1
|
Olagunju LK, Casper DP, Officer M, Klanderman K, Anele UY. Holstein calves fed a milk replacer with a direct fed microbial (DFM) and a starter containing a botanical extract or a DFM alone or in combination. J Dairy Sci 2024:S0022-0302(24)00956-1. [PMID: 38908715 DOI: 10.3168/jds.2024-24967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Botanical extracts (BE; Apex, Adisseo, North America) have demonstrated enhanced DMI and improved gut health, while direct fed microbials (DFM), such as Lactobacillus acidophilus fermentation product (EX: Excell, Pacer Technology, Inc.), has demonstrated improved gut health and growth performance of growing Holstein calves. The hypothesis was this combination may be synergistic to neonatal calf growth performance and intestinal health. Eighty, 2-5-d old Holstein bull calves were blocked by BW and randomly assigned to one of 8 treatments arranged in a 2 × 4 factorial using a randomized complete block design. The main factors were milk replacer (MR) without (Control) and with EX added at 5 g/d fed and calf starter (CS). The CS containing no additives (Control); CS containing BE at 496 mg/kg; CS containing EX at 2.50 g/kg; and CS containing BE and EX at the same inclusion rates. The MR were fed 2x/d at 0630 and 1800 h along with free choice CS (amounts and orts weighed d) and water. Weaning occurred after d 42 for the 56-d experiment. No MR by CS main effects interactions were detected for BW, ADG, CS intake, total DMI, feed efficiency or body frame gain parameters. The BW gain (38.0 and 39.3 kg for control and EX, respectively) for MR main effect was similar for calves fed both MR, while CS main effects (38.7, 39.7, 39.2, and 37.2 kg for control, BE, EX, and BE&EX, respectively) was similar among all CS. Gains in body length (10.6 and 10.8 cm), hip width (4.5 and 4.5 cm), withers height, (10.5 and 10.6 cm) heart girth (18.6 and 19.9 cm) and body length (9.1 and 7.9 cm) were similar for calves fed both MR, while CS main effects for hip height (10.5, 10.2, 10.3, and 10.9 cm), hip width (4.7, 4.6, 4.4, and 4.3 cm) withers height (10.7, 10.9, 10.3 and 10.6 cm), heart girth (19.9, 18.9, 18.9, and 19.4 cm), and body length (11.7, 9.1, 8.3, and 8.4 cm) were similar. Total days of a fecal score = 0 was greater for calves fed Control MR and BE CS compared with calves fed Contol MR and the combination of BE&EX with calves fed the remaining treatments being intermediated and similar. This study demonstrated little calf growth performance and health benefits when feeding a BE or EX alone or in combination compared with calves fed control.
Collapse
Affiliation(s)
- Lydia K Olagunju
- Department of Animal Science, North Carolina A & T State University, Greensboro, NC 27411, USA
| | - David P Casper
- Department of Animal Science, North Carolina A & T State University, Greensboro, NC 27411, USA; Casper's Calf Ranch, LLC, 4890 West Lily Creek Road, Freeport, IL 61032, USA.
| | - Michael Officer
- Pacer Technology, Inc., 4525 E 3425 N, Murtaugh, ID 83344, USA
| | | | - Uchenna Y Anele
- Department of Animal Science, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
2
|
Pokhrel B, Jiang H. Postnatal Growth and Development of the Rumen: Integrating Physiological and Molecular Insights. BIOLOGY 2024; 13:269. [PMID: 38666881 PMCID: PMC11048093 DOI: 10.3390/biology13040269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The rumen plays an essential role in the physiology and production of agriculturally important ruminants such as cattle. Functions of the rumen include fermentation, absorption, metabolism, and protection. Cattle are, however, not born with a functional rumen, and the rumen undergoes considerable changes in size, histology, physiology, and transcriptome from birth to adulthood. In this review, we discuss these changes in detail, the factors that affect these changes, and the potential molecular and cellular mechanisms that mediate these changes. The introduction of solid feed to the rumen is essential for rumen growth and functional development in post-weaning calves. Increasing evidence suggests that solid feed stimulates rumen growth and functional development through butyric acid and other volatile fatty acids (VFAs) produced by microbial fermentation of feed in the rumen and that VFAs stimulate rumen growth and functional development through hormones such as insulin and insulin-like growth factor I (IGF-I) or through direct actions on energy production, chromatin modification, and gene expression. Given the role of the rumen in ruminant physiology and performance, it is important to further study the cellular, molecular, genomic, and epigenomic mechanisms that control rumen growth and development in postnatal ruminants. A better understanding of these mechanisms could lead to the development of novel strategies to enhance the growth and development of the rumen and thereby the productivity and health of cattle and other agriculturally important ruminants.
