaired endometrial receptivity.
Collapse
|
21
|
Heidari-Khoei H, Esfandiari F, Moini A, Yari S, Saber M, Novin MG, Piryaei A, Baharvand H. Derivation of hormone-responsive human endometrial organoids and stromal cells from cryopreserved biopsies. Exp Cell Res 2022; 417:113205. [PMID: 35568073 DOI: 10.1016/j.yexcr.2022.113205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
Abstract
The human endometrium is a dynamic tissue that undergoes cyclic changes in response to sex steroid hormones to provide a receptive status for embryo implantation. Disruptions in this behavior may lead to implantation failure and infertility; therefore, it is essential to develop an appropriate in vitro model to study endometrial changes in response to sex hormones. In this regard, the first choice would be human endometrial cells isolated from biopsies that could be used as monolayer cell sheets or to generate endometrial organoids. However, the need for fresh samples and short-time viability of harvested endometrial biopsy limits these approaches. In order to overcome these limitations, we sought to develop an efficient, simple, robust and reproducible method to cryopreserve human endometrial biopsies that could be stored and/or shipped frozen and later thawed to generate endometrial organoids and endometrial stromal cells (EnSCs). These cryopreserved biopsies could be thawed and used to generate simple endometrial organoids or organoids for co-culture with matched stromal cells that are functionally responsive to sex hormones as similar as the organoids generated from fresh biopsy. An optimal endometrial tissue cryopreservation method would allow the possibility for endometrial tissue biobanking to enable future organoid generation from both healthy tissues and pathological conditions, and open new venues for generate endometrial assembloids, consisting of epithelial organoids and primary stromal cells.
Collapse
Affiliation(s)
- Heidar Heidari-Khoei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Obstetrics and Gynecology, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center (BDRS), Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Yari
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marefat Ghaffari Novin
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
22
|
Li R, Wang TY, Xu X, Emery OM, Yi M, Wu SP, DeMayo FJ. Spatial transcriptomic profiles of mouse uterine microenvironments at pregnancy day 7.5†. Biol Reprod 2022; 107:529-545. [PMID: 35357464 PMCID: PMC9382390 DOI: 10.1093/biolre/ioac061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 02/03/2022] [Accepted: 03/30/2022] [Indexed: 01/17/2023] Open
Abstract
Uterine dysfunctions lead to fertility disorders and pregnancy complications. Normal uterine functions at pregnancy depend on crosstalk among multiple cell types in uterine microenvironments. Here, we performed the spatial transcriptomics and single-cell RNA-seq assays to determine local gene expression profiles at the embryo implantation site of the mouse uterus on pregnancy day 7.5 (D7.5). The spatial transcriptomic annotation identified 11 domains of distinct gene signatures, including a mesometrial myometrium, an anti-mesometrial myometrium, a mesometrial decidua enriched with natural killer cells, a vascular sinus zone for maternal vessel remodeling, a fetal-maternal interface, a primary decidual zone, a transition decidual zone, a secondary decidual zone, undifferentiated stroma, uterine glands, and the embryo. The scRNA-Seq identified 12 types of cells in the D7.5 uterus including three types of stromal fibroblasts with differentiated and undifferentiated markers, one cluster of epithelium including luminal and glandular epithelium, mesothelium, endothelia, pericytes, myelomonocytic cell, natural killer cells, and lymphocyte B. These single-cell RNA signatures were then utilized to deconvolute the cell-type compositions of each individual uterine microenvironment. Functional annotation assays on spatial transcriptomic data revealed uterine microenvironments with distinguished metabolic preferences, immune responses, and various cellular behaviors that are regulated by region-specific endocrine and paracrine signals. Global interactome among regions is also projected based on the spatial transcriptomic data. This study provides high-resolution transcriptome profiles with locality information at the embryo implantation site to facilitate further investigations on molecular mechanisms for normal pregnancy progression.
Collapse
Affiliation(s)
- Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Tian-yuan Wang
- Integrative Bioinformatics Supportive Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Olivia M Emery
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - MyeongJin Yi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Francesco J DeMayo
- Correspondence: Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Research Triangle Park, NC 27709, USA. Tel: +9842873987; E-mail:
| |
Collapse
|
23
|
Yoo JY, Kim TH, Shin JH, Marquardt RM, Müller U, Fazleabas AT, Young SL, Lessey BA, Yoon HG, Jeong JW. Loss of MIG-6 results in endometrial progesterone resistance via ERBB2. Nat Commun 2022; 13:1101. [PMID: 35232969 PMCID: PMC8888616 DOI: 10.1038/s41467-022-28608-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
Female subfertility is highly associated with endometriosis. Endometrial progesterone resistance is suggested as a crucial element in the development of endometrial diseases. We report that MIG-6 is downregulated in the endometrium of infertile women with endometriosis and in a non-human primate model of endometriosis. We find ERBB2 overexpression in the endometrium of uterine-specific Mig-6 knockout mice (Pgrcre/+Mig-6f/f; Mig-6d/d). To investigate the effect of ERBB2 targeting on endometrial progesterone resistance, fertility, and endometriosis, we introduce Erbb2 ablation in Mig-6d/d mice (Mig-6d/dErbb2d/d mice). The additional knockout of Erbb2 rescues all phenotypes seen in Mig-6d/d mice. Transcriptomic analysis shows that genes differentially expressed in Mig-6d/d mice revert to their normal expression in Mig-6d/dErbb2d/d mice. Together, our results demonstrate that ERBB2 overexpression in endometrium with MIG-6 deficiency causes endometrial progesterone resistance and a nonreceptive endometrium in endometriosis-related infertility, and ERBB2 targeting reverses these effects. Female subfertility is highly associated with endometriosis. Here the authors show that progesterone-induced MIG-6 is reduced in endometrium of infertile women and non-human primates with endometriosis, and in a mouse model find that Erbb2 is the key mediator of Mig-6 loss induced endometriosis-related infertility.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics & Gynecology, Guro Hospital, Korea University Medical Center, Seoul, South Korea
| | - Ryan M Marquardt
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics,Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
24
|
Churchill MJ, Mitchell PS, Rauch I. Epithelial Pyroptosis in Host Defense. J Mol Biol 2022; 434:167278. [PMID: 34627788 PMCID: PMC10010195 DOI: 10.1016/j.jmb.2021.167278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/28/2022]
Abstract
Pyroptosis is a lytic form of cell death that is executed by a family of pore-forming proteins called gasdermins (GSDMs). GSDMs are activated upon proteolysis by host proteases including the proinflammatory caspases downstream of inflammasome activation. In myeloid cells, GSDM pore formation serves two primary functions in host defense: the selective release of processed cytokines to initiate inflammatory responses, and cell death, which eliminates a replicative niche of the pathogen. Barrier epithelia also undergo pyroptosis. However, unique mechanisms are required for the removal of pyroptotic epithelial cells to maintain epithelial barrier integrity. In the following review, we discuss the role of epithelial inflammasomes and pyroptosis in host defense against pathogens. We use the well-established role of inflammasomes in intestinal epithelia to highlight principles of epithelial pyroptosis in host defense of barrier tissues, and discuss how these principles might be shared or distinctive across other epithelial sites.
