1
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
3
|
Hu J, Huang B, Chen K. The impact of physical exercise on neuroinflammation mechanism in Alzheimer's disease. Front Aging Neurosci 2024; 16:1444716. [PMID: 39233828 PMCID: PMC11371602 DOI: 10.3389/fnagi.2024.1444716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Alzheimer's disease (AD), a major cause of dementia globally, imposes significant societal and personal costs. This review explores the efficacy of physical exercise as a non-pharmacological intervention to mitigate the impacts of AD. Methods This review draws on recent studies that investigate the effects of physical exercise on neuroinflammation and neuronal enhancement in individuals with AD. Results Consistent physical exercise alters neuroinflammatory pathways, enhances cognitive functions, and bolsters brain health among AD patients. It favorably influences the activation states of microglia and astrocytes, fortifies the integrity of the blood-brain barrier, and attenuates gut inflammation associated with AD. These changes are associated with substantial improvements in cognitive performance and brain health indicators. Discussion The findings underscore the potential of integrating physical exercise into comprehensive AD management strategies. Emphasizing the necessity for further research, this review advocates for the refinement of exercise regimens to maximize their enduring benefits in decelerating the progression of AD.
Collapse
Affiliation(s)
- Junhui Hu
- School of Physical Education, West Anhui University, Lu'an, China
| | - Baiqing Huang
- School of Physical Education, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
4
|
Martini APR, Schlemmer LM, Lucio Padilha JA, Fabres RB, Couto Pereira NDS, Pereira LO, Dalmaz C, Netto CA. Acrobatic training prevents learning impairments and astrocyte remodeling in the hippocampus of rats undergoing chronic cerebral hypoperfusion: sex-specific benefits. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1375561. [PMID: 38939055 PMCID: PMC11208732 DOI: 10.3389/fresc.2024.1375561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
Background Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.
Collapse
Affiliation(s)
- Ana Paula Rodrigues Martini
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Livia Machado Schlemmer
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joelma Alves Lucio Padilha
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Bandeira Fabres
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, United States
- Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Natividade de Sá Couto Pereira
- Psychological Neuroscience Laboratory, Psychology Research Center, School of Psychology, University of Minho, Braga, Portugal
| | - Lenir Orlandi Pereira
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Dalmaz
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
5
|
Sun M, Rong J, Zhou M, Liu Y, Sun S, Liu L, Cai D, Liang F, Zhao L. Astrocyte-Microglia Crosstalk: A Novel Target for the Treatment of Migraine. Aging Dis 2024; 15:1277-1288. [PMID: 37450927 PMCID: PMC11081170 DOI: 10.14336/ad.2023.0623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Migraine is a pervasive neurologic disease closely related to neurogenic inflammation. The astrocytes and microglia in the central nervous system are vital in inducing neurogenic inflammation in migraine. Recently, it has been found that there may be a crosstalk phenomenon between microglia and astrocytes, which plays a crucial part in the pathology and treatment of Alzheimer's disease and other central nervous system diseases closely related to inflammation, thus becoming a novel hotspot in neuroimmune research. However, the role of the crosstalk between microglia and astrocytes in the pathogenesis and treatment of migraine is yet to be discussed. Based on the preliminary literature reports, we have reviewed relevant evidence of the crosstalk between microglia and astrocytes in the pathogenesis of migraine and summarized the crosstalk pathways, thereby hoping to provide novel ideas for future research and treatment.
