1
|
Li B, Li W, Liao Y, Weng Z, Chen Y, Ouchi T, Fan Y, Zhao Z, Li L. Multi-omics approach reveals TGF-β signaling-driven senescence in periodontium stem cells. J Adv Res 2024:S2090-1232(24)00617-9. [PMID: 39743213 DOI: 10.1016/j.jare.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION The periodontal ligament (PDL), a dynamic connective tissue that anchors teeth to the alveolar bone, enables tooth retention and facilitates continuous turnover. The integrity of the periodontium is maintained by periodontal ligament stem cells (PDLSCs), whose dysfunction and senescence with age can disrupt tissue homeostasis, hinder injury repair, and lead to tooth loss, ultimately impacting overall health. Transforming growth factor-β1 (TGF-β1) is known for its regenerative properties and as a functional paracrine factor in stem cell therapy, but its precise role in modulating PDLSC activity remains controversial and poorly understood. OBJECTIVES This study aims to clarify the role of TGF-β1 in PDLSC senescence and identify the underlying molecular mechanisms, thereby advancing our understanding of age-related periodontal diseases and informing the development of targeted therapeutic strategies. METHODS We employed spatial transcriptomics to map Tgfb1 mRNA expression in murine jawbone tissues, focusing on its distribution in the periodontium. Pseudotime analysis was performed to assess expression patterns and infer temporal dynamics. Human PDLSCs were used as a model to investigate the effects of TGF-β1 signaling, with assays conducted to examine DNA methylation, senescence phenotypes, cell cycle arrest, and underlying signaling pathways. RESULTS Spatial transcriptomic profiling revealed enriched Tgfb1 expression in the periodontium, with upregulation tendencies. In human PDLSCs, TGF-β1 treatment induced a senescent phenotype marked by G2 phase cell cycle arrest and increased reactive oxygen species (ROS) accumulation. Mechanistically, TGF-β1 triggered ROS production through DNA methylation-mediated silencing of PRKAG2, a gene encoding AMPKγ2, resulting in ROS accumulation, DNA damage, and ATM signaling activation. Importantly, inhibition of ROS with N-acetyl-l-cysteine (NAC) or reversal of PRKAG2 epigenetic silencing with decitabine mitigated PDLSC senescence by suppressing ATM signaling. CONCLUSION Our work presents the first spatially resolved transcriptomic landscape of murine jawbone tissues and uncovers DNA methylation as a crucial mechanism underlying TGF-β1-induced PDLSC senescence. These findings illuminate a previously unrecognized link between TGF-β1 signaling, ROS production, and epigenetic regulation, offering promising avenues for developing stem cell-based therapies to attenuate age-related periodontal diseases and improve systemic health.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510182, China
| | - Yueqi Liao
- Department of Biomedical Engineering, School of Big Health & Intelligent Engineering, Chengdu Medical College, Chengdu 610500, China
| | - Zhijie Weng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo 1010061, Japan
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Ma Y, Liu X, Dai R, Li Q, Cao CY. LL-37 regulates odontogenic differentiation of dental pulp stem cells in an inflammatory microenvironment. Stem Cell Res Ther 2024; 15:469. [PMID: 39696668 DOI: 10.1186/s13287-024-04075-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Inflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions. LL-37 is a natural cationic polypeptide that inhibits lipopolysaccharide (LPS) activity, enhances cytokine production, and promotes the migration of stem cells. However, the potential of LL-37 in regenerative endodontics remains unknown. This study aimed to investigate the regulatory role of LL-37 in promoting the migration and odontogenic differentiation of DPSCs within an inflammatory microenvironment. These findings establish an experimental foundation for the regenerative treatment of pulpitis and provide a scientific basis for its clinical application. MATERIALS AND METHODS DPSCs were isolated via enzyme digestion combined with the tissue block adhesion method and identified via flow cytometry. The impact of LL-37 on the proliferation of DPSCs was evaluated via a CCK-8 assay. The recruitment of DPSCs was assessed through a transwell assay. The mRNA expression levels of inflammatory and aging-related genes were assessed via reverse transcription‒polymerase chain reaction (RT‒PCR), western blotting, and enzyme‒linked immunosorbent assay (ELISA). The odontogenic differentiation of DPSCs was assessed through alkaline phosphatase (ALP) staining, alizarin red staining, and RT‒PCR analysis. RESULTS LL-37 has the potential to enhance the migration of DPSCs. In an inflammatory microenvironment, LL-37 can suppress the expression of genes associated with inflammation and aging, such as TNF-α, IL-1β, IL-6, P21, P38 and P53. Moreover, it promotes odontogenic differentiation in DPSCs by increasing ALP activity, increasing calcium nodule formation, and increasing the expression of dentin-related genes such as DMP1, DSPP and BSP. CONCLUSION These findings suggest that the polypeptide LL-37 facilitates the migration of DPSCs and plays a crucial role in resolving inflammation and promoting cell differentiation within an inflammatory microenvironment. Consequently, LL-37 has promising potential as an innovative therapeutic approach for managing inflammatory dental pulp conditions.
Collapse
Affiliation(s)
- Yunfeng Ma
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xinyuan Liu
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ruoxi Dai
- Department of Comprehensive Care, Tufts University School of Dental Medicine, Boston, MA, 02111, USA
| | - Quanli Li
- Department of Stomatology, Longgang Otorhinolaryngology Hospital of Shenzhen, Institute of Oral Science, Shenzhen, 518172, China
| | - Chris Ying Cao
- Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
3
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2024; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
4
|
Sun Z, Li J, Liu H, Fan Z. Insulin-Like Growth Factor-Binding Protein 5 Promotes the Cell Proliferation and Osteogenic Potential of Dental Pulp Stem Cells Dependent on Its Nuclear Localisation Sequence. J Oral Rehabil 2024; 51:2664-2674. [PMID: 39313926 DOI: 10.1111/joor.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) have been extensively used for tissue regeneration owing to their notable capabilities. Insulin-like growth factor-binding protein 5 (IGFBP5) regulates osteogenic differentiation of mesenchymal stem cells (MSCs); however, the underlying regulatory mechanisms require further investigation. MATERIALS AND METHODS Carboxyfluorescein succinimidyl ester, an alkaline phosphatase (ALP) activity assay and Alizarin Red staining were used to reveal the role of IGFBP5 in DPSCs. Protein expression levels were determined using western blotting. Immunofluorescence was used to observe cell sub-localisation. Subcutaneous transplantation in nude mice was used to observe the osteogenesis of DPSCs in vivo. RESULTS IGFBP5 enhanced the proliferation and osteogenic differentiation of DPSCs. Deletion of the nuclear localisation sequence (NLS) of IGFBP5 prevented its nuclear import and abolished all its promoting effects on DPSCs; ivermectin stimulation attenuated the enhancement of ALP activity by IGBFP5. Bone-like tissue formation promoted by IGFBP5 in vivo vanishes when the NLS is deleted. Inhibition of IGFBP5 nuclear import attenuated the IGFBP5-induced phosphorylation of JNK (p-JNK) and phosphorylated ERK (p-ERK) in DPSCs. CONCLUSION Our findings suggest that cell proliferation and osteogenic differentiation effects exerted by IGFBP5 on DPSCs are closely associated with their entry into the nucleus, thereby providing a novel potential target for tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Sun
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Preventive Medicine, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. A transcriptomic analysis of dental pulp stem cell senescence in vitro. Biomed Eng Online 2024; 23:102. [PMID: 39425139 PMCID: PMC11488381 DOI: 10.1186/s12938-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND/PURPOSE The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. MATERIALS AND METHODS The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms. RESULTS With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence. CONCLUSION Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.
Collapse
Affiliation(s)
- Jidong Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Longfei Liu
- Qingdao Engineering Vocational College, Qingdao, 266000, China
| | - Xuecheng Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
6
|
Wang W, Sun DF, Cui HX, Zhang WL. The nano-artificial periosteum made of PCL/MgO/AS-IV enhances MC3T3-E1 cell osteogenic differentiation and promotes bone defect repair via the EphB4/EphrinB2 signaling pathway. Heliyon 2024; 10:e32036. [PMID: 38882277 PMCID: PMC11176840 DOI: 10.1016/j.heliyon.2024.e32036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Bone regeneration plays a pivotal role in periodontal tissue repair. With advancements in biotechnology materials, the utilization of nanotechnology offers a reliable platform for bone restoration in periodontitis. In this study, we successfully established a long-term bacterial infection model using Porphyromonas gingivalis (P. gingivalis) with MOI = 50. CCK-8 and ROS immunofluorescence results demonstrated that the combined effect of Mg2+ and AS-IV significantly enhanced cell proliferation and effectively suppressed the inflammatory response during bacterial infection. Alkaline phosphatase and alizarin red staining revealed that the synergistic action of Mg2+ and AS-IV notably promoted osteogenic differentiation of MC3T3-E1 cells under P. gingivalis-infected conditions. Considering the properties of these two biomaterials, we fabricated polycaprolactone (PCL) artificial periosteum loaded with MgO and AS-IV using an electrostatic spinning technique. The findings indicated that PCL/MgO/AS-IV artificial periosteum exhibited excellent biocompatibility and hydrophilicity, thereby substantially enhancing cellular adhesion to its surface as well as augmenting cellular value-added rate. Moreover, efficient drug release from the PCL/MgO/AS-IV artificial bone membrane conferred remarkable antimicrobial activity along with in vitro osteogenic potentiality. The in vivo experiments conducted on animals further substantiated the exceptional properties exhibited by PCL/MgO/AS-IV artificial periosteum in bone defect repair. Additionally, it was observed that PCL/MgO/AS-IV artificial periosteum could modulate EphB4-EphrinB2 signaling to enhance osteogenic differentiation under P.gingivalis-infected conditions.This exciting outcome suggests that PCL/MgO/AS-IV artificial periosteum holds great promise as a biomaterial for treating periodontal bone loss.