Collapse
Affiliation(s)
- Madeline J Churchill
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology & Immunology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
25
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
26
|
Progesterone: A Unique Hormone with Immunomodulatory Roles in Pregnancy. Int J Mol Sci 2022; 23:ijms23031333. [PMID: 35163255 PMCID: PMC8835837 DOI: 10.3390/ijms23031333] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Progesterone is well known for its numerous endocrinologic roles in pregnancy but is also endowed with fascinating immunomodulatory capabilities. It can downregulate the induction of inflammatory reactions, the activation of immune cells and the production of cytokines, which are critical mediators of immune responses. These features appear to be critical to the success of pregnancy, given the ability of maternal immune reactivity to interfere with pregnancy and to contribute to several pregnancy complications. This review summarizes the contribution of maternal immune effectors in general, and cytokines in particular, to pregnancy complications such as recurrent miscarriage, pre-eclampsia and preterm labor; it describes the promise offered by supplementation with progesterone and the oral progestogen dydrogesterone, as well as the progesterone-induced blocking factor in the prevention and/or treatment of these serious complications.
Collapse
|
27
|
Izmailova LS, Gaidamaka AO, Serbina OO, Vorotelyak EA. Effect of Hormonal Background on the Expression of Sex Hormone Receptors and the Migration Potential of Mouse Endometrial Epithelial and Stromal Cells In Vitro. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor α transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod 2021; 27:gaab060. [PMID: 34524460 PMCID: PMC8786495 DOI: 10.1093/molehr/gaab060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/07/2021] [Indexed: 12/14/2022] Open
Abstract
Embryo implantation failure is a major cause of infertility in women of reproductive age and a better understanding of uterine factors that regulate implantation is required for developing effective treatments for female infertility. This study investigated the role of the uterine kisspeptin receptor (KISS1R) in the molecular regulation of implantation in a mouse model. To conduct this study, a conditional uterine knockout (KO) of Kiss1r was created using the Pgr-Cre (progesterone receptor-CRE recombinase) driver. Reproductive profiling revealed that while KO females exhibited normal ovarian function and mated successfully to stud males, they exhibited significantly fewer implantation sites, reduced litter size and increased neonatal mortality demonstrating that uterine KISS1R is required for embryo implantation and a healthy pregnancy. Strikingly, in the uterus of Kiss1r KO mice on day 4 (D4) of pregnancy, the day of embryo implantation, KO females exhibited aberrantly elevated epithelial ERα (estrogen receptor α) transcriptional activity. This led to the temporal misexpression of several epithelial genes [Cftr (Cystic fibrosis transmembrane conductance regulator), Aqp5 (aquaporin 5), Aqp8 (aquaporin 8) and Cldn7 (claudin 7)] that mediate luminal fluid secretion and luminal opening. As a result, on D4 of pregnancy, the lumen remained open disrupting the final acquisition of endometrial receptivity and likely accounting for the reduction in implantation events. Our data clearly show that uterine KISS1R negatively regulates ERα signaling at the time of implantation, in part by inhibiting ERα overexpression and preventing detrimentally high ERα activity. To date, there are no reports on the regulation of ERα by KISS1R; therefore, this study has uncovered an important and powerful regulator of uterine ERα during early pregnancy.