Collapse
Affiliation(s)
- Mingsheng Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Rong
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengdi Zhou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiqi Sun
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingjun Cai
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Zhao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Purcell J, Wiley R, Won J, Callow D, Weiss L, Alfini A, Wei Y, Carson Smith J. Increased neural differentiation after a single session of aerobic exercise in older adults. Neurobiol Aging 2023; 132:67-84. [PMID: 37742442 DOI: 10.1016/j.neurobiolaging.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
Aging is associated with decreased cognitive function. One theory posits that this decline is in part due to multiple neural systems becoming dedifferentiated in older adults. Exercise is known to improve cognition in older adults, even after only a single session. We hypothesized that one mechanism of improvement is a redifferentiation of neural systems. We used a within-participant, cross-over design involving 2 sessions: either 30 minutes of aerobic exercise or 30 minutes of seated rest (n = 32; ages 55-81 years). Both functional Magnetic Resonance Imaging (fMRI) and Stroop performance were acquired soon after exercise and rest. We quantified neural differentiation via general heterogeneity regression. There were 3 prominent findings following the exercise. First, participants were better at reducing Stroop interference. Second, while there was greater neural differentiation within the hippocampal formation and cerebellum, there was lower neural differentiation within frontal cortices. Third, this greater neural differentiation in the cerebellum and temporal lobe was more pronounced in the older ages. These data suggest that exercise can induce greater neural differentiation in healthy aging.
Collapse
Affiliation(s)
- Jeremy Purcell
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA.
| | - Robert Wiley
- Department of Psychology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Junyeon Won
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, TX, USA
| | - Daniel Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Lauren Weiss
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Alfonso Alfini
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Yi Wei
- Maryland Neuroimaging Center, University of Maryland, College Park, MD, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| |
Collapse
|
7
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
8
|
Campos ACP, Pagano RL, Lipsman N, Hamani C. What do we know about astrocytes and the antidepressant effects of DBS? Exp Neurol 2023; 368:114501. [PMID: 37558154 DOI: 10.1016/j.expneurol.2023.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Treatment-resistant depression (TRD) is a debilitating condition that affects millions of individuals worldwide. Deep brain stimulation (DBS) has been widely used with excellent outcomes in neurological disorders such as Parkinson's disease, tremor, and dystonia. More recently, DBS has been proposed as an adjuvant therapy for TRD. To date, the antidepressant efficacy of DBS is still controversial, and its mechanisms of action remain poorly understood. Astrocytes are the most abundant cells in the nervous system. Once believed to be a "supporting" element for neuronal function, astrocytes are now recognized to play a major role in brain homeostasis, neuroinflammation and neuroplasticity. Because of its many roles in complex multi-factorial disorders, including TRD, understanding the effect of DBS on astrocytes is pivotal to improve our knowledge about the antidepressant effects of this therapy. In depression, the number of astrocytes and the expression of astrocytic markers are decreased. One of the potential consequences of this reduced astrocytic function is the development of aberrant glutamatergic neurotransmission, which has been documented in several models of depression-like behavior. Evidence from preclinical work suggests that DBS may directly influence astrocytic activity, modulating the release of gliotransmitters, reducing neuroinflammation, and altering structural tissue organization. Compelling evidence for an involvement of astrocytes in potential mechanisms of DBS derive from studies suggesting that pharmacological lesions or the inhibition of these cells abolishes the antidepressant-like effect of DBS. In this review, we summarize preclinical data suggesting that the modulation of astrocytes may be an important mechanism for the antidepressant-like effects of DBS.
Collapse
Affiliation(s)
- Ana Carolina P Campos
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Nir Lipsman
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Huang YQ, Wu Z, Lin S, Chen XR. The benefits of rehabilitation exercise in improving chronic traumatic encephalopathy: recent advances and future perspectives. Mol Med 2023; 29:131. [PMID: 37740180 PMCID: PMC10517475 DOI: 10.1186/s10020-023-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
Traumatic encephalopathy syndrome (TES) is used to describe the clinical manifestations of chronic traumatic encephalopathy (CTE). However, effective treatment and prevention strategies are lacking. Increasing evidence has shown that rehabilitation training could prevent cognitive decline, enhance brain plasticity, and effectively improve neurological function in neurodegenerative diseases. Therefore, the mechanisms involved in the effects of rehabilitation exercise therapy on the prognosis of CTE are worth exploring. The aim of this article is to review the pathogenesis of CTE and provide a potential clinical intervention strategy for CTE.