Collapse
Affiliation(s)
- Wei Wang
- North Jiangsu Health Management Center of Zhongshan Hospital Affiliated to Fudan University, Yancheng, 224100, China
| | - Dan-Fang Sun
- Jinzhou Medical University, Jinzhou, 121000, China
| | - Hui-Xia Cui
- The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), 241004, Wuhu, China
| | - Wen-Lu Zhang
- The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), 241004, Wuhu, China
| |
Collapse
|
7
|
El-Akabawy G, El-Kersh SOF, El-Kersh AOFO, Amin SN, Rashed LA, Abdel Latif N, Elshamey A, Abdallah MAAEM, Saleh IG, Hein ZM, El-Serafi I, Eid N. Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats. PeerJ 2024; 12:e17299. [PMID: 38799055 PMCID: PMC11127642 DOI: 10.7717/peerj.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Background Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. Aim This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. Results The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. Conclusion Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | | | - Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ahmed Elshamey
- Samanoud General Hospital, Samannoud City, Samanoud, Gharbia, Egypt
| | | | - Ibrahim G. Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ibrahim El-Serafi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Liu Q, Li S, Tang T, Wu Y. The roles of stress-induced premature senescence and Akt/FoxO1 signaling in periapical lesions. Oral Dis 2024; 30:2463-2472. [PMID: 37530471 DOI: 10.1111/odi.14703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES There is little knowledge about oxidative stress-induced senescence involvement in apical periodontitis. Here, we explored its molecular mechanism in periapical lesions. METHODS Ten cases of radicular cysts and five cases of periapical granulomas were randomly selected. Immunohistochemical analysis was performed to detect the expression and correlation between Senescence-associated factor polymerase I and transcript release factor (PTRF) and Akt/FoxO1 signaling. Human periodontal ligament cells (hPDLCs) pretreated with LY294002 were exposed to H2O2-induced oxidative stress conditions and then cell proliferation, senescence, apoptosis, and associated signaling were evaluated by EdU labeling, β-galactosidase assay, RT-qPCR, and western blot analysis, respectively. RESULTS Polymerase I and transcript release factor and Akt/FoxO1 signaling were more frequently expressed in the radicular cyst than in periapical granulomas. Notably, cells in radicular cysts showed Akt activation, FoxO1 phosphorylation, and cytoplasmic translocation. In vitro, prominent H2O2-induced senescence was observed in hPDLCs. LY294002, a PI3K inhibitor, attenuated the expression levels of senescence (Klotho, P16INK4), apoptosis (Bad, Fas), phosphorylated Akt, and phosphorylated FoxO1; however, did not affect cell proliferation. CONCLUSIONS Our data indicated that senescence is present in clinical periapical lesions, and Akt/FoxO1 signaling is involved in the H2O2-induced cellular senescence, which could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Qian Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ting Tang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
9
|
Wang SY, Zhang SJ, Meng HF, Xu HQ, Guo ZX, Yan JF, Gao JL, Niu LN, Wang SL, Jiao K. DPSCs regulate epithelial-T cell interactions in oral submucous fibrosis. Stem Cell Res Ther 2024; 15:113. [PMID: 38650025 PMCID: PMC11036714 DOI: 10.1186/s13287-024-03720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Oral submucous fibrosis (OSF) is a precancerous lesion characterized by fibrous tissue deposition, the incidence of which correlates positively with the frequency of betel nut chewing. Prolonged betel nut chewing can damage the integrity of the oral mucosal epithelium, leading to chronic inflammation and local immunological derangement. However, currently, the underlying cellular events driving fibrogenesis and dysfunction are incompletely understood, such that OSF has few treatment options with limited therapeutic effectiveness. Dental pulp stem cells (DPSCs) have been recognized for their anti-inflammatory and anti-fibrosis capabilities, making them promising candidates to treat a range of immune, inflammatory, and fibrotic diseases. However, the application of DPSCs in OSF is inconclusive. Therefore, this study aimed to explore the pathogenic mechanism of OSF and, based on this, to explore new treatment options. METHODS A human cell atlas of oral mucosal tissues was compiled using single-cell RNA sequencing to delve into the underlying mechanisms. Epithelial cells were reclustered to observe the heterogeneity of OSF epithelial cells and their communication with immune cells. The results were validated in vitro, in clinicopathological sections, and in animal models. In vivo, the therapeutic effect and mechanism of DPSCs were characterized by histological staining, immunohistochemical staining, scanning electron microscopy, and atomic force microscopy. RESULTS A unique epithelial cell population, Epi1.2, with proinflammatory and profibrotic functions, was predominantly found in OSF. Epi1.2 cells also induced the fibrotic process in fibroblasts by interacting with T cells through receptor-ligand crosstalk between macrophage migration inhibitory factor (MIF)-CD74 and C-X-C motif chemokine receptor 4 (CXCR4). Furthermore, we developed OSF animal models and simulated the clinical local injection process in the rat buccal mucosa using DPSCs to assess their therapeutic impact and mechanism. In the OSF rat model, DPSCs demonstrated superior therapeutic effects compared with the positive control (glucocorticoids), including reducing collagen deposition and promoting blood vessel regeneration. DPSCs mediated immune homeostasis primarily by regulating the numbers of KRT19 + MIF + epithelial cells and via epithelial-stromal crosstalk. CONCLUSIONS Given the current ambiguity surrounding the cause of OSF and the limited treatment options available, our study reveals that epithelial cells and their crosstalk with T cells play an important role in the mechanism of OSF and suggests the therapeutic promise of DPSCs.
Collapse
Affiliation(s)
- S Y Wang
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - S J Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - H F Meng
- Beijing SH Bio-tech Co., 100071, Beijing, P.R. China
| | - H Q Xu
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
- The College of Life Science, Northwest University, 710032, Xi'an, Shaanxi, P.R. China
| | - Z X Guo
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - J F Yan
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - J L Gao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China
| | - L N Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China.
| | - S L Wang
- Beijing Laboratory of Oral Health, Capital Medical University, 10 Xitoutiao, Fengtai District, 100069, Beijing, P.R. China.
- Laboratory of Homeostatic Medicine, School of Medicine, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, 518055, Shenzhen, P.R. China.
| | - K Jiao
- Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & School of Stomatology, The Fourth Military Medical University, 169 West Changle Road, Xincheng District, 710032, Xi'an, Shaanxi, P. R. China.
| |
Collapse
|
10
|
Alsharif MB. Successful Healing of Periapical Pathology with Partial Pulpotomy in a Mature Permanent Molar: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e942937. [PMID: 38641871 PMCID: PMC11055469 DOI: 10.12659/ajcr.942937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/06/2024] [Accepted: 02/23/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Vital pulp therapy approaches are preferred over non-surgical root canal treatment, giving the advantage of preserving the vitality of the dental pulp and thus maintaining its benefits. Such approaches can be performed in teeth having normal apical area; however, performing vital pulp therapy approaches in teeth associated with periapical pathology remains controversial. CASE REPORT We present a case of a mature mandibular right first permanent molar tooth in a medically fit 10-year-old female diagnosed as asymptomatic irreversible pulpitis with asymptomatic apical periodontitis with periapical radiolucency having a periapical index (PAI) score of 4. Partial pulpotomy was performed instead of non-surgical root canal treatment due to uncooperativeness of the patient. Biodentine was used as a pulp capping material. The tooth was restored with resin composite permanent restoration. Six months after the procedure, an intraoral periapical radiograph revealed normal bone features with complete periapical pathology healing and development of intact lamina dura around the mesial and distal roots. The tooth responded normal to electric pulp testing (EPT), cold, percussion, and palpation tests. CONCLUSIONS Periapical pathology involvement having large periapical radiolucency exhibiting PAI score 4 in inflamed dental pulp tooth diagnosed as irreversible pulpitis does not necessitate non-surgical root canal treatment. Partial pulpotomy should be considered as an alternative treatment to promote the return dental pulp and periapical tissue to a healthy condition. Considering a similar approach in older patients would be interesting to gain a more comprehensive understanding of its potential as a treatment method.
