1
|
Liotta A, Loroch S, Wallach I, Klewe K, Marcus K, Berndt N. Metabolic Adaptation in Epilepsy: From Acute Response to Chronic Impairment. Int J Mol Sci 2024; 25:9640. [PMID: 39273587 PMCID: PMC11395010 DOI: 10.3390/ijms25179640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is characterized by hypersynchronous neuronal discharges, which are associated with an increased cerebral metabolic rate of oxygen and ATP demand. Uncontrolled seizure activity (status epilepticus) results in mitochondrial exhaustion and ATP depletion, which potentially generate energy mismatch and neuronal loss. Many cells can adapt to increased energy demand by increasing metabolic capacities. However, acute metabolic adaptation during epileptic activity and its relationship to chronic epilepsy remains poorly understood. We elicited seizure-like events (SLEs) in an in vitro model of status epilepticus for eight hours. Electrophysiological recording and tissue oxygen partial pressure recordings were performed. After eight hours of ongoing SLEs, we used proteomics-based kinetic modeling to evaluate changes in metabolic capacities. We compared our findings regarding acute metabolic adaptation to published proteomic and transcriptomic data from chronic epilepsy patients. Epileptic tissue acutely responded to uninterrupted SLEs by upregulating ATP production capacity. This was achieved by a coordinated increase in the abundance of proteins from the respiratory chain and oxidative phosphorylation system. In contrast, chronic epileptic tissue shows a 25-40% decrease in ATP production capacity. In summary, our study reveals that epilepsy leads to dynamic metabolic changes. Acute epileptic activity boosts ATP production, while chronic epilepsy reduces it significantly.
Collapse
Affiliation(s)
- Agustin Liotta
- Department of Anesthesiology and Intensive Care, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefan Loroch
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kristoffer Klewe
- QC-MS/Fa. Dr. Loroch, BioMedizinZentrum, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Center for Protein Diagnostics (PRODI), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Department of Molecular Toxicology, 14558 Nuthetal, Germany
| |
Collapse
|
2
|
Liang R, Xiang Q, Dai M, Lin T, Xie D, Song Q, Liu Y, Yue J. Identification of nicotinamide N-methyltransferase as a promising therapeutic target for sarcopenia. Aging Cell 2024; 23:e14236. [PMID: 38838088 PMCID: PMC11488295 DOI: 10.1111/acel.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia is a significant geriatric syndrome that involves the loss of skeletal muscle mass and strength. Due to its substantial endocrine role, the metabolic microenvironment of skeletal muscle undergoes changes with age. Examining the pathogenesis of sarcopenia through focusing on metabolic dysregulation could offer insights for developing more effective intervention strategies. In this study, we analyzed the transcriptomics data to identify specific genes involved in the regulation of metabolism in skeletal muscle during the development of sarcopenia. Three machine learning algorithms were employed to screen key target genes exhibiting strong correlations with metabolism, which were further validated using RNA-sequencing data and publicly accessible datasets. Among them, the metabolic enzyme nicotinamide N-methyltransferase (NNMT) was elevated in sarcopenia, and predicted sarcopenia with an area under the curve exceeding 0.7, suggesting it as a potential therapeutic target for sarcopenia. As expected, inhibition of NNMT improved the grip strength in aging mice and alleviated age-related decline in the mass index of the quadriceps femoris muscles and whole-body lean mass index. Additionally, the NNMTi treatment increased the levels of nicotinamide adenine dinucleotide (NAD+) content, as well as PGC1α and p-AMPK expression in the muscles of both the D-galactose-treated mouse model and naturally aging mouse model. Overall, this work demonstrates NNMT as a promising target for preventing age-related decline in muscle mass and strength.
Collapse
Affiliation(s)
- Rui Liang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Qiao Xiang
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Miao Dai
- Department of GeriatricsJiujiang No 1 People's HospitalJiujiangJiangxiChina
| | - Taiping Lin
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Dongmei Xie
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Quhong Song
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| | - Yu Liu
- National Clinical Research Center for Geriatrics, General Practice Ward/International Medical Center Ward, General Practice Medical Center, State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Meng S, He X, Fu X, Zhang X, Tong M, Li W, Zhang W, Shi X, Liu K. The prevalence of sarcopenia and risk factors in the older adult in China: a systematic review and meta-analysis. Front Public Health 2024; 12:1415398. [PMID: 39161853 PMCID: PMC11331796 DOI: 10.3389/fpubh.2024.1415398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Background Understanding the epidemiological information of a certain disease is the first step in related prevention and control work. This article aims to understand the prevalence and associated risk factors of sarcopenia among the older adult (≥60 years old) in China and to provide an evidence-based basis for early identification, management, and prevention of sarcopenia patients. Methods We searched seven databases: CNKI, Wanfang, VIP, PubMed, Web of Science, Embase, and Cochrane Library databases from the establishment of the database until January 31, 2024. The Quality evaluation criteria of cross-sectional studies recommended by the Agency for Healthcare Research and Quality (AHRQ) were used for literature quality evaluation. Stata 18.0 software was used for statistical analysis. Results We finally included 45 studies, involving a total of 37,571 cases. After statistical analysis, we found that the prevalence of sarcopenia among the older adult in China was 20.7% [95% CI (18.3, 23.0%)]. The results of subgroup analysis suggest that: ① According to gender, the prevalence rate of sarcopenia in women (21.6%) is higher than that in men (19.2%); ② According to age, the prevalence rate of older adult people aged ≥80 (45.4%) was the highest, followed by 70-79 (27.2%) and 60-69 (15.7%). ③ According to region, the prevalence rate of the older adult in the south (21.7%) is higher than that in the north (19.0%); ④ According to the time of publication, the prevalence of sarcopenia among the older adult in China has increased (from 19.2% in 2014-2018 to 21.4% in 2019-2024); ⑤ According to the diagnostic criteria, the detection rate of AWGS (2019) is higher than that of AWGS (2014) (24.5% vs. 19.3%). Finally, aging, low BMI, low leg circumference, smoking, depression, osteoporosis, malnutrition and malnutrition risk are all risk factors for sarcopenia among the older adult in China. Conclusion The prevalence of sarcopenia in the older adult in China was higher (20.7%), which should be paid attention to by relevant health authorities. In addition, aging, low BMI, low calf circumference, smoking, depression, osteoporosis, malnutrition and malnutrition risk are risk factors for the development of sarcopenia in the older adult in China. For these high-risk populations, early identification, prevention, and intervention can be carried out to delay the occurrence and progression of sarcopenia.