Collapse
Affiliation(s)
| | - Honglin Jiang
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
3
|
Sharma AN, Chaudhary P, Grover CR, Kumar S, Mondal G. Impact of synbiotics on growth performance and gut health in Murrah buffalo calves. Vet Res Commun 2024; 48:179-190. [PMID: 37610508 DOI: 10.1007/s11259-023-10194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023]
Abstract
Synbiotics have been used as biotherapeutic supplements for prevention of new-born calf gastrointestinal disorders. Present study was conducted to evaluate the impact of fructo-oligosaccharide, mannan-oligosaccharide and inulin along with Lactobacillus plantarum CRD-7 and Lactobacillus acidophilus NCDC15 on the nutrient digestibility, growth performance and faecal microbial population of pre-ruminant buffalo calves. Twenty-four Murrah calves (5 days old) were randomly assigned to four groups of six calves in each using randomized block design. Calves in Group I (control) received only a basic diet of milk, calf starter and berseem with no additives. Calves in Group II (SYN1) were fed 6 g fructo-oligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (100 ml). Calves in Group III (SYN2) were fed 9 g inulin + L. plantarum CRD-7 (50 ml), while calves in Group IV (SYN3) received 4 g MOS + L. acidophilus NCDC15 (200 ml) as fermented milk having 108 CFU/ml/calf/day in addition to the basal diet. The results revealed that digestibility of dry matter, crude protein, ether extract and average daily gain were all higher (P < 0.05) in SYN1 as compared to control group. The antioxidant enzyme activity, humoral and cell mediated immunity performed well in SYN1, SYN2 and SYN3 as compared to control. Diarrhoea and faecal scouring were lower (P < 0.05) in all supplemented groups than control. Faecal Lactobacilli and Bifidobacterium counts were also higher in SYN1 group followed by SYN2 and SYN3. Faecal ammonia, lactate, pH, and volatile fatty acids level were increased in SYN1 supplemented groups. The synbiotic combination of 6 g FOS + L. plantarum CRD-7 had better response on digestibility, average daily gain, antioxidant enzymes, immune response, faecal microbiota and metabolites and also reduce the faecal score and diarrhoea incidence. Therefore, supplementation of 6 g FOS + L. plantarum CRD-7 can be advised for general use in order to promote long-term animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, India.
| |
Collapse
|
4
|
Sharma AN, Chaudhary P, Kumar S, Grover CR, Mondal G. Effect of synbiotics on growth performance, gut health, and immunity status in pre-ruminant buffalo calves. Sci Rep 2023; 13:10184. [PMID: 37349514 PMCID: PMC10287688 DOI: 10.1038/s41598-023-37002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
Synbiotics are employed as feed additives in animal production as an alternate to antibiotics for sustaining the gut microbiota and providing protection against infections. Dairy calves require a healthy diet and management to ensure a better future for the herd of dairy animals. Therefore, the present study was carried out to investigate the effect of synbiotics formulation on growth performance, nutrient digestibility, fecal bacterial count, metabolites, immunoglobulins, blood parameters, antioxidant enzymes and immune response of pre-ruminant Murrah buffalo calves. Twenty-four apparently healthy calves (5 days old) were allotted into four groups of six calves each. Group I (control) calves were fed a basal diet of milk, calf starter and berseem with no supplements. Group II (SYN1) calves were fed with 3 g fructooligosaccharide (FOS) + Lactobacillus plantarum CRD-7 (150 ml). Group III (SYN2) calves were fed with 6 g FOS + L. plantarum CRD-7 (100 ml), whereas calves in group IV (SYN3) received 9 g FOS + L. plantarum CRD-7 (50 ml). The results showed that SYN2 had the highest (P < 0.05) crude protein digestibility and average daily gain compared to the control. Fecal counts of Lactobacilli and Bifidobacterium were also increased (P < 0.05) in supplemented groups as compared to control. Fecal ammonia, diarrhea incidence and fecal scores were reduced in treated groups while lactate, volatile fatty acids and antioxidant enzymes were improved compared to the control. Synbiotic supplementation also improved both cell-mediated and humoral immune responses in buffalo calves. These findings indicated that synbiotics formulation of 6 g FOS + L. plantarum CRD-7 in dairy calves improved digestibility, antioxidant enzymes, and immune status, as well as modulated the fecal microbiota and decreased diarrhea incidence. Therefore, synbiotics formulation can be recommended for commercial use in order to achieve sustainable animal production.
Collapse
Affiliation(s)
- Amit N Sharma
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Chaudhary
- School of Agriculture, Graphic Era Hill University, Dehradun, Uttarakhand, 248002, India
| | - Sachin Kumar
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Chand Ram Grover
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Goutam Mondal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, Haryana, 132001, India.