Collapse
|
11
|
Liu Z, Luo X, Xu R. Interaction between immuno-stem dual lineages in jaw bone formation and injury repair. Front Cell Dev Biol 2024; 12:1359295. [PMID: 38510177 PMCID: PMC10950953 DOI: 10.3389/fcell.2024.1359295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The jawbone, a unique structure in the human body, undergoes faster remodeling than other bones due to the presence of stem cells and its distinct immune microenvironment. Long-term exposure of jawbones to an oral environment rich in microbes results in a complex immune balance, as shown by the higher proportion of activated macrophage in the jaw. Stem cells derived from the jawbone have a higher propensity to differentiate into osteoblasts than those derived from other bones. The unique immune microenvironment of the jaw also promotes osteogenic differentiation of jaw stem cells. Here, we summarize the various types of stem cells and immune cells involved in jawbone reconstruction. We describe the mechanism relationship between immune cells and stem cells, including through the production of inflammatory bodies, secretion of cytokines, activation of signaling pathways, etc. In addition, we also comb out cellular interaction of immune cells and stem cells within the jaw under jaw development, homeostasis maintenance and pathological conditions. This review aims to eclucidate the uniqueness of jawbone in the context of stem cell within immune microenvironment, hopefully advancing clinical regeneration of the jawbone.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Sadeghi Ghadi Z, Asadi A, Pilehvar Y, Abasi M, Ebrahimnejad P. Enhancing osteogenic differentiation of dental pulp stem cells through rosuvastatin loaded niosomes optimized by Box-Behnken design and modified by hyaluronan: a novel strategy for improved efficiency. J Biol Eng 2024; 18:13. [PMID: 38279117 PMCID: PMC10821563 DOI: 10.1186/s13036-024-00406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Bone tissue engineering necessitates a stem cell source capable of osteoblast differentiation and mineralized matrix production. Dental pulp stem cells (DPSCs), a subtype of mesenchymal stem cells from human teeth, present such potential but face challenges in osteogenic differentiation. This research introduces an innovative approach to bolster DPSCs' osteogenic potential using niosomal and hyaluronan modified niosomal systems enriched with rosuvastatin. While rosuvastatin fosters bone formation by regulating bone morphogenetic proteins and osteoblasts, its solubility, permeability, and bioavailability constraints hinder its bone regeneration application. Using a Box-Behnken design, optimal formulation parameters were ascertained. Both niosomes were analyzed for size, polydispersity, zeta potential, and other parameters. They displayed average sizes under 275 nm and entrapment efficiencies exceeding 62%. Notably, niosomes boosted DPSCs' cell viability and osteogenic marker expression, suggesting enhanced differentiation and bone formation. Conclusively, the study underscores the potential of both niosomal systems in ameliorating DPSCs' osteogenic differentiation, offering a promising avenue for bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Zaynab Sadeghi Ghadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Asadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mozhgan Abasi
- Immunogenetics Research Center, Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, PO Box: 48175/861, Sari, Iran.
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 17th Kilometer of Sea Street, PO Box: 48175/861, Sari, Iran.
| |
Collapse
|
13
|
Rumyantsev VA, Blinova AV, Atayan RR, Kolosov NS, Aleksanyan DA, Pogosyan AS. [Cellular engineering in periodontology]. STOMATOLOGIIA 2024; 103:57-62. [PMID: 39436251 DOI: 10.17116/stomat202410305157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An overview of various cell engineering techniques being developed for modern conservative and reconstructive periodontology is presented. The accelerated development of cellular engineering technologies poses to medicine and, in particular, periodontics, the task of early implementation of the results of such experiments into patient management protocols. The main groups of promising techniques that are closest to practical healthcare are: isolation and use of stem cells; synthesis of biologically active (inductive) signaling molecules; development of scaffolds that ensure three-dimensional tissue growth.
Collapse
Affiliation(s)
| | | | - R R Atayan
- Tver State Medical University, Tver, Russia
| | | | | | | |
Collapse
|
14
|
Kadkhoda Z, Motie P, Rad MR, Mohaghegh S, Kouhestani F, Motamedian SR. Comparison of Periodontal Ligament Stem Cells with Mesenchymal Stem Cells from Other Sources: A Scoping Systematic Review of In vitro and In vivo Studies. Curr Stem Cell Res Ther 2024; 19:497-522. [PMID: 36397622 DOI: 10.2174/1574888x17666220429123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The application of stem cells in regenerative medicine depends on their biological properties. This scoping review aimed to compare the features of periodontal ligament stem cells (PDLSSCs) with stem cells derived from other sources. DESIGN An electronic search in PubMed/Medline, Embase, Scopus, Google Scholar and Science Direct was conducted to identify in vitro and in vivo studies limited to English language. RESULTS Overall, 65 articles were included. Most comparisons were made between bone marrow stem cells (BMSCs) and PDLSCs. BMSCs were found to have lower proliferation and higher osteogenesis potential in vitro and in vivo than PDLSCs; on the contrary, dental follicle stem cells and umbilical cord mesenchymal stem cells (UCMSCs) had a higher proliferative ability and lower osteogenesis than PDLSCs. Moreover, UCMSCs exhibited a higher apoptotic rate, hTERT expression, and relative telomerase length. The immunomodulatory function of adipose-derived stem cells and BMSCs was comparable to PDLSCs. Gingival mesenchymal stem cells showed less sensitivity to long-term culture. Both pure and mixed gingival cells had lower osteogenic ability compared to PDLSCs. Comparison of dental pulp stem cells (DPSCs) with PDLSCs regarding proliferation rate, osteo/adipogenesis, and immunomodulatory properties was contradictory; however, in vivo bone formation of DPSCs seemed to be lower than PDLSCs. CONCLUSION In light of the performed comparative studies, PDLSCs showed comparable results to stem cells derived from other sources; however, further in vivo studies are needed to determine the actual pros and cons of stem cells in comparison to each other.
Collapse
Affiliation(s)
- Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parisa Motie
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Rezaei Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Yang Z, Ma L, Du C, Wang J, Zhang C, Hu L, Wang S. Dental pulp stem cells accelerate wound healing through CCL2-induced M2 macrophages polarization. iScience 2023; 26:108043. [PMID: 37829207 PMCID: PMC10565783 DOI: 10.1016/j.isci.2023.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
The crosstalk between mesenchymal stem cells (MSCs) and the host immune function plays a key role in the efficiency of tissue regeneration and wound healing. However, the difference in immunological modulation and tissue regeneration function between MSCs from different sources remains unclear. Compared to PDLSCs, BMMSCs, and ADSCs, DPSCs exhibited greater tissue regeneration potential and triggered more M2 macrophages in vivo. DPSCs elicited the polarization of M2a macrophages by conditioned medium and transwell assay and exhibited higher expression levels of C-C motif chemokine ligand 2 (CCL2). Specific blocking of CCL2 could significantly inhibit the DPSCs-induced polarization of M2 macrophages. DPSCs promoted wound healing of the palatal mucosa and M2 macrophages polarization in vivo, which could be significantly impaired by CCL2-neutralized antibody. Our data indicate that DPSCs exert better tissue regeneration potential and immunoregulatory function by secreting CCL2, which can enhance MSCs-mediated tissue regeneration or wound healing.