Collapse
Affiliation(s)
- Shilong Meng
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaomin He
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinlei Fu
- The First School of Clinical Medicine, Fujian University of Traditional Chinese Medical, Fuzhou, Fujian, China
| | - Xu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Minghao Tong
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Xianju Branch of the Second Affiliated Hospital, Zhejiang Chinese Medicine University, Taizhou, Zhejiang, China
| | - Xiaolin Shi
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kang Liu
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Xianju Branch of the Second Affiliated Hospital, Zhejiang Chinese Medicine University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Jeong I, Cho EJ, Yook JS, Choi Y, Park DH, Kang JH, Lee SH, Seo DY, Jung SJ, Kwak HB. Mitochondrial Adaptations in Aging Skeletal Muscle: Implications for Resistance Exercise Training to Treat Sarcopenia. Life (Basel) 2024; 14:962. [PMID: 39202704 PMCID: PMC11355854 DOI: 10.3390/life14080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/13/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant health challenge as the global population ages. Mitochondrial dysfunction is a key factor in sarcopenia, as evidenced by the role of mitochondrial reactive oxygen species (mtROS) in mitochondrial biogenesis and dynamics, as well as mitophagy. Resistance exercise training (RET) is a well-established intervention for sarcopenia; however, its effects on the mitochondria in aging skeletal muscles remain unclear. This review aims to elucidate the relationship between mitochondrial dynamics and sarcopenia, with a specific focus on the implications of RET. Although aerobic exercise training (AET) has traditionally been viewed as more effective for mitochondrial enhancement, emerging evidence suggests that RET may also confer beneficial effects. Here, we highlight the potential of RET to modulate mtROS, drive mitochondrial biogenesis, optimize mitochondrial dynamics, and promote mitophagy in aging skeletal muscles. Understanding this interplay offers insights for combating sarcopenia and preserving skeletal muscle health in aging individuals.
Collapse
Affiliation(s)
- Ilyoung Jeong
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Eun-Jeong Cho
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
| | - Jang-Soo Yook
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
| | - Youngju Choi
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Institute of Specialized Teaching and Research, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Seok-Hun Lee
- Combat Institute of Australia, Leederville, WA 6007, Australia;
| | - Dae-Yun Seo
- Basic Research Laboratory, Department of Physiology, College of Medicine, Smart Marine Therapeutic Center, Cardiovascular and Metabolic Disease Core Research Support Center, Inje University, Busan 47392, Republic of Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul 02192, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science & Engineering, Department of Biomedical Science, Inha University, Incheon 22212, Republic of Korea; (I.J.); (E.-J.C.); (D.-H.P.); (J.-H.K.)
- Institute of Sports and Arts Convergence, Inha University, Incheon 22212, Republic of Korea; (J.-S.Y.); (Y.C.)