Collapse
Affiliation(s)
- Jennifer Schaefer
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Angelos G Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - George A Vilos
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynaecology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Moshmi Bhattacharya
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Andy V Babwah
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- School of Graduate Studies, Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
29
|
Yang Y, Zhu QY, Liu JL. Deciphering mouse uterine receptivity for embryo implantation at single-cell resolution. Cell Prolif 2021; 54:e13128. [PMID: 34558134 PMCID: PMC8560620 DOI: 10.1111/cpr.13128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/19/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Mice are widely used as an animal model for studying human uterine receptivity for embryo implantation. Although transcriptional changes related to mouse uterine receptivity have been determined by using bulk RNA‐seq, the data are of limited value because the uterus is a complex organ consisting of many cell types. Here, we aimed to decipher mouse uterine receptivity for embryo implantation at single‐cell resolution. Materials and methods Single‐cell RNA sequencing was performed for the pre‐receptive and the receptive mouse uterus. Gene expression profiles in luminal epithelium and glandular epithelium were validated by comparing against a published laser capture microdissection (LCM)‐coupled microarray dataset. Results We revealed 19 distinct cell clusters, including 3 stromal cell clusters, 2 epithelial cell clusters, 1 smooth muscle cell cluster, 4 endothelial cell clusters and 8 immune cell clusters. We identified global gene expression changes associated with uterine receptivity in each cell type. Additionally, we predicted signalling interactions for distinct cell types to understand the crosstalk between the blastocyst and the receptive uterus. Conclusion Our data provide a valuable resource for deciphering the molecular mechanism underlying uterine receptivity in mice.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Qiu-Yang Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Wang D, Li W, Yang C, Chen X, Liu X, He J, Tong C, Peng C, Ding Y, Geng Y, Cao X, Li F, Gao R, Wang Y. Exposure to ethylparaben and propylparaben interfere with embryo implantation by compromising endometrial decidualization in early pregnant mice. J Appl Toxicol 2021; 41:1732-1746. [PMID: 34101200 DOI: 10.1002/jat.4208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Ethylparaben (EtP) and propylparaben (PrP) are common preservatives and well-known endocrine-disrupting chemicals. Studies have demonstrated that they can reduce female fertility, but the underlying mechanism, especially that on embryo implantation, is still poorly understood. Endometrial decidualization is a critical event for embryo implantation. In this study, we aimed to explore the effects of EtP/PrP on endometrial decidualization. Pregnant mice were dosed daily by oral gavage with EtP at 0, 400, 800 and 1600 mg/kg or with PrP at 0, 625, 1250 and 2500 mg/kg from Day 1 of pregnancy until sacrifice. The results showed that the rate of pregnant mice with impaired embryo implantation, whose number of implantation sites was less than 7, was significantly increased after exposure to 1600 mg/kg EtP or 2500 mg/kg PrP. Further study found that the expression of endometrial decidualization markers HOXA10, MMP9 and PR was significantly downregulated in 1600 mg/kg EtP group and 2500 mg/kg PrP group. Notably, serum oestrogen and progesterone levels were significantly increased, whereas the expression of uterine oestrogen receptor and progesterone receptor was decreased following 1600 mg/kg EtP or 2500 mg/kg PrP exposure. In the breeding test, fewer offspring were found after females were exposed to 1600 mg/kg EtP or 2500 mg/kg PrP in early pregnancy. This demonstrated that exposure to EtP/PrP interfered with embryo implantation by compromising endometrial decidualization in early-stage pregnant mice. Disorders of reproductive hormones and hormone receptor signals could be responsible for impaired decidualization. This study broadened the understanding on the biological safety of EtP and PrP.
Collapse
Affiliation(s)
- Dan Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Weike Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.,Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xianqing Cao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Yang Y, He JP, Liu JL. Cell-Cell Communication at the Embryo Implantation Site of Mouse Uterus Revealed by Single-Cell Analysis. Int J Mol Sci 2021; 22:5177. [PMID: 34068395 PMCID: PMC8153605 DOI: 10.3390/ijms22105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
As a crucial step for human reproduction, embryo implantation is a low-efficiency process. Despite rapid advances in recent years, the molecular mechanism underlying embryo implantation remains poorly understood. Here, we used the mouse as an animal model and generated a single-cell transcriptomic atlas of embryo implantation sites. By analyzing inter-implantation sites of the uterus as control, we were able to identify global gene expression changes associated with embryo implantation in each cell type. Additionally, we predicted signaling interactions between uterine luminal epithelial cells and mural trophectoderm of blastocysts, which represent the key mechanism of embryo implantation. We also predicted signaling interactions between uterine epithelial-stromal crosstalk at implantation sites, which are crucial for post-implantation development. Our data provide a valuable resource for deciphering the molecular mechanism underlying embryo implantation.
Collapse
Affiliation(s)
- Yi Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jia-Peng He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Ji-Long Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
32
|
Cheung VC, Peng CY, Marinić M, Sakabe NJ, Aneas I, Lynch VJ, Ober C, Nobrega MA, Kessler JA. Pluripotent stem cell-derived endometrial stromal fibroblasts in a cyclic, hormone-responsive, coculture model of human decidua. Cell Rep 2021; 35:109138. [PMID: 34010658 DOI: 10.1016/j.celrep.2021.109138] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Various human diseases and pregnancy-related disorders reflect endometrial dysfunction. However, rodent models do not share fundamental biological processes with the human endometrium, such as spontaneous decidualization, and no existing human cell cultures recapitulate the cyclic interactions between endometrial stromal and epithelial compartments necessary for decidualization and implantation. Here we report a protocol differentiating human pluripotent stem cells into endometrial stromal fibroblasts (PSC-ESFs) that are highly pure and able to decidualize. Coculture of PSC-ESFs with placenta-derived endometrial epithelial cells generated organoids used to examine stromal-epithelial interactions. Cocultures exhibited specific endometrial markers in the appropriate compartments, organization with cell polarity, and hormone responsiveness of both cell types. Furthermore, cocultures recapitulate a central feature of the human decidua by cyclically responding to hormone withdrawal followed by hormone retreatment. This advance enables mechanistic studies of the cyclic responses that characterize the human endometrium.