Collapse
Affiliation(s)
- Zi Yang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Linsha Ma
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Conglin Du
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Hu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Prosthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, China
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Qiao X, Tang J, Dou L, Yang S, Sun Y, Mao H, Yang D. Dental Pulp Stem Cell-Derived Exosomes Regulate Anti-Inflammatory and Osteogenesis in Periodontal Ligament Stem Cells and Promote the Repair of Experimental Periodontitis in Rats. Int J Nanomedicine 2023; 18:4683-4703. [PMID: 37608819 PMCID: PMC10441659 DOI: 10.2147/ijn.s420967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Purpose Dental pulp stem cell-derived exosomes (DPSC-EXO), which have biological characteristics similar to those of metrocytes, have been found to be closely associated with tissue regeneration. Periodontitis is an immune inflammation and tissue destructive disease caused by plaque, resulting in alveolar bone loss and periodontal epithelial destruction. It is not clear whether DPSC-EXO can be used as an effective therapy for periodontal regeneration. The purpose of this study was not only to verify the effect of DPSC-EXO on reducing periodontitis and promoting periodontal tissue regeneration, but also to reveal the possible mechanism. Methods DPSC-EXO was isolated by ultracentrifugation. Then it characterized by transmission electron microscope (TEM), nanoparticle tracking analysis (NTA) and Western Blot. In vitro, periodontal ligament stem cells (PDLSCs) were treated with DPSC-EXO, the abilities of cell proliferation, migration and osteogenic potential were evaluated. Furthermore, we detected the expression of IL-1β, TNF-αand key proteins in the IL-6/JAK2/STAT3 signaling pathway after simulating the inflammatory environment by LPS. In addition, the effect of DPSC-EXO on the polarization phenotype of macrophages was detected. In vivo, the experimental periodontitis in rats was established and treated with DPSC-EXO or PBS. After 4 weeks, the maxillae were collected and detected by micro-CT and histological staining. Results DPSC-EXO promoted the proliferation, migration and osteogenesis of PDLSCs in vitro. DPSC-EXO also regulated inflammation by inhibiting the IL-6/JAK2/STAT3 signaling pathway during acute inflammatory stress. In addition, the results showed that DPSC-EXO could polarize macrophages from the M1 phenotype to the M2 phenotype. In vivo, we found that DPSC-EXO could effectively reduce alveolar bone loss and promote the healing of the periodontal epithelium in rats with experimental periodontitis. Conclusion DPSC-EXO plays an important role in inhibiting periodontitis and promoting tissue regeneration. This study provides a promising acellular therapy for periodontitis.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Jie Tang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Lei Dou
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, People’s Republic of China
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, People’s Republic of China
| |
Collapse
|
17
|
Dang H, Chen W, Chen L, Huo X, Wang F. TPPU inhibits inflammation-induced excessive autophagy to restore the osteogenic differentiation potential of stem cells and improves alveolar ridge preservation. Sci Rep 2023; 13:1574. [PMID: 36709403 PMCID: PMC9884285 DOI: 10.1038/s41598-023-28710-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Inflammation-induced autophagy is a double-edged sword. Dysfunction of autophagy impairs the differentiation capacity of mesenchymal stem cells and enhances inflammation-induced bone loss. Tooth extraction with periodontal and/or endodontic lesions exacerbates horizontal and vertical resorption of alveolar bone during the healing period. Alveolar socket preservation (ASP) procedure following tooth extraction has important clinical implications for future prosthodontic treatments. Studies have shown that epoxyeicosatrienoic acids (EETs) have significant anti-inflammatory effects and participate in autophagy. However, whether EETs can minimize alveolar bone resorption and contribute to ASP by regulating autophagy levels under inflammatory conditions remain elusive. Here, we figured out that LPS-induced inflammatory conditions increased the inflammatory cytokine and inhibited osteogenic differentiation of human dental pulp stem cells (hDPSCs), and led to excessive autophagy of hDPSCs. Moreover, we identified that increased EETs levels using TPPU, a soluble epoxide hydrolase inhibitor, reversed these negative outcomes. We further demonstrated the potential of TPPU to promote early healing of extraction sockets and ASP, and speculated that it was related to autophagy. Taken together, these results suggest that targeting inhibition of soluble epoxide hydrolase using TPPU plays a protective role in the differentiation and autophagy of mesenchymal stem cells and provides potential feasibility for applying TPPU for ASP, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Haixia Dang
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.,School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Weixian Chen
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China.,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China
| | - Lan Chen
- The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Xinru Huo
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China
| | - Fu Wang
- School of Stomatology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, China. .,Academician Laboratory of Immune and Oral Development and Regeneration, Dalian Medical University, Dalian, 116044, China. .,The Affiliated Stomatological Hospital of Dalian Medical University School of Stomatology, Dalian, 116086, China.
| |
Collapse
|
18
|
Chen Y, Wang X, Wu Z, Jia S, Wan M. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration. PeerJ 2023; 11:e14550. [PMID: 36620748 PMCID: PMC9817962 DOI: 10.7717/peerj.14550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/20/2022] [Indexed: 01/05/2023] Open
Abstract
Dental-derived stem cells have excellent proliferation ability and multi-directional differentiation potential, making them an important research target in tissue engineering. An increasing number of dental-derived stem cells have been discovered recently, including dental pulp stem cells (DPSCs), stem cells from exfoliated deciduous teeth (SHEDs), stem cells from apical papilla (SCAPs), dental follicle precursor cells (DFPCs), and periodontal ligament stem cells (PDLSCs). These stem cells have significant application prospects in tissue regeneration because they are found in an abundance of sources, and they have good biocompatibility and are highly effective. The biological functions of dental-derived stem cells are regulated in many ways. Epigenetic regulation means changing the expression level and function of a gene without changing its sequence. Epigenetic regulation is involved in many biological processes, such as embryonic development, bone homeostasis, and the fate of stem cells. Existing studies have shown that dental-derived stem cells are also regulated by epigenetic modifications. Pulp and periodontal regeneration refers to the practice of replacing damaged pulp and periodontal tissue and restoring the tissue structure and function under normal physiological conditions. This treatment has better therapeutic effects than traditional treatments. This article reviews the recent research on the mechanism of epigenetic regulation of dental-derived stem cells, and the core issues surrounding the practical application and future use of pulp and periodontal regeneration.
Collapse
Affiliation(s)
- Yuyang Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiayi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Shiyu Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Mian Wan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China,State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
19
|
Amato M, Santonocito S, Viglianisi G, Tatullo M, Isola G. Impact of Oral Mesenchymal Stem Cells Applications as a Promising Therapeutic Target in the Therapy of Periodontal Disease. Int J Mol Sci 2022; 23:ijms232113419. [PMID: 36362206 PMCID: PMC9658889 DOI: 10.3390/ijms232113419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontal disease is a chronic inflammatory condition affecting about 20–50% of people, worldwide, and manifesting clinically through the detection of gingival inflammation, clinical attachment loss, radiographically assessed resorption of alveolar bone, gingival bleeding upon probing, teeth mobility and their potential loss at advanced stages. It is characterized by a multifactorial etiology, including an imbalance of the oral microbiota, mechanical stress and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include eliminating the microbial pathogens and applying biomaterials to treat the bone defects. However, periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing the relevant literature that assesses the periodontal-regenerative potential of stem cells.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
- Correspondence: (S.S.); (G.I.); Tel.: +39-0953782638 (S.S. & G.I.)
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
- Correspondence: (S.S.); (G.I.); Tel.: +39-0953782638 (S.S. & G.I.)
| |
Collapse
|
20
|
Li X, Feng L, Zhang C, Wang J, Wang S, Hu L. Insulin-like growth factor binding proteins 7 prevents dental pulp-derived mesenchymal stem cell senescence via metabolic downregulation of p21. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2218-2232. [PMID: 35633481 DOI: 10.1007/s11427-021-2096-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
Cellular senescence affects the efficacy of mesenchymal stem cells (MSCs)-mediated tissue regeneration. Insulin-like growth factor binding proteins-7 (IGFBP7), as a member of the IGF family, is associated with osteogenic differentiation and the senescence of MSCs, but its exact function and mechanism remain unclear. We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs (DPSCs), as observed in the gain-of-function and loss-of-function analyses, the senescence-associated marker p21 showed the most pronounced expression changes. We demonstrated that IGFBP7 activated the biological activity of SIRT1 deacetylase via metabolism, resulting in a deacetylation of H3K36ac and a decrease of the binding affinity of H3K36ac to p21 promoter, thereby reducing the transcription of p21, which ultimately prevents DPSCs senescence and promotes tissue regeneration. The activation of the mitochondrial electron transport chain (ETC) by Coenzyme Q10 could rescue the promotion of DPSC senescence induced by the knockdown of IGFBP7, whereas the inhibition of ETC by rotenone attenuated the prevention of DPSC senescence induced by IGFBP7 overexpression. In conclusion, our present results reveal a novel function of IGFBP7 in preventing DPSC senescence via the metabolism-induced deacetylation of H3K36ac and reduction of p21 transcription, suggesting that IGFBP7 is a potential target for promoting tissue regeneration in an aging environment.
Collapse
Affiliation(s)
- Xiaoyu Li
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Liang Feng
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medicine, Beijing, 100069, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health, Capital Medical University School of Stomatology, Beijing, 100050, China.
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100700, China.
- Department of Prosthodontics, Capital Medical University School of Stomatology, Beijing, 100050, China.
| |
Collapse
|
21
|
mTOR is involved in LRP5-induced osteogenic differentiation of normal and aged periodontal ligament stem cells in vitro. J Mol Histol 2022; 53:793-804. [PMID: 36002678 DOI: 10.1007/s10735-022-10097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) plays an important role in tissue engineering. As the age increased, the cell viability and osteogenic differentiation of PDLSCs all decreased. Low density lipoprotein receptor related protein 5 (LRP5) was found to promote bone marrow mesenchymal stem cells osteogenic differentiation. Therefore, our study explored the effect of LRP5 on normal and aged PDLSCs and relative mechanism. Here, we found that the expression of LRP5 in PDLSCs of 24 week-old mice was decreased compared with PDLSCs of 5 week-old mice (n = 5). . LRP5 overexpression in PDLSCs increased the intensity of alkaline phosphatase and alizarin red staining, accompanied with upregulated the levels of RUNX family transcription factor 2, collagen type I, and β-Catenin. LRP5 knockdown displayed the opposite results in PDLSCs in vitro. LRP5 overexpression in aged PDLSCs restored part ability of osteogenic differentiation. Meantime, LRP5 increased the protein expression of phosphorylation of mammalian target of rapamycin (p-mTOR) in normal and aged PDLSCs. Immunofluorescence showed that LRP5 increased the accumulation of p-mTOR nucleus. The effect of LRP5 in promoting osteogenic differentiation of PDLSCs can be antagonized by mTOR inhibitor rapamycin. These findings suggest that LRP5 positively regulate osteogenic differentiation of normal and aged PDLSCs and may be a potential target for enlarging the application of PDLSCs in tissue regeneration.