- Department of Kinesiology, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|
6
|
Celik D, Campisi M, Cannella L, Pavanello S. The effect of low birth weight as an intrauterine exposure on the early onset of sarcopenia through possible molecular pathways. J Cachexia Sarcopenia Muscle 2024; 15:770-780. [PMID: 38553412 PMCID: PMC11154781 DOI: 10.1002/jcsm.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia, a musculoskeletal disease characterized by the progressive loss of skeletal muscle mass, strength, and physical performance, presents significant challenges to global public health due to its adverse effects on mobility, morbidity, mortality, and healthcare costs. This comprehensive review explores the intricate connections between sarcopenia and low birth weight (LBW), emphasizing the developmental origins of health and disease (DOHaD) hypothesis, inflammatory processes (inflammaging), mitochondrial dysfunction, circadian rhythm disruptions, epigenetic mechanisms, and genetic variations revealed through genome-wide studies (GWAS). A systematic search strategy was developed using PubMed to identify relevant English-language publications on sarcopenia, LBW, DOHaD, inflammaging, mitochondrial dysfunction, circadian disruption, epigenetic mechanisms, and GWAS. The publications consist of 46.2% reviews, 21.2% cohort studies, 4.8% systematic reviews, 1.9% cross-sectional studies, 13.4% animal studies, 4.8% genome-wide studies, 5.8% epigenome-wide studies, and 1.9% book chapters. The review identified key factors contributing to sarcopenia development, including the DOHaD hypothesis, LBW impact on muscle mass, inflammaging, mitochondrial dysfunction, the influence of clock genes, the role of epigenetic mechanisms, and genetic variations revealed through GWAS. The DOHaD theory suggests that LBW induces epigenetic alterations during foetal development, impacting long-term health outcomes, including the early onset of sarcopenia. LBW correlates with reduced muscle mass, grip strength, and lean body mass in adulthood, increasing the risk of sarcopenia. Chronic inflammation (inflammaging) and mitochondrial dysfunction contribute to sarcopenia, with LBW linked to increased oxidative stress and dysfunction. Disrupted circadian rhythms, regulated by genes such as BMAL1 and CLOCK, are associated with both LBW and sarcopenia, impacting lipid metabolism, muscle mass, and the ageing process. Early-life exposures, including LBW, induce epigenetic modifications like DNA methylation (DNAm) and histone changes, playing a pivotal role in sarcopenia development. Genome-wide studies have identified candidate genes and variants associated with lean body mass, muscle weakness, and sarcopenia, providing insights into genetic factors contributing to the disorder. LBW emerges as a potential early predictor of sarcopenia development, reflecting the impact of intrauterine exposures on long-term health outcomes. Understanding the complex interplay between LBW with inflammaging, mitochondrial dysfunction, circadian disruption, and epigenetic factors is essential for elucidating the pathogenesis of sarcopenia and developing targeted interventions. Future research on GWAS and the underlying mechanisms of LBW-associated sarcopenia is warranted to inform preventive strategies and improve public health outcomes.
Collapse
Affiliation(s)
- Dilek Celik
- Department of Pharmceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| | - Manuela Campisi
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Luana Cannella
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
- University Hospital of PadovaPaduaItaly
| |
Collapse
|
7
|
Porcu C, Dobrowolny G, Scicchitano BM. Exploring the Role of Extracellular Vesicles in Skeletal Muscle Regeneration. Int J Mol Sci 2024; 25:5811. [PMID: 38892005 PMCID: PMC11171935 DOI: 10.3390/ijms25115811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Skeletal muscle regeneration entails a multifaceted process marked by distinct phases, encompassing inflammation, regeneration, and remodeling. The coordination of these phases hinges upon precise intercellular communication orchestrated by diverse cell types and signaling molecules. Recent focus has turned towards extracellular vesicles (EVs), particularly small EVs, as pivotal mediators facilitating intercellular communication throughout muscle regeneration. Notably, injured muscle provokes the release of EVs originating from myofibers and various cell types, including mesenchymal stem cells, satellite cells, and immune cells such as M2 macrophages, which exhibit anti-inflammatory and promyogenic properties. EVs harbor a specific cargo comprising functional proteins, lipids, and nucleic acids, including microRNAs (miRNAs), which intricately regulate gene expression in target cells and activate downstream pathways crucial for skeletal muscle homeostasis and repair. Furthermore, EVs foster angiogenesis, muscle reinnervation, and extracellular matrix remodeling, thereby modulating the tissue microenvironment and promoting effective tissue regeneration. This review consolidates the current understanding on EVs released by cells and damaged tissues throughout various phases of muscle regeneration with a focus on EV cargo, providing new insights on potential therapeutic interventions to mitigate muscle-related pathologies.
Collapse
Affiliation(s)
- Cristiana Porcu
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy;
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| |
Collapse
|
8
|
Prajapati P, Kumar A, Mangrulkar S, Chaple DR, Saraf SA, Kushwaha S. Azilsartan prevents muscle loss and fast- to slow-twitch muscle fiber shift in natural ageing sarcopenic rats. Can J Physiol Pharmacol 2024; 102:342-360. [PMID: 38118126 DOI: 10.1139/cjpp-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.