Collapse
Affiliation(s)
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Mirna Marinić
- Department of Human Genetics, University of Chicago, Chicago, IL, USA; Current address: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Noboru J Sakabe
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Vincent J Lynch
- Department of Human Genetics, University of Chicago, Chicago, IL, USA; Department of Biological Sciences, University of Buffalo, Buffalo, NY, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Marcelo A Nobrega
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - John A Kessler
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Maurya VK, DeMayo FJ, Lydon JP. Illuminating the "Black Box" of Progesterone-Dependent Embryo Implantation Using Engineered Mice. Front Cell Dev Biol 2021; 9:640907. [PMID: 33898429 PMCID: PMC8058370 DOI: 10.3389/fcell.2021.640907] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/11/2021] [Indexed: 02/04/2023] Open
Abstract
Synchrony between progesterone-driven endometrial receptivity and the arrival of a euploid blastocyst is essential for embryo implantation, a prerequisite event in the establishment of a successful pregnancy. Advancement of embryo implantation within the uterus also requires stromal fibroblasts of the endometrium to transform into epithelioid decidual cells, a progesterone-dependent cellular transformation process termed decidualization. Although progesterone is indispensable for these cellular processes, the molecular underpinnings are not fully understood. Because human studies are restricted, much of our fundamental understanding of progesterone signaling in endometrial periimplantation biology comes from in vitro and in vivo experimental systems. In this review, we focus on the tremendous progress attained with the use of engineered mouse models together with high throughput genome-scale analysis in disclosing key signals, pathways and networks that are required for normal endometrial responses to progesterone during the periimplantation period. Many molecular mediators and modifiers of the progesterone response are implicated in cross talk signaling between epithelial and stromal cells of the endometrium, an intercellular communication system that is critical for the ordered spatiotemporal control of embryo invasion within the maternal compartment. Accordingly, derailment of these signaling systems is causally linked with infertility, early embryo miscarriage and gestational complications that symptomatically manifest later in pregnancy. Such aberrant progesterone molecular responses also contribute to endometrial pathologies such as endometriosis, endometrial hyperplasia and cancer. Therefore, our review makes the case that further identification and functional analysis of key molecular mediators and modifiers of the endometrial response to progesterone will not only provide much-needed molecular insight into the early endometrial cellular changes that promote pregnancy establishment but lend credible hope for the development of more effective mechanism-based molecular diagnostics and precision therapies in the clinical management of female infertility, subfertility and a subset of gynecological morbidities.
Collapse
Affiliation(s)
- Vineet K Maurya
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| |
Collapse
|
34
|
Marquardt RM, Kim TH, Yoo JY, Teasley HE, Fazleabas AT, Young SL, Lessey BA, Arora R, Jeong JW. Endometrial epithelial ARID1A is critical for uterine gland function in early pregnancy establishment. FASEB J 2021; 35:e21209. [PMID: 33222288 PMCID: PMC8076973 DOI: 10.1096/fj.202002178r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022]
Abstract
Though endometriosis and infertility are clearly associated, the pathophysiological mechanism remains unclear. Previous work has linked endometrial ARID1A loss to endometriosis-related endometrial non-receptivity. Here, we show in mice that ARID1A binds and regulates transcription of the Foxa2 gene required for endometrial gland function. Uterine-specific deletion of Arid1a compromises gland development and diminishes Foxa2 and Lif expression. Deletion of Arid1a with Ltf-iCre in the adult mouse endometrial epithelium preserves the gland development while still compromising the gland function. Mice lacking endometrial epithelial Arid1a are severely sub-fertile due to defects in implantation, decidualization, and endometrial receptivity from disruption of the LIF-STAT3-EGR1 pathway. FOXA2 is also reduced in the endometrium of women with endometriosis in correlation with diminished ARID1A, and both ARID1A and FOXA2 are reduced in nonhuman primates induced with endometriosis. Our findings describe a role for ARID1A in the endometrial epithelium supporting early pregnancy establishment through the maintenance of gland function.
Collapse
Affiliation(s)
- Ryan M. Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hanna E. Teasley
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
| |
Collapse
|
35
|
Takahashi A, Yamanaka A, Takebayashi A, Kimura F, Murakami T. The expression of hepatoma upregulated protein in human endometrium during the menstrual cycle. Gynecol Endocrinol 2021; 37:171-176. [PMID: 32840162 DOI: 10.1080/09513590.2020.1811965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
AIMS Human endometrium resists embryo implantation except during the window period. Currently, uterine HURP expression is known to be involved in endometrial stromal proliferation during embryo implantation of mice. Thus, we demonstrated hepatoma up-regulated protein (HURP) expression in the human endometrium during the menstrual cycle, as well as HURP regulation in endometrial stromal cells (ESCs). MATERIALS AND METHODS We collected human endometrial samples from different menstrual cycle phases (early/late proliferative, and early/mid/late secretory), and then analyzed these samples by immunohistochemistry, reverse transcription-polymerase chain reaction, and Western blotting. We also assessed the effects of two sex-steroid hormones, 17β-estradiol (E2) and 4-pregnene-3,20-dione (P4) on the cultured stromal cells. RESULTS HURP protein was localized to the nucleus of the endometrial both epithelial and stromal cells in all stages. Also, HURP mRNA and protein in human endometrial tissue was significantly up-regulated during late-proliferative and secretory phase, compared with early-proliferative phase. In ESCs, HURP expression was regulated by E2, but not P4. CONCLUSIONS We indicated that cyclic changes in HURP expression in human normal ESC strongly suggested up-regulation by estrogen. Taken together, since estrogen responses are fundamental in endometrial biology, uterine expression of HURP may be involved in female reproductive function during the menstrual cycle.
Collapse
Affiliation(s)
- Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akiyoshi Yamanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akie Takebayashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
36
|
Cadena I, Chen A, Arvidson A, Fogg KC. Biomaterial strategies to replicate gynecological tissue. Biomater Sci 2021; 9:1117-1134. [DOI: 10.1039/d0bm01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Properties of native tissue can inspire biomimetic in vitro models of gynecological disease.