Collapse
|
22
|
ZHANG YUHAO, ZHAO WENHENG, JIA LIYANG, XU NAN, XIAO YAN, LI QIYAN. THE APPLICATION OF STEM CELLS IN TISSUE ENGINEERING FOR THE REGENERATION OF PERIODONTAL DEFECTS IN RANDOMIZED CONTROLLED TRIAL: A SYSTEMATIC REVIEW AND META-ANALYSIS. J Evid Based Dent Pract 2022; 22:101713. [DOI: 10.1016/j.jebdp.2022.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
|
23
|
Zhou C, Yuan Z, Xu H, Wu L, Xie C, Liu J. Regenerative Endodontic Procedures in Immature Permanent Teeth With Dental Trauma: Current Approaches and Challenges. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.767226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After dental trauma to immature permanent teeth (IPT), there can be pulpitis, necrotic, and periapical periodontitis, which will halt further root development. Traditional endodontic root canal treatments and apexification cannot revitalize the necrotic pulp to revitalize the tooth to promote further root development. As a consequence, IPT with thin dentinal walls can be prone to fracture and if a fracture occurs, the patient will likely suffer the loss of the tooth. In an attempt to save IPT, there has been a growing interest among dentists to use regenerative endodontic procedures (REPs) to revitalize a replace dental pulp to continue root development and strengthen the dentinal walls to help prevent a subsequent loss of the tooth. However, the effectiveness of REPs and the precise methods to successfully accomplish REPs are controversial. Therefore, the objective of this review is to compare the different approaches to REPs in case reports by highlighting their advantages and limitations.
Collapse
|
24
|
Chen Y, Huang H, Li G, Yu J, Fang F, Qiu W. Dental-derived mesenchymal stem cell sheets: a prospective tissue engineering for regenerative medicine. Stem Cell Res Ther 2022; 13:38. [PMID: 35093155 PMCID: PMC8800229 DOI: 10.1186/s13287-022-02716-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Stem cells transplantation is the main method of tissue engineering regeneration treatment, the viability and therapeutic efficiency are limited. Scaffold materials also play an important role in tissue engineering, whereas there are still many limitations, such as rejection and toxic side effects caused by scaffold materials. Cell sheet engineering is a scaffold-free tissue technology, which avoids the side effects of traditional scaffolds and maximizes the function of stem cells. It is increasingly being used in the field of tissue regenerative medicine. Dental-derived mesenchymal stem cells (DMSCs) are multipotent cells that exist in various dental tissues and can be used in stem cell-based therapy, which is impactful in regenerative medicine. Emerging evidences show that cell sheets derived from DMSCs have better effects in the field of regenerative medicine applications. Extracellular matrix (ECM) is the main component of cell sheets, which is a dynamic repository of signalling biological molecules and has a variety of biological functions and may play an important role in the application of cell sheets. In this review, we summarized the application status, mechanisms that sheets and ECM may play and future prospect of DMSC sheets on regeneration medicine.
Collapse
|
25
|
Ren S, Zhou Y, Zheng K, Xu X, Yang J, Wang X, Miao L, Wei H, Xu Y. Cerium oxide nanoparticles loaded nanofibrous membranes promote bone regeneration for periodontal tissue engineering. Bioact Mater 2022; 7:242-253. [PMID: 34466730 PMCID: PMC8379477 DOI: 10.1016/j.bioactmat.2021.05.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Bone regeneration is a crucial part in the treatment of periodontal tissue regeneration, in which new attempts come out along with the development of nanomaterials. Herein, the effect of cerium oxide nanoparticles (CeO2 NPs) on the cell behavior and function of human periodontal ligament stem cells (hPDLSCs) was investigated. Results of CCK-8 and cell cycle tests demonstrated that CeO2 NPs not only had good biocompatibility, but also promoted cell proliferation. Furthermore, the levels of alkaline phosphatase activity, mineralized nodule formation and expressions of osteogenic genes and proteins demonstrated CeO2 NPs could promote osteogenesis differentiation of hPDLSCs. Then we chose electrospinning to fabricate fibrous membranes containing CeO2 NPs. We showed that the composite membranes improved mechanical properties as well as realized release of CeO2 NPs. We then applied the composite membranes to in vivo study in rat cranial defect models. Micro-CT and histopathological evaluations revealed that nanofibrous membranes with CeO2 NPs further accelerated new bone formation. Those exciting results demonstrated that CeO2 NPs and porous membrane contributed to osteogenic ability, and CeO2 NPs contained electrospun membrane may be a promising candidate material for periodontal bone regeneration.
Collapse
Affiliation(s)
- Shuangshuang Ren
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Xuanwen Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jie Yang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Leiying Miao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
26
|
Abstract
In this review, the authors consider the substantial advances that have been made in recent years in stem cell-based periodontal regeneration. These advances involve identifying dental- and nondental-derived stem cells with the capacity to modulate periodontal regeneration, human clinical trials, and emerging concepts, including cell banking, good manufacturing processes, and overall clinical translation.
Collapse
|
27
|
Wang N, Han X, Yang H, Xia D, Fan Z. miR-6807-5p Inhibited the Odontogenic Differentiation of Human Dental Pulp Stem Cells Through Directly Targeting METTL7A. Front Cell Dev Biol 2021; 9:759192. [PMID: 34790668 PMCID: PMC8591228 DOI: 10.3389/fcell.2021.759192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation. Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A. Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs. Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Ning Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Xiao Han
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Dengsheng Xia
- Department of General Dentistry and Integrated Emergency Dental Care, Capital Medical University School of Stomatology, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China.,Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Profile of Dr. Songlin Wang. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1810-1813. [PMID: 34542811 DOI: 10.1007/s11427-021-1992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
29
|
路 晓, 田 瑞, 刘 姗, 徐 锦. [Nerve growth factor combined with dental pulp stem cells promotes peri-implant osseointegration in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1304-1309. [PMID: 34658343 PMCID: PMC8526309 DOI: 10.12122/j.issn.1673-4254.2021.09.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the effect of nerve growth factor (NGF) combined with dental pulp stem cells (DPSCs) on periimplant osseointegration in rats and explore the underlying mechanism. METHODS Cultured DPSCs were treated with NFG or with NFG plus the TrkA antagonist K252a, and after osteogenic induction, the formation of calcium nodules was observed and the expressions of RUNX2 and osteocalcin (OCN) were detected with Western blotting. SD rat models with femoral implantation of dental implants were established and divided into control, DPSCs, DPSCs+NGF, DPSCs+K252a, and DPSCs+ NGF+K252a groups, and in all but the control group, DPSCs were injected locally before placement of the implants (n=8); NGF, K252a and their combination were injected intraperitoneally on a daily basis for 4 weeks. All the rats underwent micro-CT, and the peri-implant bone tissues were collected for HE staining and detection of RUNX2 and OCN expressions using Western blotting. RESULTS In cultured DPSCs, the number of calcium nodules and the expression levels of RUNX2 and OCN were significantly higher in NGF group than in the control group (P < 0.05), and were significantly lower in NGF+K252a group than in NGF group (P < 0.05). In the rat models, the BMD, TB. Th, TB. N and expressions of RUNX2 and OCN in the peri-implant bone tissues were significantly higher in DPSCs group and DPSCs+NGF group than in the control group (P < 0.05), significantly higher in DPSCs+NGF group than in DPSCs group (P < 0.05), comparable between DPSCs+K252a group and DPSCs group (P> 0.05), and significantly lower in DPSCs+NGF+K252a group than in DPSCs+NGF group (P < 0.05). CONCLUSION NGF combined with DPSCs can promote osseointegration in the peri-implant tissues in rats possibly due to a TrkA-mediated effect of NGF for promoting osteogenic differentiation of the DPSCs.
Collapse
Affiliation(s)
- 晓淼 路
- />蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 瑞雪 田
- />蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 姗姗 刘
- />蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - 锦程 徐
- />蚌埠医学院第一附属医院口腔科,安徽 蚌埠 233004Department of Stomatology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| |
Collapse
|
30
|
Zhang Z, Gong L, Li M, Wei G, Liu Y. The osteogenic differentiation of human bone marrow stromal cells induced by nanofiber scaffolds using bioinformatics. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166245. [PMID: 34391896 DOI: 10.1016/j.bbadis.2021.166245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
This article aims to investigate the mechanism of behaviors of human bone marrow stromal cells (hBMSCs) affected by scaffold structure combining Monte Carlo feature selection (MFCS), incremental feature selection (IFS) and support vector machine (SVM). The specific differentially expressed genes (DEGs) of hBMSCs cultured on nanofiber (NF) scaffolds and freeform fabrication (FFF) scaffolds were obtained. Key genes were screened from common genes between osteogenic DEGs and NF specific DEGs with MFCS, IFS and SVM. The results demonstrated that NF scaffolds induced hBMSCs to express more genes related to osteogenic differentiation. Finally, 16 key genes were identified among the common genes. The common genes were significantly enriched in Rap1 signaling pathway, extracellular matrix and ossification. The results in this study suggested that the gene expression of hBMSCs was sensitive to NF scaffolds and FFF scaffolds, and the osteogenic differentiation of hBMSCs could be enhanced by NF scaffolds.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Min Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guoshuai Wei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yan Liu
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
31
|
Henckes NAC, Faleiro D, Chuang LC, Cirne-Lima EO. Scaffold strategies combined with mesenchymal stem cells in vaginal construction: a review. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:26. [PMID: 34337675 PMCID: PMC8326237 DOI: 10.1186/s13619-021-00088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineering field have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structures and functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not only provide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, we discuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted for gynaecological transplantation.