Collapse
MESH Headings
- Animals
- Sarcopenia/prevention & control
- Sarcopenia/metabolism
- Sarcopenia/drug therapy
- Sarcopenia/pathology
- Male
- Oxadiazoles/pharmacology
- Oxadiazoles/therapeutic use
- Aging/drug effects
- Rats, Sprague-Dawley
- Rats
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Myostatin/metabolism
- Antioxidants/pharmacology
Collapse
Affiliation(s)
- Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhada Mangrulkar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - D R Chaple
- Priyadarshini J.L. College of Pharmacy, Electronic Zone Building, MIDC Hingna Road, Nagpur 440016, India
| | - Shubhini A Saraf
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
9
|
Zhao J, Zeng L, Liang G, Dou Y, Zhou G, Pan J, Yang W, Hong K, Liu J, Zhao L. Higher systemic immune-inflammation index is associated with sarcopenia in individuals aged 18-59 years: a population-based study. Sci Rep 2023; 13:22156. [PMID: 38092854 PMCID: PMC10719257 DOI: 10.1038/s41598-023-49658-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The association between the systemic immune-inflammation index (SII) and the risk of sarcopenia has not yet been revealed. The purpose of this study was to investigate the relationship between the SII and sarcopenia in individuals aged 18-59 years. All data for this study are from the National Health and Nutrition Examination Survey (NHANES) database, including 7258 participants (age range: 18-59 years). We divided SII values by quartiles (quartiles 1-4: 0.3-3.1, 3.2-4.4, 4.4-6.2, and 6.2-58.5). We constructed a multivariate logistic regression model to assess the association between the SII and the risk of sarcopenia, and an interaction test was run to test the stability of the model and identify high-risk individuals with sarcopenia. Compared to nonsarcopenia participants, sarcopenia patients had a significantly higher SII value (weighted average: 6.65 vs. 5.16) (P = 0.002). Multivariate logistic regression results showed a positive linear relationship between the SII and sarcopenia (OR [odds ratio] = 1.12, 95% CI [confidence interval] 1.03-1.21). Compared to the quartile 1 group, the quartile 4 group was associated with a higher risk of sarcopenia (OR = 3.94, 95% CI 1.42-10.94). Compared with the quartile 1 group, the OR value of the quartile 2 to quartile 4 groups showed an upwards trend (Ptrend < 0.001) as the level of SII increased. Subgroup analysis also indicate that the correlation between higher SII values and the risk of sarcopenia was stable. There was a significant positive linear relationship between SII and sarcopenia, indicating that higher SII values can increase the risk of sarcopenia in individuals aged 18-59 in the United States. The findings of this study will be beneficial in promoting the use of SII alone or in combination with other tools for the risk screening of sarcopenia in communities or large populations.
Collapse
Affiliation(s)
- Jinlong Zhao
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Lingfeng Zeng
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guihong Liang
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yaoxing Dou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Guanghui Zhou
- The Second Clinical College/State Key Laboratory of Traditional Chinese Medicine Syndrome of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jianke Pan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Weiyi Yang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Kunhao Hong
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, No.12, Jichang Road, Baiyun District, Guangzhou City, 510405, China
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China
| | - Jun Liu
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, No.12, Jichang Road, Baiyun District, Guangzhou City, 510405, China.
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
- Guangdong Second Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine), Guangzhou, 510095, China.
| | - Li Zhao
- Guangdong Provincial Hospital of Chinese Medicine, No.53, Jingle Road, Xiangzhou District, Zhuhai, 519015, Guangdong Province, China.
| |
Collapse
|
10
|
Aslam MA, Ma EB, Huh JY. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023; 149:155711. [PMID: 37871831 DOI: 10.1016/j.metabol.2023.155711] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is a geriatric disorder characterized by a progressive decline in muscle mass and function. This disorder has been associated with a range of adverse health outcomes, including fractures, functional deterioration, and increased mortality. The pathophysiology of sarcopenia is highly complex and multifactorial, involving both genetic and environmental factors as key contributors. This review consolidates current knowledge on the genetic factors influencing the pathogenesis of sarcopenia, particularly focusing on the altered gene expression of structural and metabolic proteins, growth factors, hormones, and inflammatory cytokines. While the influence of environmental factors such as physical inactivity, chronic diseases, smoking, alcohol consumption, and sleep disturbances on sarcopenia is relatively well understood, there is a dearth of studies examining their mechanistic roles. Therefore, this review emphasizes the interplay between genetic and environmental factors, elucidating their cumulative role in exacerbating the progression of sarcopenia beyond their individual effects. The unique contribution of this review lies in synthesizing the latest evidence on the genetic factors and their interaction with environmental factors, aiming to inform the development of novel therapeutic or preventive interventions for sarcopenia.
Collapse
Affiliation(s)
- Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Bi Ma
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Chen M, Liu X, Liu Q, Ding C, Zhao P, Zhang Y, Mao C, Liu C. The value of ultrasound measurement of muscle thickness at different sites and shear wave elastography in Parkinson's disease with sarcopenia: a pilot study. Front Neurosci 2023; 17:1254859. [PMID: 37904815 PMCID: PMC10613525 DOI: 10.3389/fnins.2023.1254859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
Background Patients with Parkinson's disease (PD) and sarcopenia often exhibit resilience, frailty, disability, and depression, highlighting the complex and interrelated nature of these conditions. Objective Despite the presence of clinical manifestations of muscle atrophy in both PD and sarcopenia, accurately discerning the coexistence of sarcopenia in PD patients remains a challenging task with significant implications for treatment strategies and prognostic assessments. This study aims to elucidate the specific ultrasonic diagnostic parameters associated with PD accompanied by sarcopenia through a comparative analysis of muscle ultrasound parameters in patients with PD, thereby presenting a novel approach for rapid identification of this condition. Methods A total of 110 participants were enrolled in this study, including patients with PD and control subjects. Demographic data, clinical characteristics, physical performance tests, appendicular skeletal muscle mass index (ASMI), bioelectrical impedance analysis and muscle ultrasound measurements were collected from all participants. The muscle ultrasound measurements encompassed assessments of muscle thickness, pennation angle and shear wave elastography at various anatomical sites. Results Parkinson's disease patients exhibited decreased muscle strength and physical performance, and increased shear wave elastography value. In PD patients with sarcopenia, body circumference, including calf circumference, mid-arm circumference, Waist-to-Hip Ratio and body mass index (BMI) were all significantly decreased. Biceps brachii muscle thickness (MT) and gastrocnemius MT decreased in PD patients with sarcopenia and low ASMI. Binary logistic regression analysis revealed that male PD patients, BMI and gastrocnemius MT were predictive factors for ASMI in PD patients. Conclusion Biceps brachii MT and gastrocnemius MT are important indicators for distinguishing whether PD patients have sarcopenia. Male patients, low BMI and gastrocnemius MT were identified as valid predictors of low ASMI in PD patients. The findings of this study provide important insights into the use of muscle ultrasound in the diagnosis of PD with sarcopenia.