Collapse
Affiliation(s)
- Ines Cadena
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| | - Athena Chen
- Department of Pathology
- School of Medicine
- Oregon Health & Science University
- Portland
- USA
| | - Aaron Arvidson
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| | - Kaitlin C. Fogg
- Department of Chemical
- Biological
- and Environmental Engineering
- Oregon State University
- Corvallis
| |
Collapse
|
37
|
Kalpokas I, Martínez MN, Cavestany D, Perdigón F, Mattos RC, Meikle A. Equine early pregnancy endocrine profiles and ipsilateral endometrial immune cell, gene expression and protein localisation response. Reprod Fertil Dev 2021; 33:410-426. [PMID: 33752795 DOI: 10.1071/rd21001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated the early effects of the equine embryo on maternal serum concentrations of insulin-like growth factor 1 (IGF1), leptin and adiponectin, uterine immune cells and genes and proteins related to embryo development and the maintenance of pregnancy. Ipsilateral endometrial expression was assessed on Days 7 and 13 after ovulation for the following transcripts: oestrogen receptor ERα (ESR1), progesterone receptor (PGR), progestin and adipoQ receptor family member 5 (PAQR5), oxytocin receptor (OXTR), prostaglandin-endoperoxide synthase 2 (PTGS2), raf-1 proto-oncogene serine/threonine kinase (RAF1), p21-activated kinase 6 (PAK6), fibroblast growth factor family member 9 (FGF9), IGF1 and its receptor (IGF1R), mucin 1 (MUC1), osteopontin (OPN), leptin receptor (LEPR) and adiponectin receptors 1 and 2 (ADIPOR1 and ADIPOR2). Ipsilateral endometrial immunological cell infiltration and immunohistochemical protein localisation were evaluated on Days 7, 10 and 13 after ovulation for ERα, PGR, OXTR, PTGS2, IGF1, IGF1R, IGF2 and MUC1. Serum hormone concentrations were not affected by reproductive status. Pregnancy downregulated ESR1 and PGR mRNA levels, upregulated the expression of all other genes and affected the expression of all genes, except PGR, on Day 7 (compared with eight genes affected at Day 13). Proteins were affected by pregnancy or by its interaction with other variables (day of extraction and endometrial compartment). Pregnant mares had a higher lymphocyte count, which decreased towards Day 13. The effect of pregnancy on leucocytes and proteins was more evident in superficial endometrial compartments. The results of this study suggest that the equine embryo exerts prompt paracrine regulation of critical biological processes.
Collapse
Affiliation(s)
- Irene Kalpokas
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay; and Corresponding author.
| | - María Noel Martínez
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay
| | - Daniel Cavestany
- Department of Reproduction, Veterinary Faculty, Montevideo, Uruguay
| | | | | | - Ana Meikle
- Laboratory of Animal Endocrinology and Metabolism, Veterinary Faculty, Montevideo, Uruguay
| |
Collapse
|
38
|
Whitby S, Zhou W, Dimitriadis E. Alterations in Epithelial Cell Polarity During Endometrial Receptivity: A Systematic Review. Front Endocrinol (Lausanne) 2020; 11:596324. [PMID: 33193109 PMCID: PMC7652731 DOI: 10.3389/fendo.2020.596324] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. The plasma membrane transformation (PMT) describes the collective morphological and molecular alterations occurring to the endometrial luminal epithelium across the mid-secretory phase of the menstrual cycle to facilitate implantation. Dysregulation of this process directly affects endometrial receptivity and implantation. Multiple parallels between these alterations to confer endometrial receptivity in women have been drawn to those seen during the epithelial-mesenchymal transition (EMT) in tumorigenesis. Understanding these similarities and differences will improve our knowledge of implantation biology, and may provide novel therapeutic targets to manage implantation failure. Methods A systematic review was performed using the Medline (Ovid), Embase, and Web of Science databases without additional limits. The search terms used were "(plasma membrane* or cell membrane*) and transformation*" and "endometrium or endometrial." Research studies on the PMT or its regulation in women, discussing either the endometrial epithelium, decidualized stroma, or both, were eligible for inclusion. Results A total of 198 articles were identified. Data were extracted from 15 studies that matched the inclusion criteria. Collectively, these included studies confirmed the alterations occurring to the endometrial luminal epithelium during the PMT are similar to those seen during the EMT. Such similarities included alterations to the actin cytoskeleton remodeling of adherens junctions, integrin expression and epithelial-stromal communication. These were also some differences between these processes, such as the regulation of tight junctions and mucins, which need to be further researched. Conclusions This review raised the prospect of shared and distinct mechanisms existing in PMT and EMT. Further investigation into similarities between the PMT in the endometrium and the EMT in tumorigenesis may provide new mechanistic insights into PMT and new targets for the management of implantation failure and infertility.
Collapse
Affiliation(s)
- Sarah Whitby
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
39
|
Wilsterman K, Bao X, Estrada AD, Comizzoli P, Bentley GE. Sex steroids influence organizational but not functional decidualization of feline endometrial cells in a 3D culture system†. Biol Reprod 2020; 101:906-915. [PMID: 31359037 DOI: 10.1093/biolre/ioz145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 01/23/2023] Open
Abstract
Successful implantation requires complex signaling between the uterine endometrium and the blastocyst. Prior to the blastocyst reaching the uterus, the endometrium is remodeled by sex steroids and other signals to render the endometrium receptive. In vitro models have facilitated major advances in our understanding of endometrium preparation and endometrial-blastocyst communication in mice and humans, but these systems have not been widely adapted for use in other models which might generate a deeper understanding of these processes. The objective of our study was to use a recently developed, three-dimensional culture system to identify specific roles of female sex steroids in remodeling the organization and function of feline endometrial cells. We treated endometrial cells with physiologically relevant concentrations of estradiol and progesterone, either in isolation or in combination, for 1 week. We then examined size and density of three-dimensional structures, and quantified expression of candidate genes known to vary in response to sex steroid treatments and that have functional relevance to the decidualization process. Combined sex steroid treatments recapitulated organizational patterns seen in vivo; however, sex steroid manipulations did not induce expected changes to expression of decidualization-related genes. Our results demonstrate that sex steroids may not be sufficient for complete decidualization and preparation of the feline endometrium, thereby highlighting key areas of opportunity for further study and suggesting some unique functions of felid uterine tissues.