Collapse
Affiliation(s)
- Nicole Andréa Corbellini Henckes
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Dalana Faleiro
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Laura Chao Chuang
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Elizabeth Obino Cirne-Lima
- Programa de Pós-Graduação em Ciências da Saúde-Ginecologia e Obstetrícia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Embriologia e Diferenciação Celular, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Patologia Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
32
|
Dong X, Huang Y, Yang Z, Chu X, Wu J, Wang S, He X, Gao C, Chen X, Yang K, Zhang D. Downregulation of ROR2 promotes dental pulp stem cell senescence by inhibiting STK4-FOXO1/SMS1 axis in sphingomyelin biosynthesis. Aging Cell 2021; 20:e13430. [PMID: 34278704 PMCID: PMC8373368 DOI: 10.1111/acel.13430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/09/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Dental pulp stem cells (DPSCs) play a vital role in tooth restoration, regeneration, and homeostasis. The link between DPSC senescence and tooth aging has been well‐recognized. ROR2 plays an important role in aging‐related gene expression. However, the expression and function of ROR2 in DPSC aging remain largely unknown. In this study, we found that ROR2 expression was significantly decreased in aged pulp tissues and DPSCs. The depletion of ROR2 in young DPSCs inhibits their self‐renewal capacity, while its overexpression in aged DPSCs restores their self‐renewal capacity. Interestingly, we found that sphingomyelin (SM) is involved in the senescence of DPSCs regulated by ROR2. Mechanistically, we confirmed that ROR2 inhibited the phosphorylation of STK4, which promoted the translocation of Forkhead Box O1 (FOXO1) to the nucleus. STK4 inhibition or knockdown of FOXO1 markedly increased the proliferation of DPSCs and upregulated the expression of SMS1, which catalyzed SM biogenesis. Moreover, FOXO1 directly bound to the SMS1 promoter, repressing its transcription. Our findings demonstrated the critical role of the ROR2/STK4‐FOXO1/SMS1 axis in the regulation of SM biogenesis and DPSC senescence, providing a novel target for antagonizing tooth aging.
Collapse
Affiliation(s)
- Xing‐yue Dong
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Yan‐xia Huang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center The Second Hospital of Hebei Medical University Shijiazhang China
| | - Xiao‐yang Chu
- Department of Stomatology Fifth Medical Center of Chinese, PLA General HospitalBeijing China
| | - Jue Wu
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Shan Wang
- Translational Medical Research Center Medical Innovation Research Division of Chinese PLA General HospitalBeijing China
| | - Xin He
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Chun‐Yan Gao
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Xu Chen
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| | - Kai Yang
- Prenatal Diagnosis Center Beijing Obstetrics and Gynecology Hospital Capital Medical University Beijing China
| | - Dong‐liang Zhang
- Department of Orthodontics, Stomatological Hospital, Capital Medical University; Capital Medical University of Stomatology Beijing China
| |
Collapse
|
33
|
Grawish ME, Saeed MA, Sultan N, Scheven BA. Therapeutic applications of dental pulp stem cells in regenerating dental, periodontal and oral-related structures. World J Meta-Anal 2021; 9:176-192. [DOI: 10.13105/wjma.v9.i2.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have emerged as a promising tool with great potential for use in tissue regeneration and engineering. Some of the main advantages of these cells are their multifaceted differentiation capacity, along with their high proliferation rate, a relative simplicity of extraction and culture that enables obtaining patient-specific cell lines for their use in autologous cell therapy. PubMed, Scopus and Google Scholar databases were searched for relevant articles related to the use of DPSCs in regeneration of dentin-pulp complex (DPC), periodontal tissues, salivary gland and craniomaxillofacial bone defects. Few studies were found regarding the use of DPSCs for regeneration of DPC. Scaffold-based combined with DPSCs isolated from healthy pulps was the strategy used for DPC regeneration. Studies involved subcutaneous implantation of scaffolds loaded with DPSCs pretreated with odontogenic media, or performed on human tooth root model as a root slice. Most of the studies were related to periodontal tissue regeneration which mainly utilized DPSCs/secretome. For periodontal tissues, DPSCs or their secretome were isolated from healthy or inflamed pulps and they were used either for preclinical or clinical studies. Regarding salivary gland regeneration, the submandibular gland was the only model used for the preclinical studies and DPSCs or their secretome were isolated only from healthy pulps and they were used in preclinical studies. Likewise, DPSCs have been studied for craniomaxillofacial bone defects in the form of mandibular, calvarial and craniofacial bone defects where DPSCs were isolated only from healthy pulps for preclinical and clinical studies. From the previous results, we can conclude that DPSCs is promising candidate for dental and oral tissue regeneration.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Mahmoud A Saeed
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, United Kingdom
| |
Collapse
|
34
|
|
35
|
Grawish ME, Saeed MA, Sultan N, Scheven BA. Therapeutic applications of dental pulp stem cells in regenerating dental, periodontal and oral-related structures. World J Meta-Anal 2021; 9:175-191. [DOI: 10.13105/wjma.v9.i2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Das M, Das A, Barui A, Paul RR. Comparative evaluation of proliferative potential and replicative senescence associated changes in mesenchymal stem cells derived from dental pulp and umbilical cord. Cell Tissue Bank 2021; 23:157-170. [PMID: 33900487 DOI: 10.1007/s10561-021-09926-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSC) have been widely studied for tissue regeneration and cell-based therapy. MSC can be isolated from different body tissues while several biological waste sources like dental pulp, umbilical cord, cord derived blood, amniotic fluid or urine have also emerged as potential sources of MSCs. Specifically, isolation of MSCs from such non-conventional sources show promising outcomes due to the non-invasiveness of the extraction process and high proliferation capacity of the isolated MSC. However, these stem cells also exhibit the limitation of replicative senescence in long-term culture condition. Inter-cellular reactive oxygen species is an important contributor for inducing cellular senescence under long-term culture conditions. For translational application, it becomes imperative to compare the stem cells isolated from these sources for their senescence and proliferative properties. In this study, MSC were extracted from two different sources of biological waste materials-dental pulp and umbilical cord, and compared for their proliferation capacity and replicative senescence at different passage numbers (i.e. P2 and P6). Intracellular ROS production was significantly (p < 0.001) less in dental pulp stem cells culture in comparison to umbilical cord-derived stem cells at P6. The β-gal expression also showed significantly (p < 0.001) low expression in DPSC culture compared to that of UCSC at P6. The study indicates the source of stem cells influences the proliferation capacity as well as replicative senescence of MSCs. This study will thus pave the path of future research in selecting appropriate stem cell source for regenerative medicine application.
Collapse
Affiliation(s)
- Monalisa Das
- Department of Oral and Dental Sciences, JIS University, Kolkata, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India.
| | - Ranjan Rashmi Paul
- Department of Oral and Dental Sciences, JIS University, Kolkata, India. .,Department of Oral and Dental Sciences, Guru Nanak Institute of Dental Sciences and Research, JIS University, Kolkata, India.
| |
Collapse
|
37
|
Ma Z, Zhou M, Wang L, Cheng Q, Hong J. Establishment of Pulp Damage Repair Models in Miniature Pigs Using Diode Lasers. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2021; 39:369-377. [PMID: 33885356 DOI: 10.1089/photob.2020.4959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objective: To establish a controlled pulp damage repair model in miniature pigs by using a diode laser. Background: Laser is a novel kind of controllable energy, and it is widely used in dentistry. Methods: The premolars of four 24- to 28-month-old miniature pigs were divided into three laser groups, according to the output powers of a diode laser, and the nonirradiated first molars acted as controls. The teeth in laser groups were irradiated under three parameters (output powers 1.5, 2.5, 4 W, continuous wave, frequency 50 Hz for 60 sec). The dental and gingival morphology was observed at 0, 7, 14, and 21 days after laser irradiation. The animals were sacrificed for qualitative and quantitative pulp histopathological analysis. Results: The three laser groups present no seriously irreversible dental and gingival damage. In the 1.5-W group, dental pulp exhibited angiectasis and hyperemia with no inflammation, and did not significantly differ with the control groups at 21 days (p > 0.05). In the 2.5-W group, pulpal inflammation was highest at 7 days and then decreased significantly at 21 days, and the tissue repair appeared at 14 days (p < 0.05). In the 4-W group, pulpal inflammation was significantly highest at 7 days, with an increase in the degree of tissue repair (p < 0.05). Conclusions: The output power of 1.5 W developed a reversible pulpitis model; the output powers of 2.5 and 4 W within 7 days led to the development of irreversible pulpitis models, which proceeded as chronic pulpitis with obvious tissue repair.