| |
Collapse
|
5
|
Ritt L, Modesto E, Guimarães J, Heisler G, Oliveira A, Fischer V. Oregano extract fed to pre-weaned dairy calves. Part 2: Effect on ruminal and intestinal morphology of pre-weaned calves. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Ma Y, Khan MZ, Xiao J, Alugongo GM, Chen X, Li S, Wang Y, Cao Z. An Overview of Waste Milk Feeding Effect on Growth Performance, Metabolism, Antioxidant Status and Immunity of Dairy Calves. Front Vet Sci 2022; 9:898295. [PMID: 35656173 PMCID: PMC9152456 DOI: 10.3389/fvets.2022.898295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Waste milk (WM) is a part of the milk produced on dairy farms, which is usually unsuitable for human consumption. The WM contains transition milk, mastitis milk, colostrum, milk with somatic cells, blood (Hemolactia), harmful pathogens, pathogenic and antibiotic residues. Due to the high cost of milk replacer (MR), dairy farmers prefer raw WM to feed their calves. It has been well established that WM has a greater nutritive value than MR. Hence WM can contribute to improved growth, rumen development, and immune-associated parameters when fed to dairy calves. However, feeding raw WM before weaning has continuously raised some critical concerns. The pathogenic load and antibiotic residues in raw WM may increase the risk of diseases and antibacterial resistance in calves. Thus, pasteurization has been recommended as an effective method to decrease the risk of diseases in calves by killing/inhibiting the pathogenic microorganisms in the raw WM. Altogether, the current review provides a brief overview of the interplay between the positive role of raw WM in the overall performance of dairy calves, limitations of raw WM as a feed source and how to overcome these issues arising from feeding raw WM.
Collapse
Affiliation(s)
- Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xu Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhijun Cao
| |
Collapse
|
7
|
Jonova S, Ilgaza A, Ilgazs A, Zolovs M, Gatina L. The amount of ghrelin-immunoreactive cells in the abomasum and intestines of 13-14-week-old calves supplemented with Jerusalem artichoke flour alone or in combination with Saccharomyces cerevisiae yeast. Vet World 2022; 15:1080-1086. [PMID: 35698529 PMCID: PMC9178578 DOI: 10.14202/vetworld.2022.1080-1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The use of antibiotics in animals for disease prevention and productivity has been banned in the European Union since 2006. Possible alternatives can be used prebiotics, probiotics, and synbiotics. These compounds can improve feed digestion and absorption in the gastrointestinal tract with identical nutrient uptake, while imparting the feeling of satiety, which reduces the activity of ghrelin-immunoreactive (IR) cells. The number of studies performed on the activity of ghrelin-IR cells in ruminants is insufficient. In particular, there are few such studies in calves during the transition period from being a relatively monogastric animal to a ruminant. The present study aimed to evaluate the effect of Jerusalem artichoke flour (containing ∼50% prebiotic inulin) and a new, commercially unavailable synbiotic (combination of Jerusalem artichoke flour and Saccharomyces cerevisiae strain 1026) on the amount of ghrelin-IR cells in the abomasum and intestines of 13-14-week-old calves.
Materials and Methods: Fifteen crossbreed, Holstein Friesian and Red Holstein calves (Bos taurus) (32±4 days, 72.1±11.34 kg) were used. Calves were allocated into three groups: Control group (CoG, n=5) received the standard diet, prebiotic group (PreG, n=5) received 12 g of flour of Jerusalem artichoke (Helianthus tuberosus) per head containing 6 g of prebiotic inulin in addition to the standard diet, and synbiotic group (SynG, n=5) received a synbiotic in addition to the standard diet which consisted of two different products: 12 g of flour of Jerusalem artichoke per head containing 6 g of prebiotic inulin and probiotic 5 g of a yeast S. cerevisiae strain 1026. Feed additives were added to the concentrate once a day for 56 days. On days 1, 28, and 56, the live weight of the calves was determined. On day 56 of the experiment, three calves from each group were slaughtered. Histological samples were collected from the two parts of each calf abomasum: Pars pylorica and pars fundalis and the middle part of the duodenum and jejunum. Immunohistochemical tissue staining methods were used to detect ghrelin-IR cells.
Results: The live weight of the slaughtered calves on day 56 was 115.3±21.73 kg in CoG, 130.0±17.32 kg in PreG, and 119.0±7.94 kg in SynG. Ghrelin-IR cells were more abundantly localized in the cytoplasm of the abomasum muscle gland cells in pars fundalis and pars pylorica, and to a lesser extent in the duodenum and jejunum. The number of ghrelin-IR cells in the abomasal fundic gland area was significantly higher in the CoG, than in the PreG and SynG (p=0.0001), while the difference between the PreG and SynG was not significant (p=0.700).
Conclusion: The addition of Jerusalem artichoke flour and its combination with the yeast S.cerevisiae stain 1026 in calves resulted in a lower number of ghrelin-IR cells in the abomasum, duodenum, and jejunum and, although insignificantly, increased live weight (p=0.491), suggesting that calves in these groups with the same feed intake as the CoG had a better breakdown of nutrients, thus having a longer feeling of satiety.
Collapse
Affiliation(s)
- S. Jonova
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A. Ilgaza
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A. Ilgazs
- Clinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - M. Zolovs
- Department of Biosystematics, Institute of Life Sciences and Technology, Daugavpils University, Daugavpils, Latvia; Statistics Unit, Riga Stradins University, Riga, Latvia
| | - L. Gatina
- Preclinical Institute, Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| |
Collapse
|