Collapse
Affiliation(s)
- Yin-Qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhe Wu
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Xiang-Rong Chen
- Department of Neuronal Surgery, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
10
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
11
|
Kopczynski A, Carteri RB, Rodolphi MS, Oses JP, Portela LO, Geller CA, de Oliveira VG, De Bastiani MA, Strogulski NR, Smith DH, Portela LV. Lower and higher volumes of physical exercise build up brain reserves against memory deficits triggered by a head injury in mice. Exp Neurol 2023; 363:114352. [PMID: 36813223 PMCID: PMC10103909 DOI: 10.1016/j.expneurol.2023.114352] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Decreasing neurotrophic support and impaired mitochondrial bioenergetics are key mechanisms for long-term neurodegeneration and cognitive decline after traumatic brain injury (TBI). We hypothesize that preconditioning with lower and higher volumes of physical exercise upregulates the CREB-BDNF axis and bioenergetic capability, which might serve as neural reserves against cognitive impairment after severe TBI. Using a running wheel mounted in the home cage, mice were engaged in lower (LV, 48 h free access, and 48 h locked) and higher (HV, daily free access) exercise volumes for thirty days. Subsequently, LV and HV mice remained for additional thirty days in the home cage with the running wheel locked and were euthanized. The sedentary group had the running wheel always locked. For the same type of exercise stimulus in a given time, daily workout presents higher volume than alternate days workout. The total distance ran in the wheel was the reference parameter to confirm distinct exercise volumes. On average, LV exercise ran 27.522 m and HV exercise ran 52.076 m. Primarily, we investigate whether LV and HV protocols increase neurotrophic and bioenergetic support in the hippocampus thirty days after exercise ceased. Regardless of volume, exercise increased hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling and mitochondrial coupling efficiency, excess capacity, and leak control, that may compose the neurobiological basis for neural reserves. Further, we challenge these neural reserves against secondary memory deficits triggered by a severe TBI. After thirty days of exercise LV and HV, and sedentary (SED) mice were submitted to the CCI model. Mice remained for additional thirty days in the home cage with the running wheel locked. The mortality after severe TBI was approximately 20% in LV and HV, while in the SED was 40%. Also, LV and HV exercise sustained hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling, mitochondrial coupling efficiency, excess capacity, and leak control for thirty days after severe TBI. Corroborating these benefits, the mitochondrial H2O2 production linked to complexes I and II was attenuated by exercise regardless of the volume. These adaptations attenuated spatial learning and memory deficits caused by TBI. In summary, preconditioning with LV and HV exercise builds up long-lasting CREB-BDNF and bioenergetic neural reserves that preserve memory fitness after severe TBI.
Collapse
Affiliation(s)
- Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista, Departamento de Nutrição, Instituto Porto Alegre, IPA, Porto Alegre, Brazil; CESUCA Centro Universitário, Departamento de Nutrição, Cachoeirinha, RS, Brazil
| | - Marcelo S Rodolphi
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Jean P Oses
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Luiz O Portela
- Laboratório de Performance em Ambiente Simulado (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Cesar A Geller
- Laboratório de Performance em Ambiente Simulado (LAPAS), Centro de Educação Física, Universidade Federal de Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Vitória G de Oliveira
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marco Antonio De Bastiani
- Zimmer Neuroimaging Lab, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nathan R Strogulski
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis V Portela
- Laboratório de Neurotrauma e Biomarcadores, Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
12
|