Collapse
Affiliation(s)
- Minglei Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaofang Liu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiuwan Liu
- Department of Neurology, The Second People’s Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Changwei Ding
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ping Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingchun Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Orea-Tejeda A, Robles-Hernández R, González-Islas D, Jimenez-Gallardo L, Gochicoa-Rangel L, Castorena-Maldonado A, Hernández-Zenteno R, Montañez-Orozco A, Valderrábano-Salas B. Dynapenia and Sarcopenia in Post-COVID-19 Syndrome Hospitalized Patients Are Associated with Severe Reduction in Pulmonary Function. J Clin Med 2023; 12:6466. [PMID: 37892604 PMCID: PMC10607104 DOI: 10.3390/jcm12206466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND After hospital discharge, post-COVID-19 syndrome has been observed to be associated with impaired diffusing capacity, respiratory muscle strength, and lung imaging abnormalities, in addition to loss of muscle mass/strength, sarcopenia, and obesity impact exercise tolerance, pulmonary functions, and overall prognosis. However, the relationship between lung function and the coexistence of obesity with low muscle strength and sarcopenia in post-COVID-19 patients remains poorly investigated. Therefore, our aim was to evaluate the association between lung function and the coexistence of obesity with dynapenia and sarcopenia in post-COVID-19 syndrome patients. METHODS This cross-sectional study included subjects who were hospitalized due to moderate to severe COVID-19, as confirmed by PCR testing. Subjects who could not be contacted, declined to participate, or died before the follow-up visit were excluded. RESULTS A total of 711 subjects were evaluated; the mean age was 53.64 ± 13.57 years, 12.4% had normal weight, 12.6% were dynapenic without obesity, 8.3% had sarcopenia, 41.6% had obesity, 21.2% had dynapenic obesity, and 3.8% had sarcopenic obesity. In terms of pulmonary function, the dynapenic subjects showed decreases of -3.45% in FEV1, -12.61 cmH2O in MIP, and -12.85 cmH2O in MEP. On the other hand, the sarcopenic subjects showed decreases of -6.14 cmH2O in MIP and -11.64 cmH2O in MEP. The dynapenic obesity group displayed a reduction of -12.13% in PEF. CONCLUSIONS In post-COVID-19 syndrome, dynapenia and sarcopenia-both with and without obesity-have been associated with lower lung function.
Collapse
Affiliation(s)
- Arturo Orea-Tejeda
- Heart Failure and Respiratory Distress Clinic, Cardiology Service, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (A.O.-T.)
| | - Robinson Robles-Hernández
- Department of Research in Tobacco Smoking and COPD at Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas” 2, Mexico City 14080, Mexico;
| | - Dulce González-Islas
- Heart Failure and Respiratory Distress Clinic, Cardiology Service, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (A.O.-T.)
| | - Luz Jimenez-Gallardo
- Heart Failure and Respiratory Distress Clinic, Cardiology Service, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (A.O.-T.)
| | - Laura Gochicoa-Rangel
- Department of Pulmonary Physiology at Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| | - Armando Castorena-Maldonado
- Direction for Medical Care in Pneumology at Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas” 4, Mexico City 14080, Mexico
| | - Rafael Hernández-Zenteno
- COPD Clinic at Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| | - Alvaro Montañez-Orozco
- Heart Failure and Respiratory Distress Clinic, Cardiology Service, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (A.O.-T.)
| | - Benigno Valderrábano-Salas
- Heart Failure and Respiratory Distress Clinic, Cardiology Service, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (A.O.-T.)
| |
Collapse
|
13
|
Yu X, Wang Y, Ran L, Jiang Y, Chen M, Du H, Zhang Y, Wu D, Xiang X, Zhang J, Jiang N, He H, Song Y, Xiang Z, He C, Zhou Z, Zeng J, Xiang Y, Huang SS, Lin Y. Tetrahedral Framework Nucleic Acids Inhibit Muscular Mitochondria-Mediated Apoptosis and Ameliorate Muscle Atrophy in Sarcopenia. NANO LETTERS 2023; 23:8816-8826. [PMID: 37459451 DOI: 10.1021/acs.nanolett.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Sarcopenia is known as age-related muscle atrophy, which influences over a quarter of the elderly population worldwide. It is characterized by a progressive decline in muscle mass, strength, and performance. To date, clinical treatments in sarcopenia are limited to rehabilitative interventions and dietary supplements. Tetrahedral framework nucleic acids (tFNAs) represent a novel kind of DNA-based nanomaterial with superior antiapoptosis capacity in cells, tissues, organs, and systems. In our study, the therapeutic effect of tFNAs treatment on sarcopenia was evaluated both in vivo and in vitro. Results from muscular biophysiological characteristics demonstrated significant improvement in muscle function and endurance in the aged mouse model, and histologic examinations also showed beneficial morphological changes in muscle fibers. In vitro, DEX-induced sarcopenic myotube atrophy was also ameliorated through the inhibition of mitochondria-mediated cell apoptosis. Collectively, tFNAs treatment might serve as an alternative option to deal with sarcopenia in the near future.