Collapse
Affiliation(s)
- Zhifei Ma
- Stomatology Special Consultation Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Mengqi Zhou
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Second Dental Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lizhen Wang
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Oral Pathology, and Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cheng
- National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Endodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Hong
- Stomatology Special Consultation Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
38
|
Comparative analysis of cytokines and growth factors in the conditioned media of stem cells from the pulp of deciduous, young, and old permanent tooth. Saudi J Biol Sci 2021; 28:3559-3565. [PMID: 34121899 PMCID: PMC8176054 DOI: 10.1016/j.sjbs.2021.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Objectives To compare and analyze the secretome profile of stem cells obtained from the deciduous tooth (SHEDs), young (yDPSCs), and old permanent tooth (oDPSCs). Methods All the stem cells were assessed for mesenchymal stem cell markers. The stem cells were differentiated into osteoblasts and chondrocytes using lineage-specific differentiation media. Conditioned media was collected from growing stem cells, and a cytometric bead array was performed to estimate secreted cytokines and growth factor levels by flow cytometry. Gene expresseion levels were assessed by real-time quantitative polymerase chain reaction. Results Age did not affect the mesenchymal characteristics of dental stem cells from various age groups. The secretomes of SHEDs and young yDPSCs exhibit more growth factors and lesser pro-inflammatory cytokines than oDPSCs. Osteo and chondrogenic differentiation potential were higher in SHEDs and young yDPSCs than in the oDPSCs. TLR1, TLR2, TLR3 show decreased expression levels with age and TLR5, TLR6 show increased expression with age. Conclusion The superior regenerative potential of SHEDs and yDPSCs may be due to the higher growth factors and lower pro-inflammatory cytokine profile.
Collapse
|
39
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|
40
|
Stem Cell-based Dental Pulp Regeneration: Insights From Signaling Pathways. Stem Cell Rev Rep 2021; 17:1251-1263. [PMID: 33459973 DOI: 10.1007/s12015-020-10117-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/05/2023]
Abstract
Deep caries, trauma, and severe periodontitis result in pulpitis, pulp necrosis, and eventually pulp loss. However, no clinical therapy can regenerate lost pulp. A novel pulp regeneration strategy for clinical application is urgently needed. Signaling transduction plays an essential role in regulating the regenerative potentials of dental stem cells. Cytokines or growth factors, such as stromal cell-derived factor (SDF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), vascular endothelial growth factor (VEGF), WNT, can promote the migration, proliferation, odontogenic differentiation, pro-angiogenesis, and pro-neurogenesis potentials of dental stem cells respectively. Using the methods of signaling modulation including growth factors delivery, genetic modification, and physical stimulation has been applied in multiple preclinical studies of pulp regeneration based on cell transplantation or cell homing. Transplanting dental stem cells and growth factors encapsulated into scaffold regenerated vascularized pulp-like tissue in the root canal. Also, injecting a flowable scaffold only with chemokines recruited endogenous stem/progenitor cells for pulp regeneration. Notably, dental pulp regeneration has gradually developed into the clinical phase. These findings enlightened us on a novel strategy for structural and functional pulp regeneration through elaborate modulation of signaling transduction spatially and temporally via clinically applicable growth factors delivery. But challenges, such as the adverse effects of unphysiological signaling activation, the controlled drug release system, and the safety of gene modulation, are necessary to be tested in future works for promoting the clinical translation of pulp regeneration.
Collapse
|
41
|
Maeda H. Aging and Senescence of Dental Pulp and Hard Tissues of the Tooth. Front Cell Dev Biol 2020; 8:605996. [PMID: 33330507 PMCID: PMC7734349 DOI: 10.3389/fcell.2020.605996] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The ability to consume a meal using one's own teeth influences an individual's quality of life. In today's global aging society, studying the biological changes in aging teeth is important to address this issue. A tooth includes three hard tissues (enamel, dentin, and cementum) and a soft tissue (dental pulp). With advancing age, these tissues become senescent; each tissue exhibits a unique senescent pattern. This review discusses the structural alterations of hard tissues, as well as the molecular and physiological changes in dental pulp cells and dental pulp stem cells during human aging. The significance of senescence in these cells remains unclear. Thus, there is a need to define the regulatory mechanisms of aging and senescence in these cells to aid in preservation of dental health.
Collapse
Affiliation(s)
- Hidefumi Maeda
- Department of Endodontology and Operative Dentistry, Kyushu University, Fukuoka, Japan.,Department of Endodontology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
42
|
An X, Wang T, Zhang W, Yu H, Chunhua Zhao R, Guo Y, Wang C, Qin L, Guo C. Chondroprotective Effects of Combination Therapy of Acupotomy and Human Adipose Mesenchymal Stem Cells in Knee Osteoarthritis Rabbits via the GSK3β-Cyclin D1-CDK4/CDK6 Signaling Pathway. Aging Dis 2020; 11:1116-1132. [PMID: 33014527 PMCID: PMC7505269 DOI: 10.14336/ad.2019.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are highly chondrogenic and can be used to treat knee osteoarthritis (KOA) by alleviating cartilage defects. Acupotomy, a biomechanical therapy guided by traditional Chinese medicine theory, alleviates cartilage degradation and is widely used in the clinic to treat KOA by correcting abnormal mechanics. However, whether combining acupotomy with ASCs will reverse cartilage degeneration by promoting chondrocyte proliferation in KOA rabbits is unknown. The present study aimed to investigate the effects of combination therapy of acupotomy and ASCs on chondrocyte proliferation and to determine the underlying mechanism in rabbits with KOA induced by knee joint immobilization for 6 weeks. After KOA modeling, five groups of rabbits (acupotomy, ASCs, acupotomy + ASCs, model and control groups) received the indicated intervention for 4 weeks. The combination therapy significantly restored the KOA-induced decrease in passive range of motion (PROM) in the knee joint and reduced the elevated serum level of cartilage oligomeric matrix protein (COMP), a marker for cartilage degeneration. Furthermore, magnetic resonance imaging (MRI) and scanning electron microscopy (SEM) images showed that the combination therapy inhibited cartilage injury. The combination therapy also significantly blocked increases in the mRNA and protein expression of glycogen synthase kinase-3β (GSK3β) and decreases in the mRNA and protein expression of cyclin D1/CDK4 and cyclin D1/CDK6 in cartilage. These findings indicated that the combination therapy mitigated knee joint immobility, promoted chondrocyte proliferation and alleviated cartilage degeneration in KOA rabbits, and these effects may be mediated by specifically regulating the GSK3β-cyclin D1-CDK4/CDK6 pathway.
Collapse
Affiliation(s)
- Xingyan An
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hongliang Yu
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Robert Chunhua Zhao
- 2Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory, Beijing, China
| | - Yan Guo
- 3Acupuncture and Moxibustion Department, Beijing Traditional Chinese Medicine Hospital Affiliated to Capital Medical University, Beijing, China
| | - Chunjiu Wang
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Luxue Qin
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Changqing Guo
- 1School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Li Q, Yang G, Li J, Ding M, Zhou N, Dong H, Mou Y. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:427. [PMID: 33008471 PMCID: PMC7531120 DOI: 10.1186/s13287-020-01938-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background Periodontal tissue regeneration (PTR) is the ultimate goal of periodontal therapy. Currently, stem cell therapy is considered a promising strategy for achieving PTR. However, there is still no conclusive comparison that distinguishes clear hierarchies among different kinds of stem cells. Methods A systematic review and network meta-analysis (NMA) was performed using MEDLINE (via PubMed), EMBASE, and Web of Science up to February 2020. Preclinical studies assessing five types of stem cells for PTR were included; the five types of stem cells included periodontal ligament-derived stem cells (PDLSCs), bone marrow-derived stem cells (BMSCs), adipose tissue-derived stem cells (ADSCs), dental pulp-derived stem cells (DPSCs), and gingival-derived stem cells (GMSCs). The primary outcomes were three histological indicators with continuous variables: newly formed alveolar bone (NB), newly formed cementum (NC), and newly formed periodontal ligament (NPDL). We performed pairwise meta-analyses using a random-effects model and then performed a random-effects NMA using a multivariate meta-analysis model. Results Sixty preclinical studies assessing five different stem cell-based therapies were identified. The NMA showed that in terms of NB, PDLSCs (standardized mean difference 1.87, 95% credible interval 1.24 to 2.51), BMSCs (1.88, 1.17 to 2.59), and DPSCs (1.69, 0.64 to 2.75) were statistically more efficacious than cell carriers (CCs). In addition, PDLSCs were superior to GMSCs (1.49, 0.04 to 2.94). For NC, PDLSCs (2.18, 1.48 to 2.87), BMSCs (2.11, 1.28 to 2.94), and ADSCs (1.55, 0.18 to 2.91) were superior to CCs. For NPDL, PDLSCs (1.69, 0.92 to 2.47) and BMSCs (1.41, 0.56 to 2.26) were more efficacious than CCs, and PDLSCs (1.26, 0.11 to 2.42) were superior to GMSCs. The results of treatment hierarchies also demonstrated that the two highest-ranked interventions were PDLSCs and BMSCs. Conclusion PDLSCs and BMSCs were the most effective and well-documented stem cells for PTR among the five kinds of stem cells evaluated in this study, and there was no statistical significance between them. To translate the stem cell therapies for PTR successfully in the clinic, future studies should utilize robust experimental designs and reports.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangwen Yang
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jialing Li
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meng Ding
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Zhou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Heng Dong
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China. .,Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Yongbin Mou
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
44
|
Retinoic Acid Signal Negatively Regulates Osteo/Odontogenic Differentiation of Dental Pulp Stem Cells. Stem Cells Int 2020; 2020:5891783. [PMID: 32676119 PMCID: PMC7336240 DOI: 10.1155/2020/5891783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA) signal is involved in tooth development and osteogenic differentiation of mesenchymal stem cells (MSCs). Dental pulp stem cells (DPSCs) are one of the useful MSCs in tissue regeneration. However, the function of RA in osteo/odontogenic differentiation of DPSCs remains unclear. Here, we investigated the expression pattern of RA in miniature pig tooth germ and intervened in the RA signal during osteo/odontogenic differentiation of human DPSCs. Deciduous canine (DC) germs of miniature pigs were observed morphologically, and the expression patterns of RA were studied by in situ hybridization (ISH). Human DPSCs were isolated and cultured in osteogenic induction medium with or without RA or BMS 493, an inverse agonist of the pan-retinoic acid receptors (pan-RARs). Alkaline phosphatase (ALP) activity assays, alizarin red staining, quantitative calcium analysis, CCK8 assay, osteogenesis-related gene expression, and in vivo transplantation were conducted to determine the osteo/odontogenic differentiation potential and proliferation potential of DPSCs. We found that the expression of RARβ and CRABP2 decreased during crown calcification of DCs of miniature pigs. Activation of RA signal in vitro inhibited ALP activities and mineralization of human DPSCs and decreased the mRNA expression of ALP, osteocalcin, osteopontin, and a transcription factor, osterix. With BMS 493 treatment, the results were opposite. Interference in RA signal decreased the proliferation of DPSCs. In vivo transplantation experiments suggested that osteo/odontogenic differentiation potential of DPSCs was enhanced by inversing RA signal. Our results demonstrated that downregulation of RA signal promoted osteo/odontogenic differentiation of DPSCs and indicated a potential target pathway to improve tissue regeneration.