C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 astrocytes in male rats. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166672. [PMID: 36871753 DOI: 10.1016/j.bbadis.2023.166672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Astrocyte activation, which is polarized into classical neurotoxic A1, neuroprotective A2, A-pan, etc., is thought to be involved in the transition from acute to chronic post-thoracotomy pain. The C3aR receptor associated with astrocyte-neuron and -microglia interactions is necessary for A1 astrocytes polarization. This study aimed to determine whether C3aR in astrocytes mediates post-thoracotomy pain by inducing A1 expression in a rat thoracotomy pain model. METHODS A rat thoracotomy pain model was employed. The mechanical withdraw threshold was measured to evaluate pain behavior. Lipopolysaccharide (LPS) was injected intraperitoneally to induce A1. Intrathecal injection of AAV2/9-rC3ar1 shRNA-GFAP was used to knock down in vivo C3aR expression in astrocytes. The expression of associated phenotypic markers before and after intervention was assessed by RT-PCR, western blot, co-immunofluorescence, and single-cell RNA sequencing. RESULTS C3aR downregulation was found to inhibit LPS-induced A1 astrocytes activation, decrease the expression of C3aR, C3, and GFAP, which were activated from acute to chronic pain, and alleviate the mechanical withdrawal threshold and chronic pain incidence. In addition, more A2 astrocytes were activated in the model group that did not develop chronic pain. C3aR downregulation increased the number of A2 astrocytes upon LPS exposure. Knockdown of C3aR also decreased the activation of M1 microglia induced by LPS or thoracotomy. CONCLUSIONS Our study confirmed that C3aR-induced A1 polarization contributes to chronic post-thoracotomy pain. Inhibition of A1 activation via C3aR downregulation increases anti-inflammatory A2 and decreases pro-inflammatory M1 activation, which may also be involved in the mechanism of chronic post-thoracotomy pain.
Collapse
|
13
|
Sheoran S, Vints WAJ, Valatkevičienė K, Kušleikienė S, Gleiznienė R, Česnaitienė VJ, Himmelreich U, Levin O, Masiulis N. Strength gains after 12 weeks of resistance training correlate with neurochemical markers of brain health in older adults: a randomized control 1H-MRS study. GeroScience 2023:10.1007/s11357-023-00732-6. [PMID: 36701005 PMCID: PMC9877502 DOI: 10.1007/s11357-023-00732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Physical exercise is considered a potent countermeasure against various age-associated physiological deterioration processes. We therefore assessed the effect of 12 weeks of resistance training on brain metabolism in older adults (age range: 60-80 years). Participants either underwent two times weekly resistance training program which consisted of four lower body exercises performed for 3 sets of 6-10 repetitions at 70-85% of 1 repetition maximum (n = 20) or served as the passive control group (n = 21). The study used proton magnetic resonance spectroscopy to quantify the ratio of total N-acetyl aspartate, total choline, glutamate-glutamine complex, and myo-inositol relative to total creatine (tNAA/tCr, tCho/tCr, Glx/tCr, and mIns/tCr respectively) in the hippocampus (HPC), sensorimotor (SM1), and prefrontal (dlPFC) cortices. The peak torque (PT at 60°/s) of knee extension and flexion was assessed using an isokinetic dynamometer. We used repeated measures time × group ANOVA to assess time and group differences and correlation coefficient analyses to examine the pre-to-post change (∆) associations between PT and neurometabolite variables. The control group showed significant declines in tNAA/tCr and Glx/tCr of SM1, and tNAA/tCr of dlPFC after 12 weeks, which were not seen in the experimental group. A significant positive correlation was found between ∆PT knee extension and ∆SM1 Glx/tCr, ∆dlPFC Glx/tCr and between ∆PT knee flexion and ∆dlPFC mIns/tCr in the experimental group. Overall, findings suggest that resistance training seems to elicit alterations in various neurometabolites that correspond to exercise-induced "preservation" of brain health, while simultaneously having its beneficial effect on augmenting muscle functional characteristics in older adults.
