1
|
Chen YH, Lin JJ, Tang HM, Yang CW, Jong GP, Yang YS. Relationship between Marriage and Prediabetes among Healthcare Workers: Mediating Effect of Triglycerides. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1418. [PMID: 39336459 PMCID: PMC11434444 DOI: 10.3390/medicina60091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: In the literature, relationships between being married and having prediabetes or diabetes are inconsistent. We aimed to investigate whether marriage is a protective or risk factor for prediabetes and to uncover new insights into its impact on prediabetes. Materials and Methods: In this cross-sectional observational study, questionnaires were distributed by email to 1039 staff members who participated in an employee health check from a hospital affiliated with a medical university in Taiwan. Fasting blood glucose and triglyceride (TG) levels were checked and the questionnaires elicited basic demographic characteristics and included the Copenhagen Burnout Inventory and Nordic Musculoskeletal Questionnaire. The chi-square test or Fisher's exact test, logistic regression, and mediation analysis were conducted for statistical analysis. Results: Among the group aged 20-37 years, married (OR = 1.89, 95%CI: 1.08, 3.33), obesity (OR = 2.95, 95%CI: 1.49, 5.83), neck and shoulder pain (OR = 1.31, 95%CI: 1.01, 1.69), and elevated TG levels (OR = 1.01, 95%CI: 1.00, 1.01) were independent risk factors for prediabetes (impaired fasting glucose). For those >38 years old, overweight (OR = 2.08, 95%CI: 1.27, 3.43), obesity (OR = 4.30, 95%CI: 2.38, 7.79), and elevated triglyceride (TG) (OR = 1.003, 95%CI: 1.00, 1.01) were the independent risk factors for impaired fasting glucose. Increased TG levels serve as a mediating factor (Zm = 2.64, p < 0.01) linking marriage to an increased risk of prediabetes for the group aged 20-37 years. Conclusions: TGs play a significant role in the association between marriage and prediabetes among the group aged 20-37 years. Therefore, dietary habits, especially those of young adult couples should be considered. Our findings connect marital status to prediabetes, facilitating advances in diabetes prevention.
Collapse
Affiliation(s)
- Yong-Hsin Chen
- The Department of Health Policy and Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Occupational Safety and Health, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (H.-M.T.); (C.-W.Y.)
| | - Jia-June Lin
- Nursing Department, Chung Shan Medical University Hospital, Taichung 402, Taiwan;
| | - Hsiu-Mei Tang
- Department of Occupational Safety and Health, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (H.-M.T.); (C.-W.Y.)
| | - Ching-Wen Yang
- Department of Occupational Safety and Health, Chung Shan Medical University Hospital, Taichung 402, Taiwan; (H.-M.T.); (C.-W.Y.)
| | - Gwo-Ping Jong
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Sun Yang
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Spitler KM, Shetty SK, Davies BS. Effects of Age and Diet on Triglyceride Metabolism in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.602944. [PMID: 39091783 PMCID: PMC11291025 DOI: 10.1101/2024.07.19.602944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Both age and diet can contribute to alterations in triglyceride metabolism and subsequent metabolic disease. In humans, plasma triglyceride levels increase with age. Diets high in saturated fats can increase triglyceride levels while diets high in omega-3 fatty acids decrease triglyceride levels. Here we asked how age and long-term diet effected triglyceride metabolism in mice. Methods We fed male and female mice a low-fat diet, a western diet, or a diet high in polyunsaturated and omega-3 (n-3) fatty acids for up to 2 years. We measured survival, body composition, plasma triglyceride levels, chylomicron clearance, and oral fat, glucose, and insulin tolerance. Results Triglyceride levels in mice did not increase with age, regardless of diet. Oral fat tolerance increased with age, while chylomicron clearance remained unchanged. Mice fed western diet had decreased survival. Interestingly, mice fed the n-3 diet gained more lean mass, and had lower insulin levels than mice fed either low-fat or western diet. Moreover, triglyceride uptake into the hearts of mice fed the n-3 diet was strikingly higher than in other groups. Conclusions In mice, age-induced changes in triglyceride metabolism did not match those in humans. Our data suggested that mice, like humans, had decreased fat absorption with age, but plasma triglyceride clearance did not decrease with age in mice, resulting in lower plasma triglyceride levels and improved oral fat tolerance with age. A chronic diet high in n-3 fatty acids increased insulin sensitivity and uptake of triglycerides specifically into the heart but how these observations are connected is unclear.