Collapse
Affiliation(s)
- Xi Yu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Liyu Ran
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yang Jiang
- The Second Affiliated Hospital of Chengdu Medical College, 416 Nuclear Industry Hospital, Chengdu 610057, Sichuan, People's Republic of China
| | - Ming Chen
- The Second Affiliated Hospital of Chengdu Medical College, 416 Nuclear Industry Hospital, Chengdu 610057, Sichuan, People's Republic of China
| | - Hao Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yao Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Diwei Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Xiaona Xiang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Jiawei Zhang
- College of Computer Science, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Zhou Xiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Zongke Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Jiancheng Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yong Xiang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Ave., West High-Tech Zone, Chengdu 611731, Sichuan, China
| | - Shi-Shu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Peyton MP, Yang TY, Higgins L, Markowski TW, Murray K, Vue C, Parker LL, Lowe DA. Natural aging and ovariectomy induces parallel phosphoproteomic alterations in skeletal muscle of female mice. Aging (Albany NY) 2023; 15:7362-7380. [PMID: 37580837 PMCID: PMC10457050 DOI: 10.18632/aging.204959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
The loss of skeletal muscle strength mid-life in females is associated with the decline of estrogen. Here, we questioned how estrogen deficiency might impact the overall skeletal muscle phosphoproteome after contraction, as force production induces phosphorylation of several muscle proteins. Phosphoproteomic analyses of the tibialis anterior muscle after contraction in two mouse models of estrogen deficiency, ovariectomy (Ovariectomized (Ovx) vs. Sham) and natural aging-induced ovarian senescence (Older Adult (OA) vs. Young Adult (YA)), identified a total of 2,593 and 3,507 phosphopeptides in Ovx/Sham and OA/YA datasets, respectively. Further analysis of estrogen deficiency-associated proteins and phosphosites identified 66 proteins and 21 phosphosites from both datasets. Of these, 4 estrogen deficiency-associated proteins and 4 estrogen deficiency-associated phosphosites were significant and differentially phosphorylated or regulated, respectively. Comparative analyses between Ovx/Sham and OA/YA using Ingenuity Pathway Analysis (IPA) found parallel patterns of inhibition and activation across IPA-defined canonical signaling pathways and physiological functional analysis, which were similarly observed in downstream GO, KEGG, and Reactome pathway overrepresentation analysis pertaining to muscle structural integrity and contraction, including AMPK and calcium signaling. IPA Upstream regulator analysis identified MAPK1 and PRKACA as candidate kinases and calcineurin as a candidate phosphatase sensitive to estrogen. Our findings highlight key molecular signatures and pathways in contracted muscle suggesting that the similarities identified across both datasets could elucidate molecular mechanisms that may contribute to skeletal muscle strength loss due to estrogen deficiency.
Collapse
Affiliation(s)
- Mina P. Peyton
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tzu-Yi Yang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Todd W. Markowski
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Kevin Murray
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Cha Vue
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Laurie L. Parker
- Department of Computer Science, Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| | - Dawn A. Lowe
- Department of Rehabilitation Medicine, Division of Rehabilitation Science, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
- Department of Rehabilitation Medicine, Division of Physical Therapy, University of Minnesota – Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Mechanick JI, Christofides EA, Marchetti AE, Hoddy KK, Joachim J, Hegazi R, Hamdy O. The syndromic triad of COVID-19, type 2 diabetes, and malnutrition. Front Nutr 2023; 10:1122203. [PMID: 36895277 PMCID: PMC9988958 DOI: 10.3389/fnut.2023.1122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic challenges our collective understanding of transmission, prevention, complications, and clinical management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Risk factors for severe infection, morbidity, and mortality are associated with age, environment, socioeconomic status, comorbidities, and interventional timing. Clinical investigations report an intriguing association of COVID-19 with diabetes mellitus and malnutrition but incompletely describe the triphasic relationship, its mechanistic pathways, and potential therapeutic approaches to address each malady and their underlying metabolic disorders. This narrative review highlights common chronic disease states that interact epidemiologically and mechanistically with the COVID-19 to create a syndromic phenotype-the COVID-Related Cardiometabolic Syndrome-linking cardiometabolic-based chronic disease drivers with pre-, acute, and chronic/post-COVID-19 disease stages. Since the association of nutritional disorders with COVID-19 and cardiometabolic risk factors is well established, a syndromic triad of COVID-19, type 2 diabetes, and malnutrition is hypothesized that can direct, inform, and optimize care. In this review, each of the three edges of this network is uniquely summarized, nutritional therapies discussed, and a structure for early preventive care proposed. Concerted efforts to identify malnutrition in patients with COVID-19 and elevated metabolic risks are needed and can be followed by improved dietary management while simultaneously addressing dysglycemia-based chronic disease and malnutrition-based chronic disease.