Collapse
Affiliation(s)
- Samrat Sheoran
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, AB T6G 2R3 Edmonton, Canada
| | - Wouter A. J. Vints
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation Medicine Research School CAPHRI, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Simona Kušleikienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Rymantė Gleiznienė
- Department of Radiology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Vida J. Česnaitienė
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Group Biomedical Sciences, Biomedical MRI Unit, Catholic University Leuven, 3000 Leuven, Belgium
| | - Oron Levin
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, Catholic University Leuven, 3001 Heverlee, Belgium
| | - Nerijus Masiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, 44221 Kaunas, Lithuania ,Department of Rehabilitation, Physical and Sports Medicine, Faculty of Medicine, Institute of Health Science, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
14
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Wu Y, Eisel UL. Microglia-Astrocyte Communication in Alzheimer's Disease. J Alzheimers Dis 2023; 95:785-803. [PMID: 37638434 PMCID: PMC10578295 DOI: 10.3233/jad-230199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
Microglia and astrocytes are regarded as active participants in the central nervous system under various neuropathological conditions, including Alzheimer's disease (AD). Both microglia and astrocyte activation have been reported to occur with a spatially and temporarily distinct pattern. Acting as a double-edged sword, glia-mediated neuroinflammation may be both detrimental and beneficial to the brain. In a variety of neuropathologies, microglia are activated before astrocytes, which facilitates astrocyte activation. Yet reactive astrocytes can also prevent the activation of adjacent microglia in addition to helping them become activated. Studies describe changes in the genetic profile as well as cellular and molecular responses of these two types of glial cells that contribute to dysfunctional immune crosstalk in AD. In this paper, we construct current knowledge of microglia-astrocyte communication, highlighting the multifaceted functions of microglia and astrocytes and their role in AD. A thorough comprehension of microglia-astrocyte communication could hasten the creation of novel AD treatment approaches.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ulrich L.M. Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Jia J. Exploration on neurobiological mechanisms of the central–peripheral–central closed-loop rehabilitation. Front Cell Neurosci 2022; 16:982881. [PMID: 36119128 PMCID: PMC9479450 DOI: 10.3389/fncel.2022.982881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Central and peripheral interventions for brain injury rehabilitation have been widely employed. However, as patients’ requirements and expectations for stroke rehabilitation have gradually increased, the limitations of simple central intervention or peripheral intervention in the rehabilitation application of stroke patients’ function have gradually emerged. Studies have suggested that central intervention promotes the activation of functional brain regions and improves neural plasticity, whereas peripheral intervention enhances the positive feedback and input of sensory and motor control modes to the central nervous system, thereby promoting the remodeling of brain function. Based on the model of a central–peripheral–central (CPC) closed loop, the integration of center and peripheral interventions was effectively completed to form “closed-loop” information feedback, which could be applied to specific brain areas or function-related brain regions of patients. Notably, the closed loop can also be extended to central and peripheral immune systems as well as central and peripheral organs such as the brain–gut axis and lung–brain axis. In this review article, the model of CPC closed-loop rehabilitation and the potential neuroimmunological mechanisms of a closed-loop approach will be discussed. Further, we highlight critical questions about the neuroimmunological aspects of the closed-loop technique that merit future research attention.
Collapse
Affiliation(s)
- Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Regional Medical Center, Fujian, China
- The First Affiliated Hospital of Fujian Medical University, Fujian, China
- *Correspondence: Jie Jia,
| |
Collapse
|
17
|
Li C, Wang Y, Xing Y, Han J, Zhang Y, Zhang A, Hu J, Hua Y, Bai Y. Regulation of microglia phagocytosis and potential involvement of exercise. Front Cell Neurosci 2022; 16:953534. [PMID: 35959472 PMCID: PMC9357882 DOI: 10.3389/fncel.2022.953534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia are considered the main phagocytic cells in the central nervous system, remodeling neural circuits by pruning synapses during development. Microglial phagocytosis is also a crucial process in maintaining adult brain homeostasis and clearing potential toxic factors, which are recognized to be associated with neurodegenerative and neuroinflammatory disorders. For example, microglia can engulf amyloid-β plaques, myelin debris, apoptotic cells, and extracellular harmful substances by expressing a variety of specific receptors on the cell surface or by reprogramming intracellular glucose and lipid metabolism processes. Furthermore, physical exercise has been implicated to be one of the non-pharmaceutical treatments for various nervous system diseases, which is closely related to neuroplasticity and microglia functions including proliferation, activation, and phagocytosis. This review focuses on the central regulatory mechanisms related to microglia phagocytosis and the potential role of exercise training in this process.