Collapse
Affiliation(s)
- Kathryn Wilsterman
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Xinmiao Bao
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Allegra D Estrada
- Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington DC, USA
| | - George E Bentley
- Integrative Biology, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
40
|
Kumro FG, O'Neil EV, Ciernia LA, Moraes JGN, Spencer TE, Lucy MC. Scanning electron microscopy of the surface epithelium of the bovine endometrium. J Dairy Sci 2020; 103:12083-12090. [PMID: 32981737 DOI: 10.3168/jds.2020-18852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022]
Abstract
The surface epithelium of the bovine endometrium comprises at least 2 cell types (ciliated cells and secretory cells with microvilli), but their distribution and morphological changes over the estrous cycle are poorly understood. The objective was to quantify the number of ciliated cells and assess morphological changes in secretory cells on the uterine surface epithelium during the estrous cycle. Caruncular endometrium (CAR) and intercaruncular endometrium (ICAR) samples were collected from the uterine body, the horn ipsilateral to the corpus luteum or dominant follicle (H-CL/DF), and the horn contralateral to the corpus luteum or dominant follicle (H-NCL/NDF) from heifers following slaughter on d 0 (estrus; n = 5) or d 14 (mid-luteal phase; n = 5) of the estrous cycle. Samples were prepared for scanning electron microscopy at 1,000× magnification. Four to 10 fields (256 × 225 µm) for each sample were examined (n = 567 images). The number of ciliated cells was counted and the surface was scored for the morphology of the secretory cells (0 = absence of microvilli on surface; 3 = 100% of surface covered with microvilli). Ciliated cells were present in both the CAR and ICAR regions. The number of ciliated cells per field increased from d 0 to 14 in CAR and decreased from d 0 to14 in ICAR. The scanning electron microscopy revealed a general lack of uniformity in the lawn of microvilli on the surface of the endometrium. Based on the scores, approximately 25% of the fields had a surface that was <50% covered by microvilli. Depletion of microvilli may be explained by a normal process where apical protrusions are formed and either regress back into the cell surface or break to release their contents into the uterine lumen. These studies support the hypothesis that the surface of the luminal epithelium changes during the estrous cycle through a process that involves remodeling of the apical surface. The morphology of the apical surface may have a key role in governing pregnancy establishment.
Collapse
Affiliation(s)
- F G Kumro
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - E V O'Neil
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - L A Ciernia
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - J G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - T E Spencer
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - M C Lucy
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| |
Collapse
|
41
|
Chadchan SB, Maurya VK, Krekeler GL, Jungheim ES, Kommagani R. A Role for Malignant Brain Tumor Domain-Containing Protein 1 in Human Endometrial Stromal Cell Decidualization. Front Cell Dev Biol 2020; 8:745. [PMID: 32850854 PMCID: PMC7432280 DOI: 10.3389/fcell.2020.00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/16/2020] [Indexed: 11/13/2022] Open
Abstract
Up to 30% of women experience early miscarriage due to impaired decidualization. For implantation to occur, the uterine endometrial stromal fibroblast-like cells must differentiate into decidual cells, but the genes required for decidualization have not been fully defined. Here, we show that Malignant Brain Tumor Domain-containing Protein 1 (MBTD1), a member of the polycomb group protein family, is critical for human endometrial stromal cell (HESC) decidualization. MBTD1 predominantly localized to HESCs during the secretory phase and the levels were significantly elevated during in vitro decidualization of both immortalized and primary HESCs. Importantly, siRNA-mediated MBTD1 knockdown significantly impaired in vitro decidualization of both immortalized and primary HESCs, as evidenced by reduced expression of the decidualization markers PRL and IGFBP1. Further, knockdown of MBTD1 reduced cell proliferation and resulted in G2/M cell cycle arrest in decidualizing HESCs. Although progesterone signaling is required for decidualization, MBTD1 expression was not affected by progesterone signaling; however, MBTD1 knockdown significantly reduced expression of the progesterone target genes WNT4, FOXOA1, and GREB1. Collectively, our data suggest that MBTD1 contributes to in vitro decidualization of HESCs by sustaining progesterone signaling. This work could have implications for designing diagnostic and therapeutic tools for recurrent pregnancy loss.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Vineet K Maurya
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Gwendalyn L Krekeler
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Emily S Jungheim
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States.,Department of Obstetrics and Gynecology, Fienberg School of Medicine, Chicago, IL, United States
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
42
|
DeMayo FJ, Lydon JP. 90 YEARS OF PROGESTERONE: New insights into progesterone receptor signaling in the endometrium required for embryo implantation. J Mol Endocrinol 2020; 65:T1-T14. [PMID: 31809260 PMCID: PMC7261627 DOI: 10.1530/jme-19-0212] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Progesterone's ability to maintain pregnancy in eutherian mammals highlighted this steroid as the 'hormone of pregnancy'. It was the unique 'pro-gestational' bioactivity of progesterone that enabled eventual purification of this ovarian steroid to crystalline form by Willard Myron Allen in the early 1930s. While a functional connection between normal progesterone responses ('progestational proliferation') of the uterus with the maintenance of pregnancy was quickly appreciated, an understanding of progesterone's involvement in the early stages of pregnancy establishment was comparatively less well understood. With the aforementioned as historical backdrop, this review focuses on a selection of key advances in our understanding of the molecular mechanisms by which progesterone, through its nuclear receptor (the progesterone receptor), drives the development of endometrial receptivity, a transient uterine state that allows for embryo implantation and the establishment of pregnancy. Highlighted in this review are the significant contributions of advanced mouse engineering and genome-wide transcriptomic and cistromic analytics which reveal the pivotal molecular mediators and modifiers that are essential to progesterone-dependent endometrial receptivity and decidualization. With a clearer understanding of the molecular landscape that underpins uterine responsiveness to progesterone during the periimplantation period, we predict that common gynecologic morbidities due to abnormal progesterone responsiveness will be more effectively diagnosed and/or treated in the future.