Collapse
Affiliation(s)
- Jeffrey I. Mechanick
- The Wiener Cardiovascular Institute/Marie-Josée and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Albert E. Marchetti
- Medical Education and Research Alliance (Med-ERA, Inc.), New York, NY, United States
- Rutgers New Jersey Medical School, Newark, NJ, United States
| | | | - Jim Joachim
- Internal Medicine and Medical Nutrition, San Diego, CA, United States
| | | | - Osama Hamdy
- Joslin Diabetes Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Zhang Y, Zhang T, Yin W, Zhang L, Xiang J. Diagnostic Value of Sarcopenia Computed Tomography Metrics for Older Patients with or without Cancers with Gastrointestinal Disorders. J Am Med Dir Assoc 2023; 24:220-227.e4. [PMID: 36463968 DOI: 10.1016/j.jamda.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES The diagnostic utility of poor body composition measures in sarcopenia remains unclear. We hypothesize that the skeletal muscle gauge [combination of skeletal muscle index (SMI) and skeletal muscle density (SMD); SMG = SMI × SMD] would have significant diagnostic and predictive value in certain muscle regions and populations. DESIGN Prospective cross-sectional study. SETTING AND PARTICIPANTS We examined inpatients age ≥60 years with or without cancer and with gastrointestinal disorders. METHODS We used computed tomography (CT) image metrics in the 12th thoracic (T12), third lumbar (L3), erector spinae muscle (ESM), and psoas muscle (PM) regions to establish correlations with the 2019 Asian Working Group for Sarcopenia Consensus and used receiver operating characteristic area under the curve (AUC) to compare differences between metrics. Associations between CT metrics and mortality were reported as relative risk after adjustments. RESULTS We evaluated 385 patients (median age, 69.0 years; 60.8% men) and found consistent trends in cancer (49.6%) and noncancer (50.4%) cohorts. SMG had a stronger correlation with muscle mass than SMD [mean rho: 0.68 (range, 0.59‒0.73) vs 0.39 (range, 0.28‒0.48); all P < .01] in T12, L3, and PM regions and a stronger correlation with muscle function than SMI [mean rho: 0.60 (range, 0.50‒0.77) vs 0.36 (range, 0.22‒0.58); all P < .05] in T12, ESM, and L3 regions. SMG outperformed SMI in diagnostic accuracy in all regions, particularly for L3 (AUC: 0.87‒0.88 vs 0.80‒0.82; both P < .05). PMG (PM gauge) and L3SMG did not differ, whereas EMG (ESM gauge) or T12SMG and L3SMG did (AUC: 0.80‒0.82 vs 0.87‒0.88; all P < .05). L3SMI, L3SMD, T12SMG, EMG, and PMG showed no association with 1-year cancer-related mortality after adjusting for confounders; however, L3SMG [relative risk = 0.92 (0.85‒0.99); P = .023) was. CONCLUSIONS AND IMPLICATIONS L3SMG covers all features of sarcopenia with more diagnostic value than other metrics, allowing a complete sarcopenia assessment with CT alone and not just in populations with cancer.
Collapse
Affiliation(s)
- Yunyun Zhang
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhang
- Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenjing Yin
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Zhang
- Department of Medical Imaging, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Xiang
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
17
|
Jiang X, Ji S, Yuan F, Li T, Cui S, Wang W, Ye X, Wang R, Chen Y, Zhu S. Pyruvate dehydrogenase B regulates myogenic differentiation via the FoxP1-Arih2 axis. J Cachexia Sarcopenia Muscle 2023; 14:606-621. [PMID: 36564038 PMCID: PMC9891931 DOI: 10.1002/jcsm.13166] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia, the age-related decline in skeletal muscle mass and function, diminishes life quality in elderly people. Improving the capacity of skeletal muscle differentiation is expected to counteract sarcopenia. However, the mechanisms underlying skeletal muscle differentiation are complex, and effective therapeutic targets are largely unknown. METHODS The human Gene Expression Omnibus database, aged mice and primary skeletal muscle cells were used to assess the expression level of pyruvate dehydrogenase B (PDHB) in human and mouse aged state. d-Galactose (d-gal)-induced sarcopenia mouse model and two classic cell models (C2C12 and HSkMC) were used to assess the myogenic effect of PDHB and the underlying mechanisms via immunocytochemistry, western blotting, quantitative real-time polymerase chain reaction, RNA interference or overexpression, dual-luciferase reporter assay, RNA sequencing and untargeted metabolomics. RESULTS We identified that a novel target PDHB promoted myogenic differentiation. PDHB expression decreased in aged mouse muscle relative to the young state (-50% of mRNA level, P < 0.01) and increased during mouse and primary human muscle cell differentiation (+3.97-fold, P < 0.001 and +3.79-fold, P < 0.001). Knockdown or overexpression of PDHB modulated the expression of genes related to muscle differentiation, namely, myogenic factor 5 (Myf5) (-46%, P < 0.01 and -27%, P < 0.05; +1.8-fold, P < 0.01), myogenic differentiation (MyoD) (-55%, P < 0.001 and -34%, P < 0.01; +2.27-fold, P < 0.001), myogenin (MyoG) (-60%, P < 0.001 and -70%, P < 0.001; +5.46-fold, P < 0.001) and myosin heavy chain (MyHC) (-70%, P < 0.001 and -69%, P < 0.001; +3.44-fold, P < 0.001) in both C2C12 cells and HSkMC. Metabolomic and transcriptomic analyses revealed that PDHB knockdown suppressed pyruvate metabolism (P < 0.001) and up-regulated ariadne RBR E3 ubiquitin protein ligase 2 (Arih2) (+7.23-fold, P < 0.001) in cellular catabolic pathways. The role of forkhead box P1 (FoxP1) (+4.18-fold, P < 0.001)-mediated Arih2 transcription was the key downstream regulator of PDHB in muscle differentiation. PDHB overexpression improved d-gal-induced muscle atrophy in mice, which was characterized by significant increases in grip strength, muscle mass and mean muscle cross-sectional area (1.19-fold to 1.5-fold, P < 0.01, P < 0.05 and P < 0.001). CONCLUSIONS The comprehensive results show that PDHB plays a sarcoprotective role by suppressing the FoxP1-Arih2 axis and may serve as a therapeutic target in sarcopenia.