Collapse
Affiliation(s)
- Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Han
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, Brain Science Collaborative Innovation Center, School of Basic Medical Sciences, Institutes of Brain Science, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Anjing Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yulong Bai
| |
Collapse
|
18
|
de Siqueira Mendes FDCC, de Almeida MNF, Falsoni M, Andrade MLF, Felício APG, da Paixão LTVB, Júnior FLDA, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. The Sedentary Lifestyle and Masticatory Dysfunction: Time to Review the Contribution to Age-Associated Cognitive Decline and Astrocyte Morphotypes in the Dentate Gyrus. Int J Mol Sci 2022; 23:ijms23116342. [PMID: 35683023 PMCID: PMC9180988 DOI: 10.3390/ijms23116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As aging and cognitive decline progresses, the impact of a sedentary lifestyle on the appearance of environment-dependent cellular morphologies in the brain becomes more apparent. Sedentary living is also associated with poor oral health, which is known to correlate with the rate of cognitive decline. Here, we will review the evidence for the interplay between mastication and environmental enrichment and assess the impact of each on the structure of the brain. In previous studies, we explored the relationship between behavior and the morphological features of dentate gyrus glial fibrillary acidic protein (GFAP)-positive astrocytes during aging in contrasting environments and in the context of induced masticatory dysfunction. Hierarchical cluster and discriminant analysis of GFAP-positive astrocytes from the dentate gyrus molecular layer revealed that the proportion of AST1 (astrocyte arbors with greater complexity phenotype) and AST2 (lower complexity) are differentially affected by environment, aging and masticatory dysfunction, but the relationship is not straightforward. Here we re-evaluated our previous reconstructions by comparing dorsal and ventral astrocyte morphologies in the dentate gyrus, and we found that morphological complexity was the variable that contributed most to cluster formation across the experimental groups. In general, reducing masticatory activity increases astrocyte morphological complexity, and the effect is most marked in the ventral dentate gyrus, whereas the effect of environment was more marked in the dorsal dentate gyrus. All morphotypes retained their basic structural organization in intact tissue, suggesting that they are subtypes with a non-proliferative astrocyte profile. In summary, the increased complexity of astrocytes in situations where neuronal loss and behavioral deficits are present is counterintuitive, but highlights the need to better understand the role of the astrocyte in these conditions.
Collapse
Affiliation(s)
- Fabíola de Carvalho Chaves de Siqueira Mendes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Curso de Medicina, Centro Universitário do Estado do Pará, Belém 66613-903, PA, Brazil
| | - Marina Negrão Frota de Almeida
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Manoela Falsoni
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Lorena Ferreira Andrade
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - André Pinheiro Gurgel Felício
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Luisa Taynah Vasconcelos Barbosa da Paixão
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Fábio Leite do Amaral Júnior
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK;
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66073-005, PA, Brazil; (F.d.C.C.d.S.M.); (M.N.F.d.A.); (M.F.); (M.L.F.A.); (A.P.G.F.); (L.T.V.B.d.P.); (F.L.d.A.J.); (C.W.P.D.)