Collapse
Affiliation(s)
- Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
43
|
Eppich S, Kuhn C, Schmoeckel E, Mayr D, Mahner S, Jeschke U, Gallwas J, Heidegger HH. MSX1-A Potential Marker for Uterus-Preserving Therapy of Endometrial Carcinomas. Int J Mol Sci 2020; 21:ijms21124529. [PMID: 32630554 PMCID: PMC7350265 DOI: 10.3390/ijms21124529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022] Open
Abstract
Prognostic factors are of great interest in patients with endometrial cancer. One potential factor could be the protein MSX1, a transcription repressor, that has an inhibitory effect on the cell cycle. For this study, endometrioid endometrial carcinomas (n = 53), clear cell endometrial carcinomas (n = 6), endometrioid ovarian carcinomas (n = 19), and clear cell ovarian carcinomas (n = 11) were immunochemically stained for the protein MSX1 and evaluated using the immunoreactive score (IRS). A significant stronger expression of MSX1 was found in endometrioid endometrial carcinomas (p < 0.001), in grading 2 (moderate differentiation) (p = 0.001), and in tumor material of patients with no involvement of lymph nodes (p = 0.031). Correlations were found between MSX1 expression and the expression of β-Catenin, p21, p53, and the steroid receptors ERα, ERβ, PRα, and PRβ. A significant (p = 0.023) better survival for patients with an MSX1 expression in more than 10% of the tumor cells was observed for endometrioid endometrial carcinomas (21.3 years median survival (MSX1-positive) versus 17.3 years (MSX1-negative)). Although there is evidence that MSX1 expression correlates with improved long-term survival, further studies are necessary to evaluate if MSX1 can be used as a prognostic marker.
Collapse
Affiliation(s)
- Simon Eppich
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337 Munich, Germany; (E.S.); (D.M.)
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Str. 56, 80337 Munich, Germany; (E.S.); (D.M.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstr. 2, 86156 Augsburg, Germany
- Correspondence: ; Tel.: +49-89-4400-54240
| | - Julia Gallwas
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
- Department of Gynecology and Obstetrics, Georg August University Goettingen, University Medicine, 37075 Goettingen, Germany
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU), Marchioninistraße 15, 81377 Munich, Germany; (S.E.); (C.K.); (S.M.); (J.G.); (H.H.H.)
| |
Collapse
|
44
|
Marquardt RM, Lee K, Kim TH, Lee B, DeMayo FJ, Jeong JW. Interleukin-13 receptor subunit alpha-2 is a target of progesterone receptor and steroid receptor coactivator-1 in the mouse uterus†. Biol Reprod 2020; 103:760-768. [PMID: 32558878 DOI: 10.1093/biolre/ioaa110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Brandon Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Program of Neuroscience, Bowdoin College, Brunswick, ME, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
45
|
A hypoxia-induced Rab pathway regulates embryo implantation by controlled trafficking of secretory granules. Proc Natl Acad Sci U S A 2020; 117:14532-14542. [PMID: 32513733 DOI: 10.1073/pnas.2000810117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Implantation is initiated when an embryo attaches to the uterine luminal epithelium and subsequently penetrates into the underlying stroma to firmly embed in the endometrium. These events are followed by the formation of an extensive vascular network in the stroma that supports embryonic growth and ensures successful implantation. Interestingly, in many mammalian species, these processes of early pregnancy occur in a hypoxic environment. However, the mechanisms underlying maternal adaptation to hypoxia during early pregnancy remain unclear. In this study, using a knockout mouse model, we show that the transcription factor hypoxia-inducible factor 2 alpha (Hif2α), which is induced in subluminal stromal cells at the time of implantation, plays a crucial role during early pregnancy. Indeed, when preimplantation endometrial stromal cells are exposed to hypoxic conditions in vitro, we observed a striking enhancement in HIF2α expression. Further studies revealed that HIF2α regulates the expression of several metabolic and protein trafficking factors, including RAB27B, at the onset of implantation. RAB27B is a member of the Rab family of GTPases that allows controlled release of secretory granules. These granules are involved in trafficking MMP-9 from the stroma to the epithelium to promote luminal epithelial remodeling during embryo invasion. As pregnancy progresses, the HIF2α-RAB27B pathway additionally mediates crosstalk between stromal and endothelial cells via VEGF granules, developing the vascular network critical for establishing pregnancy. Collectively, our study provides insights into the intercellular communication mechanisms that operate during adaptation to hypoxia, which is essential for embryo implantation and establishment of pregnancy.