Collapse
Affiliation(s)
- Kathryn M. Spitler
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| | - Shwetha K. Shetty
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| | - Brandon S.J. Davies
- Department of Biochemistry and Molecular Biology, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
3
|
Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-Density Lipoprotein Metabolism and Function in Cardiovascular Diseases: What about Aging and Diet Effects? Nutrients 2024; 16:653. [PMID: 38474781 DOI: 10.3390/nu16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading global cause of mortality, prompting a heightened focus on identifying precise indicators for their assessment and treatment. In this perspective, the plasma levels of HDL have emerged as a pivotal focus, given the demonstrable correlation between plasma levels and cardiovascular events, rendering them a noteworthy biomarker. However, it is crucial to acknowledge that HDLs, while intricate, are not presently a direct therapeutic target, necessitating a more nuanced understanding of their dynamic remodeling throughout their life cycle. HDLs exhibit several anti-atherosclerotic properties that define their functionality. This functionality of HDLs, which is independent of their concentration, may be impaired in certain risk factors for CVD. Moreover, because HDLs are dynamic parameters, in which HDL particles present different atheroprotective properties, it remains difficult to interpret the association between HDL level and CVD risk. Besides the antioxidant and anti-inflammatory activities of HDLs, their capacity to mediate cholesterol efflux, a key metric of HDL functionality, represents the main anti-atherosclerotic property of HDL. In this review, we will discuss the HDL components and HDL structure that may affect their functionality and we will review the mechanism by which HDL mediates cholesterol efflux. We will give a brief examination of the effects of aging and diet on HDL structure and function.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Nada Zoubdane
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Javad Heshmati
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Mehdi Alami
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
4
|
Lefrère B, Sakka M, Fourati S, Levasseur A, Curis E, Cherfils C, Grès P, Guilbert Z, Lacorte JM, Chenevière C, Bittar R, Bonnefont-Rousselot D. Could the chylomicron marker apoB48 be of value in the diagnosis of chylous effusions? Clin Chim Acta 2023; 539:184-190. [PMID: 36463939 DOI: 10.1016/j.cca.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chylous effusions such as chylothorax, chylopericardium and chylous ascites are marked by the abnormal presence of chylomicrons in serous membranes. These relatively rare situations are associated with high morbidity and mortality rates. Given that a macroscopic assessment of the fluid is insufficient, the current gold standard method for chylous effusion is the electrophoretic separation of lipoproteins. Serous effusions are most frequently assayed for triglycerides, with a diagnostic threshold varying between studies. The present study is the first to assess the value of the apolipoprotein B48, specific of the chylomicron, in the diagnosis of chylous effusions. METHODS A chemiluminescent sandwich enzyme immunoassay was used to measure levels of apoB48 in remnant samples of effusion fluid sent to our laboratory for chylomicron detection and lipid assays. The diagnostic values of apoB48 and triglyceride assays were compared with that of the gold standard method. RESULTS The triglyceride and apoB48 levels and the triglyceride/cholesterol ratio in the effusion fluid were significantly higher in patients with chylous effusion. The threshold values for apoB48 were respectively 2.45, 0.25 and 19.00 µg/mL for a maximal Youden index, a sensitivity > 95 %, and a specificity > 95 %. The apoB48 assay's diagnostic value might be at least as high as that of a triglyceride assay (area under the receiver operating characteristic curve [95 % confidence interval]: 0.84 [0.72, 0.96]) and 0.80 [0.67, 0.94], respectively). CONCLUSION ApoB48 appears to be a promising marker for the diagnosis of chylous effusions; the putative diagnostic improvement must be confirmed in larger studies.
Collapse
Affiliation(s)
- Bertrand Lefrère
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France.
| | - Mehdi Sakka
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Salma Fourati
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France
| | - Antoine Levasseur
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Emmanuel Curis
- Université de Paris, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris F-75006, France; EA 7537 BioSTM, Faculté de Pharmacie, Université Paris Descartes, USPC, Paris 75006, France
| | - Corinne Cherfils
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Pierre Grès
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Zoé Guilbert
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France
| | - Jean-Marc Lacorte
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Unité de recherche sur les maladies cardiovasculaires et métaboliques, UMR 1166 ICAN, Sorbonne Université, Inserm, Paris, France
| | - Cristina Chenevière
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie endocrinienne et oncologique, Paris, France
| | - Randa Bittar
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France; AP-HP, Hôpital Pitié-Salpêtrière, Unité de recherche sur les maladies cardiovasculaires et métaboliques, UMR 1166 ICAN, Sorbonne Université, Inserm, Paris, France
| | - Dominique Bonnefont-Rousselot
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Biochimie métabolique, Paris, France; UFR de Pharmacie, Université Paris Cité; CNRS, Inserm, UTCBS, Paris, France
| |
Collapse
|
5
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
6
|