Collapse
Affiliation(s)
- Xuan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Siyu Ji
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Fenglai Yuan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Siyuan Cui
- Wuxi No. 2 People's Hospital, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Translational Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Cai L, Shi L, Peng Z, Sun Y, Chen J. Ageing of skeletal muscle extracellular matrix and mitochondria: finding a potential link. Ann Med 2023; 55:2240707. [PMID: 37643318 PMCID: PMC10732198 DOI: 10.1080/07853890.2023.2240707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Aim: To discuss the progress of extracellular matrix (ECM) characteristics, mitochondrial homeostasis, and their potential crosstalk in the pathogenesis of sarcopenia, a geriatric syndrome characterized by a generalized and progressive reduction in muscle mass, strength, and physical performance.Methods: This review focuses on the anatomy and physiology of skeletal muscle, alterations of ECM and mitochondria during ageing, and the role of the interplay between ECM and mitochondria in the pathogenesis of sarcopenia.Results: Emerging evidence points to a clear interplay between mitochondria and ECM in various tissues and organs. Under the ageing process, the ECM undergoes changes in composition and physical properties that may mediate mitochondrial changes via the systematic metabolism, ROS, SPARC pathway, and AMPK/PGC-1α signalling, which in turn exacerbate muscle degeneration. However, the precise effects of such crosstalk on the pathobiology of ageing, particularly in skeletal muscle, have not yet been fully understood.Conclusion: The changes in skeletal muscle ECM and mitochondria are partially responsible for the worsened muscle function during the ageing process. A deeper understanding of their alterations and interactions in sarcopenic patients can help prevent sarcopenia and improve its prognoses.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luze Shi
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Peng
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Yu X, Sun S, Zhang S, Hao Q, Zhu B, Teng Y, Long Q, Li S, Lv Y, Yue Q, Lu S, Teng Z. A pooled analysis of the association between sarcopenia and osteoporosis. Medicine (Baltimore) 2022; 101:e31692. [PMID: 36401390 PMCID: PMC9678526 DOI: 10.1097/md.0000000000031692] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Sarcopenia is a progressive generalized skeletal muscle disorder that causes the accelerated loss of muscle mass and function. Osteoporosis is a systemic condition of the skeleton that results in low bone mass and quality. Several studies have suggested that osteoporosis and sarcopenia are interrelated; however, a few studies indicate the lack of a significant association between sarcopenia and osteoporosis. We aimed to evaluate the association between sarcopenia and osteoporosis via a systematic review and pooled analysis. METHODS From the inception of the PubMed and Embase databases until September 2022, we conducted a systematic search for studies evaluating the relationship between sarcopenia and osteoporosis. Study appraisal and synthesis methods: We included observational studies that provided 95% confidence intervals (CIs) and risk estimates. Two reviewers independently extracted data and assessed the quality of the research. The random-effects model was applied to the pool analysis, and the odds ratios (ORs) and 95% CIs were finally calculated. RESULTS The primary statistic was the mutual risk between sarcopenia and osteoporosis. According to the inclusion criteria, 56 studies (796,914 participants) were finally included. Sarcopenia was significantly correlative to the risk of osteoporosis (OR, 3.06; 95% CI, 2.30-4.08), and each standard deviation increase in relative appendicular skeletal muscle mass was significantly related to a decreased risk of osteoporosis (OR, 0.65; 95% CI, 0.56-0.75). Osteoporosis observably referred to a higher risk of sarcopenia (OR, 2.63; 95% CI, 1.98-3.49). CONCLUSION Our research indicated that sarcopenia and osteoporosis are highly positively correlated. Osteoporosis is closely associated with the risk of sarcopenia. Our finding highlights the importance of sarcopenia screening for those at risk of osteoporosis, and vice versa. However, heterogeneity was noted among the studies, and this might have influenced the accuracy of the results. Therefore, the results of our study should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaochao Yu
- Kunming Medical University, Kunming, Yunnan, China
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Shuo Sun
- Kunming Medical University, Kunming, Yunnan, China
| | | | - Qinggang Hao
- School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Boheng Zhu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yirong Teng
- Kunming Medical University, Kunming, Yunnan, China
| | - Qing Long
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shujun Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Lv
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiaoning Yue
- Kunming Medical University, Kunming, Yunnan, China
| | - Sheng Lu
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhaowei Teng
- Kunming Medical University, Kunming, Yunnan, China
- The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- * Correspondence: Zhaowei Teng, The First People’s Hospital of Yunnan Province, Kunming 650000, Yunnan, China (e-mail: )
| |
Collapse
|