- Correspondence:
| |
Collapse
|
19
|
Cao W, Lin J, Xiang W, Liu J, Wang B, Liao W, Jiang T. Physical Exercise-Induced Astrocytic Neuroprotection and Cognitive Improvement Through Primary Cilia and Mitogen-Activated Protein Kinases Pathway in Rats With Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2022; 14:866336. [PMID: 35721009 PMCID: PMC9198634 DOI: 10.3389/fnagi.2022.866336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 01/02/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is closely related to vascular cognitive impairment and dementia (VCID) and Alzheimer’s disease (AD). The neuroinflammation involving astrocytes is an important pathogenic mechanism. Along with the advancement of the concept and technology of astrocytic biology, the astrocytes have been increasingly regarded as the key contributors to neurological diseases. It is well known that physical exercise can improve cognitive function. As a safe and effective non-drug treatment, physical exercise has attracted continuous interests in neurological research. In this study, we explored the effects of physical exercise on the response of reactive astrocytes, and its role and mechanism in CCH-induced cognitive impairment. A rat CCH model was established by 2 vessel occlusion (2VO) and the wheel running exercise was used as the intervention. The cognitive function of rats was evaluated by morris water maze and novel object recognition test. The phenotypic polarization and the primary cilia expression of astrocytes were detected by immunofluorescence staining. The activation of MAPKs cascades, including ERK, JNK, and P38 signaling pathways, were detected by western blot. The results showed that physical exercise improved cognitive function of rats 2 months after 2VO, reduced the number of C3/GFAP-positive neurotoxic astrocytes, promoted the expression of S100A10/GFAP-positive neuroprotective astrocytes, and enhanced primary ciliogenesis. Additionally, physical exercise also alleviated the phosphorylation of ERK and JNK proteins induced by CCH. These results indicate that physical exercise can improve the cognitive function of rats with CCH possible by promoting primary ciliogenesis and neuroprotective function of astrocytes. The MAPKs signaling cascade, especially ERK and JNK signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- Wenyue Cao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junbin Lin
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jingying Liu
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biru Wang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Weijing Liao,
| | - Ting Jiang
- Department of Neurorehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- *Correspondence: Ting Jiang,
| |
Collapse
|
20
|
Xu B, He Y, Liu L, Ye G, Chen L, Wang Q, Chen M, Chen Y, Long D. The Effects of Physical Running on Dendritic Spines and Amyloid-beta Pathology in 3xTg-AD Male Mice. Aging Dis 2022; 13:1293-1310. [PMID: 35855335 PMCID: PMC9286906 DOI: 10.14336/ad.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 11/01/2022] Open
Abstract
Memory loss is the key symptom of Alzheimer's disease (AD). As successful drug treatments have not yet been identified, non-pharmaceutical interventions such as physical exercise and training have been employed to improve the memory function of people with dementia. We investigated the effect of prolonged physical running on hippocampal-dependent spatial memory and its underlying mechanisms using a well-established rodent model of AD. 3xTg-AD transgenic mice and non-transgenic mice were subjected to voluntary wheel running for 5 months (1 hour per day, 5 days per week), followed by spatial memory testing. After the behavioral testing, dendritic spines, synapses, and synaptic proteins as well as amyloid-beta (Aβ) pathology were analyzed in the dorsal hippocampi. Running improved hippocampal-dependent spatial memory in 3xTg-AD mice. This running strategy prevented both thin and mushroom-type spines on CA1 pyramidal cells in 3xTg-AD mice, whereas the effects of running in non-transgenic mice were limited to thin spines. The enormous effects of running on spines were accompanied by an increased number of synapses and upregulated expression of synaptic proteins. Notably, running downregulated the processing of amyloid precursor protein, decreasing intracellular APP expression and extracellular Aβ accumulation, and spatial memory performance correlated with levels of Aβ peptides Aβ1-40 and Aβ1-42. These data suggest that prolonged running may improve memory in preclinical AD via slowing down the amyloid pathology and preventing the loss of synaptic contacts.
Collapse
Affiliation(s)
- Benke Xu
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Yun He
- Department of Human Anatomy, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Lian Liu
- Department of Pharmacology, School of Basic Medical Sciences, Yangtze University, Hubei 434023, China.
| | - Guosheng Ye
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lulu Chen
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Qingning Wang
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Michael Chen
- University of California, Los Angeles, CA 90095, USA.
| | - Yuncai Chen
- Department of Pediatrics, University of California, Irvine, CA 92697, USA.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| | - Dahong Long
- Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
- Correspondence should be addressed to: Dr. Dahong Long, Key Lab of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China. E-mail: or Dr. Yuncai Chen, Department of Pediatrics, University of California-Irvine, Irvine, California 92697, USA. E-mail:
| |
Collapse
|