Collapse
|
46
|
Alzamil L, Nikolakopoulou K, Turco MY. Organoid systems to study the human female reproductive tract and pregnancy. Cell Death Differ 2020; 28:35-51. [PMID: 32494027 PMCID: PMC7852529 DOI: 10.1038/s41418-020-0565-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Both the proper functioning of the female reproductive tract (FRT) and normal placental development are essential for women’s health, wellbeing, and pregnancy outcome. The study of the FRT in humans has been challenging due to limitations in the in vitro and in vivo tools available. Recent developments in 3D organoid technology that model the different regions of the FRT include organoids of the ovaries, fallopian tubes, endometrium and cervix, as well as placental trophoblast. These models are opening up new avenues to investigate the normal biology and pathology of the FRT. In this review, we discuss the advances, potential, and limitations of organoid cultures of the human FRT. ■. ![]()
Collapse
Affiliation(s)
- Lama Alzamil
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | | | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Centre for Trophoblast Research, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
47
|
Massimiani M, Lacconi V, La Civita F, Ticconi C, Rago R, Campagnolo L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int J Mol Sci 2019; 21:E23. [PMID: 31861484 PMCID: PMC6981505 DOI: 10.3390/ijms21010023] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Implantation of the embryo into the uterine endometrium is one of the most finely-regulated processes that leads to the establishment of a successful pregnancy. A plethora of factors are released in a time-specific fashion to synchronize the differentiation program of both the embryo and the endometrium. Indeed, blastocyst implantation in the uterus occurs in a limited time frame called the "window of implantation" (WOI), during which the maternal endometrium undergoes dramatic changes, collectively called "decidualization". Decidualization is guided not just by maternal factors (e.g., estrogen, progesterone, thyroid hormone), but also by molecules secreted by the embryo, such as chorionic gonadotropin (CG) and interleukin-1β (IL-1 β), just to cite few. Once reached the uterine cavity, the embryo orients correctly toward the uterine epithelium, interacts with specialized structures, called pinopodes, and begins the process of adhesion and invasion. All these events are guided by factors secreted by both the endometrium and the embryo, such as leukemia inhibitory factor (LIF), integrins and their ligands, adhesion molecules, Notch family members, and metalloproteinases and their inhibitors. The aim of this review is to give an overview of the factors and mechanisms regulating implantation, with a focus on those involved in the complex crosstalk between the blastocyst and the endometrium.
Collapse
Affiliation(s)
- Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Fabio La Civita
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy;
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| |
Collapse
|
48
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
49
|
Shukla V, Kaushal JB, Kumar R, Popli P, Agnihotri PK, Mitra K, Dwivedi A. Microtubule depolymerization attenuates WNT4/CaMKIIα signaling in mouse uterus and leads to implantation failure. Reproduction 2019; 158:47-59. [DOI: 10.1530/rep-18-0611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023]
Abstract
Microtubule (MT) dynamics plays a crucial role in fertilization and early embryonic development; however its involvement in uterus during embryo implantation remains unclear. Herein, we report the effect of microtubule depolymerization during embryo implantation in BALB/c mice. Intrauterine treatment with depolymerizing agent nocodazole at pre-implantation phase (D4, 07:00 h) in mice resulted into mitigation in receptivity markers viz. LIF, HoxA10, Integrin-β3, IHH, WNT4 and led to pregnancy failure. MT depolymerization in endometrial epithelial cells (EECs) also inhibited the blastocyst attachment and the adhesion. The decreased expression of MT polymerization-related proteins TPPP and α/β-tubulin in luminal and glandular epithelial cells along with the alteration in morphology of pinopodes in the luminal epithelium was observed in nocodazole receiving uteri. Nocodazole treatment also led to increased intracellular Ca+2levels in EECs, which indicated that altered Ca+2homeostasis might be responsible for implantation failure. Microtubule depolymerization inhibited WNT4 and Fz-2 interaction, thereby suppressing the downstream WNT4/CaMKIIα signaling cascades calmodulin and calcineurin which led to attenuation of NF-κB transcriptional promoter activity in EECs. MT depolymerization or CaMKIIα knockdown inhibited the transcription factor NFAT and NF-κB expression along with reduced secretion of prostaglandins PGE2 and PGF2α in mouse EECs. Overall, MT depolymerization impaired the WNT4/CaMKIIα signaling and suppressed the secretion of PGE2 and PGF2α in EECs which may be responsible for implantation failure in mice.
Collapse
|
50
|
Al-Juboori AAA, Ghosh A, Jamaluddin MFB, Kumar M, Sahoo SS, Syed SM, Nahar P, Tanwar PS. Proteomic Analysis of Stromal and Epithelial Cell Communications in Human Endometrial Cancer Using a Unique 3D Co-Culture Model. Proteomics 2019; 19:e1800448. [PMID: 30865368 DOI: 10.1002/pmic.201800448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Epithelial and stromal communications are essential for normal uterine functions and their dysregulation contributes to the pathogenesis of many diseases including infertility, endometriosis, and cancer. Although many studies have highlighted the advantages of culturing cells in 3D compared to the conventional 2D culture system, one of the major limitations of these systems is the lack of incorporation of cells from non-epithelial lineages. In an effort to develop a culture system incorporating both stromal and epithelial cells, 3D endometrial cancer spheroids are developed by co-culturing endometrial stromal cells with cancerous epithelial cells. The spheroids developed by this method are phenotypically comparable to in vivo endometrial cancer tissue. Proteomic analysis of the co-culture spheroids comparable to human endometrial tissue revealed 591 common proteins and canonical pathways that are closely related to endometrium biology. To determine the feasibility of using this model for drug screening, the efficacy of tamoxifen and everolimus is tested. In summary, a unique 3D model system of human endometrial cancer is developed that will serve as the foundation for the further development of 3D culture systems incorporating different cell types of the human uterus for deciphering the contributions of non-epithelial cells present in cancer microenvironment.
Collapse
Affiliation(s)
- Aminah Ali Abid Al-Juboori
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Arnab Ghosh
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Muhammad Fairuz Bin Jamaluddin
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Manish Kumar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Subhransu Sekhar Sahoo
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Shafiq Mukhtar Syed
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, 2308, Australia.,Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, 2305, Australia
| | - Pradeep Singh Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|