Nunes VS, da Silva Ferreira G, Quintão ECR. Cholesterol metabolism in aging simultaneously altered in liver and nervous system. Aging (Albany NY) 2022; 14:1549-1561. [PMID: 35130181 PMCID: PMC8876915 DOI: 10.18632/aging.203880] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
In humans, aging, triggers increased plasma concentrations of triglycerides, cholesterol, low-density lipoproteins and lower capacity of high-density lipoproteins to remove cellular cholesterol. Studies in rodents showed that aging led to cholesterol accumulation in the liver and decrease in the brain with reduced cholesterol synthesis and increased levels of cholesterol 24-hydroxylase, an enzyme responsible for removing cholesterol from the brain. Liver diseases are also related to brain aging, inducing changes in cholesterol metabolism in the brain and liver of rats. It has been suggested that late onset Alzheimer's disease is associated with metabolic syndrome. Non-alcoholic fatty liver is associated with lower total brain volume in the Framingham Heart Study offspring cohort study. Furthermore, disorders of cholesterol homeostasis in the adult brain are associated with neurological diseases such as Niemann-Pick, Alzheimer, Parkinson, Huntington and epilepsy. Apolipoprotein E (apoE) is important in transporting cholesterol from astrocytes to neurons in the etiology of sporadic Alzheimer's disease, an aging-related dementia. Desmosterol and 24S-hydroxycholesterol are reduced in ApoE KO hypercholesterolemic mice. ApoE KO mice have synaptic loss, cognitive dysfunction, and elevated plasma lipid levels that can affect brain function. In contrast to cholesterol itself, there is a continuous uptake of 27- hydroxycholesterol in the brain as it crosses the blood-brain barrier and this flow can be an important link between intra- and extracerebral cholesterol homeostasis. Not surprisingly, changes in cholesterol metabolism occur simultaneously in the liver and nervous tissues and may be considered possible biomarkers of the liver and nervous system aging.
Collapse
Affiliation(s)
- Valéria Sutti Nunes
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Guilherme da Silva Ferreira
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| | - Eder Carlos Rocha Quintão
- Laboratorio de Lipides (LIM10), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Bazil
| |
Collapse
|
7
|
Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites 2021; 11:metabo11100690. [PMID: 34677405 PMCID: PMC8540246 DOI: 10.3390/metabo11100690] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.
Collapse
|
8
|
Spitler KM, Davies BSJ. Aging and plasma triglyceride metabolism. J Lipid Res 2020; 61:1161-1167. [PMID: 32586846 DOI: 10.1194/jlr.r120000922] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Indexed: 12/16/2022] Open
Abstract
The risk for metabolic disease, including metabolic syndrome, insulin resistance, and diabetes, increases with age. Altered plasma TG metabolism and changes in fatty acid partitioning are also major contributors to metabolic disease. Plasma TG metabolism itself is altered by age in humans and rodents. As discussed in this review, the age-induced changes in human TG metabolism include increased plasma TG levels, reduced postprandial plasma TG clearance rates, reduced postheparin LPL activity, decreased adipose tissue lipolysis, and elevated ectopic fat deposition, all of which could potentially contribute to age-associated metabolic diseases. Similar observations have been made in aged rats. We highlight the limitations of currently available data and propose that mechanistic studies are needed to understand the extent to which age-induced alterations in TG metabolism contribute to metabolic disease. Such mechanistic insights could aid in therapeutic strategies for preventing or managing metabolic disease in older individuals.
Collapse
Affiliation(s)
- Kathryn M Spitler
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
9
|
Maranhão RC, Pala D, Freitas FR. Lipoprotein removal mechanisms and aging: implications for the cardiovascular health of the elderly. Curr Opin Endocrinol Diabetes Obes 2020; 27:104-109. [PMID: 32011347 DOI: 10.1097/med.0000000000000529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The speed of removal from the plasma of apolipoprotein B-containing lipoproteins, for example, chylomicrons, VLDL and LDL is determinant of the plasma concentration of these lipoproteins, is influenced by genetic features and ambient factors, and has implications in atherogenesis. As aging increases the clinical complications of atherosclerosis, it is important to appraise the status of the removal mechanisms in elderly individuals. RECENT FINDINGS Removal of triglyceride-rich lipoproteins remnants is delayed but the triglyceride breakdown is unchanged in elderly individuals. The discovery of PCSK9, enzyme that degrades LDL receptors, and the recent observation that PCSK9 is elevated in the elderly raises another hypothesis to account for the increased LDL-cholesterol levels in the elderly. The removal of cholesterol from cells by HDL, the first step of cholesterol reverse transport is also less efficient in the elderly, which may compromise the body cholesterol homeostasis. SUMMARY Aging determines reduction of the efficiency of lipoprotein plasma removal mechanisms, which is implicated in increased incidence of cardia complications. Moreover, aging is frequently accompanied by physical activity reduction, weight gain, and metabolic disturbances that can further decrease the efficacy of the removal mechanisms. This knowledge is important for promoting cardiovascular health in the elderly and prolonging survival.
Collapse
Affiliation(s)
- Raul C Maranhão
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
- Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniela Pala
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| | - Fatima R Freitas
- Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina
| |
Collapse
|