Collapse
|
45
|
Liu Y, Wang H, Dou H, Tian B, Li L, Jin L, Zhang Z, Hu L. Bone regeneration capacities of alveolar bone mesenchymal stem cells sheet in rabbit calvarial bone defect. J Tissue Eng 2020; 11:2041731420930379. [PMID: 32566118 PMCID: PMC7288803 DOI: 10.1177/2041731420930379] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells sheets have been verified as a promising non-scaffold
strategy for bone regeneration. Alveolar bone marrow mesenchymal stem cells,
derived from neural crest, have the character of easily obtained and strong
multi-differential potential. However, the bone regenerative features of
alveolar bone marrow mesenchymal stem cells sheets in the craniofacial region
remain unclear. The purpose of the present study was to compare the osteogenic
differentiation and bone defect repairment characteristics of bone marrow
mesenchymal stem cells sheets derived from alveolar bone (alveolar bone marrow
mesenchymal stem cells) and iliac bone (Lon-bone marrow mesenchymal stem cells)
in vitro and in vivo. Histology character,
osteogenic differentiation, and osteogenic gene expression of human alveolar
bone marrow mesenchymal stem cells and Lon-bone marrow mesenchymal stem cells
were compared in vitro. The cell sheets were implanted in
rabbit calvarial defects to evaluate tissue regeneration characteristics.
Integrated bioinformatics analysis was used to reveal the specific gene and
pathways expression profile of alveolar bone marrow mesenchymal stem cells. Our
results showed that alveolar bone marrow mesenchymal stem cells had higher
osteogenic differentiation than Lon-bone marrow mesenchymal stem cells. Although
no obvious differences were found in the histological structure, fibronectin and
integrin β1 expression between them, alveolar-bone marrow mesenchymal stem cells
sheet exhibited higher mineral deposition and expression levels of osteogenic
marker genes. After being transplanted in the rabbit calvarial defects area, the
results showed that greater bone volume and trabecular thickness regeneration
were found in bone marrow mesenchymal stem cells sheet group compared to
Lon-bone marrow mesenchymal stem cells group at both 4 weeks and 8 weeks.
Finally, datasets of bone marrow mesenchymal stem cells versus Lon-bone marrow
mesenchymal stem cells, and periodontal ligament mesenchymal stem cells (another
neural crest derived mesenchymal stem cells) versus umbilical cord mesenchymal
stem cells were analyzed. Total 71 differential genes were identified by overlap
between the 2 datasets. Homeobox genes, such as LHX8, MKX, PAX9,
MSX, and HOX, were identified as the most
significantly changed and would be potential specific genes in neural crest
mesenchymal stem cells. In conclusion, the Al-bone marrow mesenchymal stem cells
sheet-based tissue regeneration appears to be a promising strategy for
craniofacial defect repair in future clinical applications.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Haifeng Wang
- Department of Stomatology, Beijing Bo'ai Hospital, China Rehabilitation Research Center, School of Rehabilitation, Capital Medical University, Beijing, China
| | - Huixin Dou
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Tian
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Li
- Department of Stomatology, Tsinghua University Hospital, Beijing, China
| | - Luyuan Jin
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenting Zhang
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Lei Hu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.,Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Zhang Y, Lv P, Li Y, Zhang Y, Cheng C, Hao H, Yue H. Comparison of the biological characteristics of umbilical cord mesenchymal stem cells derived from the human heterosexual twins. Differentiation 2020; 114:1-12. [PMID: 32460139 DOI: 10.1016/j.diff.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) are attracting more and more attention due to their tissue regenerative properties and immunomodulatory functions. MSCs may be the most acceptable, safe, and effective source for allogeneic cell therapy, and have been used in medical treatment. However, the similarities and differences between umbilical cord-derived MSCs (UC-MSCs) of heterosexual twins remain poorly understood. In this study, we compared the biological characteristics of UC-MSCs of heterosexual twins in vitro. We found that male fetal UC-MSCs and female fetal UC-MSCs share a similar phenotype and multi-lineage differentiation potential, and male fetal UC-MSCs show a significantly higher proliferation and adipogenic ability than female fetal UC-MSCs. UC-MSCs from heterosexual twins showed significant differences in the expression levels of NANOG, OCT4, TERT, and SOX2. In addition, male MSCs are more potent in the expression of inflammatory cytokines to lipopolysaccharide (LPS)-induced inflammation. In future clinical applications using MSCs for inflammation-related diseases, these biological characteristics differences with different genders will guide our clinical methods.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Pengju Lv
- Translational Medicine Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450007, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Yonghui Zhang
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Hongbo Hao
- Neuroscience Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, 10031, USA
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
47
|
Zhou H, Li X, Yin Y, He XT, An Y, Tian BM, Hong YL, Wu LA, Chen FM. The proangiogenic effects of extracellular vesicles secreted by dental pulp stem cells derived from periodontally compromised teeth. Stem Cell Res Ther 2020; 11:110. [PMID: 32143712 PMCID: PMC7060605 DOI: 10.1186/s13287-020-01614-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background Although dental pulp stem cells (DPSCs) isolated from periodontally compromised teeth (P-DPSCs) have been demonstrated to retain pluripotency and regenerative potential, their use as therapeutics remains largely unexplored. In this study, we investigated the proangiogenic effects of extracellular vesicles (EVs) secreted by P-DPSCs using in vitro and in vivo testing models. Methods Patient-matched DPSCs derived from periodontally healthy teeth (H-DPSCs) were used as the control for P-DPSCs. Conditioned media (CMs) derived from H-DPSCs and P-DPSCs (H-CM and P-CM), CMs derived from both cell types pretreated with the EV secretion blocker GW4869 (H-GW and P-GW), and EVs secreted by H-DPSCs and P-DPSCs (H-EVs and P-EVs) were prepared to test their proangiogenic effects on endothelial cells (ECs). Cell proliferation, migration, and tube formation were assessed using the Cell Counting Kit-8 (CCK-8), transwell/scratch wound healing, and Matrigel assays, respectively. Specifically, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blot analysis were used to examine the expression levels of angiogenesis-related genes/proteins in ECs in response to EV-based incubation. Finally, a full-thickness skin defect model was applied to test the effects of EVs on wound healing and new vessel formation. Results Both H-CM and P-CM promoted EC angiogenesis, but the proangiogenic effects were compromised when ECs were incubated in H-GW and P-GW, wherein the EV secretion was blocked by pretreatment with GW4869. In EV-based incubations, although both H-EVs and P-EVs were found to enhance the angiogenesis-related activities of ECs, P-EVs exerted a more robust potential to stimulate EC proliferation, migration, and tube formation. In addition, P-EVs led to higher expression levels of angiogenesis-related genes/proteins in ECs than H-EVs. Similarly, both P-EVs and H-EVs were found to accelerate wound healing and promote vascularization across skin defects in mice, but wounds treated with P-EVs resulted in a quicker healing outcome and enhanced new vessel formation. Conclusions The findings of the present study provide additional evidence that P-DPSCs derived from periodontally diseased teeth represent a potential source of cells for research and therapeutic use. Particularly, the proangiogenic effects of P-EVs suggest that P-DPSCs may be used to promote new vessel formation in cellular therapy and regenerative medicine.
Collapse
Affiliation(s)
- Huan Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Ying An
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Bei-Min Tian
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yong-Long Hong
- Stomatology Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, People's Republic of China.
| | - Li-An Wu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|