1
|
Guo J, Zhang Z, Meng X, Jing J, Hu Y, Yao Y, Ding L, Zheng L, Zhao X. Atrial fibrillation catheter ablation, brain glymphatic function, and cognitive performance. Eur Heart J 2025:ehaf036. [PMID: 39981927 DOI: 10.1093/eurheartj/ehaf036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND AIMS It remains unknown whether the brain glymphatic system, which is driven by the heartbeat-driven pulsation of arteries and is responsible for cerebral waste clearance, is impaired in atrial fibrillation (AF) and mediates cognitive dysfunction related to AF. The aim of this study was to assess brain glymphatic alterations in AF, their role in cognitive function, and whether catheter ablation can improve glymphatic activity. METHODS In this case-control and prospective before-and-after study, patients with AF and healthy controls (HCs) were enrolled. Participants underwent brain magnetic resonance imaging and a comprehensive neuropsychological battery. Glymphatic activity was quantified by diffusion tensor image analysis along the perivascular space (DTI-ALPS) index. Magnetic resonance imaging was repeated after surgery in patients who underwent ablation. RESULTS Overall, 87 patients with AF and 44 HCs were enrolled. Compared with HCs, patients with AF had a lower ALPS index (P = .016). Nonparoxysmal AF patients showed lower ALPS index than both HCs (P = .002) and paroxysmal AF patients (P = .044). A lower ALPS index was associated with worse scores of Trail Making Test, Digit Symbol Substitution Test, Digit Span Test, and Stroop Colour and Word Test (all P < .05). Mediation analyses revealed that glymphatic activity was a mediator between AF and cognitive decline. Among the 50 patients who underwent ablation therapy, DTI-ALPS index was improved after surgery (P = .015). CONCLUSIONS Brain glymphatic function measured by DTI-ALPS index was impaired in patients with AF, mediates the association between AF and cognitive decline, and was improved after ablation therapy.
Collapse
Affiliation(s)
- Jiahuan Guo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Xicheng District, 100037 Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Yiran Hu
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Xicheng District, 100037 Beijing, China
- Department of Cardiology and Macrovascular Disease, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| | - Yan Yao
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Xicheng District, 100037 Beijing, China
| | - Ligang Ding
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Xicheng District, 100037 Beijing, China
| | - Lihui Zheng
- Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Xicheng District, 100037 Beijing, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, 119 South Fourth Ring West Road, Fengtai District, 100070 Beijing, China
| |
Collapse
|
2
|
Jiao F, Wang Q, Zhong J, Lin H, Lu J, Wang L, Wang M, Liu F, Jiang J, Zuo C. Relationships Between Glymphatic System Activity and Tau Burden, Dopaminergic Impairment, Abnormal Glucose Metabolism in Progressive Supranuclear Palsy. CNS Neurosci Ther 2025; 31:e70284. [PMID: 39963843 PMCID: PMC11833299 DOI: 10.1111/cns.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Progressive supranuclear palsy (PSP) is a primary tauopathy characterized by dopaminergic impairment and abnormal glucose metabolism. The glymphatic system can promote the elimination of tau protein. The association between glymphatic function and pathological hallmark in neuroimaging remains unknown. METHODS Diffusion tensor imaging (DTI) and positron emission tomography (PET) scanning with 18F-Florzolotau, 18F-FPCIT, and 18F-FDG were performed in PSP patients. DTI analysis along the perivascular space (ALPS) index was computed to assess glymphatic function, while the semi-quantitative value was employed to measure tau burden and dopaminergic impairment. The PSP-related pattern (PSPRP) served as an indicator of abnormal metabolic brain network activity. RESULTS PSP patients exhibited changes in ALPS index and tau deposition. ALPS index, tau deposition, and PSPRP expression showed significant correlations with clinical scores. Additionally, ALPS index was correlated with tau deposition and PSPRP expression. However, neither ALPS index nor the clinical scores were correlated with striatum dysfunction. Finally, tau deposition in subcortical regions and PSPRP expression exhibited mediating effects between ALPS index and clinical scores. CONCLUSION The glymphatic dysfunction is associated with tau deposition and abnormal metabolic brain network activity and is independent of dopaminergic impairment in PSP.
Collapse
Affiliation(s)
- Fangyang Jiao
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Qingmin Wang
- Institute of Biomedical Engineering, School of Life ScienceShanghai UniversityShanghaiChina
| | - Jiayi Zhong
- Institute of Biomedical Engineering, School of Life ScienceShanghai UniversityShanghaiChina
| | - Huamei Lin
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Luyao Wang
- Institute of Biomedical Engineering, School of Life ScienceShanghai UniversityShanghaiChina
| | - Min Wang
- Institute of Biomedical Engineering, School of Life ScienceShanghai UniversityShanghaiChina
| | - Fengtao Liu
- Department of Neurology, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiehui Jiang
- Institute of Biomedical Engineering, School of Life ScienceShanghai UniversityShanghaiChina
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, National Clinical Research Center for Aging and Medicine & National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Zhu H, Zhu C, Liu T, Wang P, Li W, Zhang Q, Zhao Y, Yu T, Liu X, Zhang Q, Zhao J, Zhang Y. Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease. Transl Stroke Res 2024:10.1007/s12975-024-01296-z. [PMID: 39245689 DOI: 10.1007/s12975-024-01296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The glymphatic system is crucial for clearing metabolic waste from the brain, maintaining neural health and cognitive function. This study explores the glymphatic system's role in Moyamoya disease (MMD), characterized by progressive cerebral artery stenosis and brain structural lesions. We assessed 33 MMD patients and 21 healthy controls using diffusion tensor imaging along the perivascular space (DTI-ALPS) and global cortical gray matter-cerebrospinal fluid (CSF) coupling indices (gBOLD-CSF), which are indirect measurements of the glymphatic system. Cerebral perfusion in patients was evaluated via computed tomography perfusion imaging. We also measured the peak width of skeletonized mean diffusivity (PSMD), white matter hyperintensity (WMH) burden, and cognitive function. MMD patients exhibited lower ALPS and gBOLD-CSF coupling indices compared to controls (P < 0.01), indicating disrupted glymphatic function. Significant cognitive impairment was also observed in MMD patients (P < 0.01). ALPS indices varied with cerebral perfusion stages, being higher in earlier ischemic stages (P < 0.05). Analysis of brain structure showed increased CSF volume, PSMD index, and higher WMH burden in MMD patients (P < 0.01). The ALPS index positively correlated with white matter volume and cognitive scores, and negatively correlated with CSF volume, PSMD, and WMH burden (P < 0.05). Mediation analysis revealed the number of periventricular WMH significantly mediated the relationship between glymphatic dysfunction and cognitive impairment. In summary, MMD patients exhibit significant glymphatic system impairments, associated with brain structural changes and cognitive deficits.
Collapse
Affiliation(s)
- Huan Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Chenyu Zhu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Peijiong Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Wenjie Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qihang Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yahui Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Tao Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xingju Liu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jizong Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Yan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
4
|
Ryman SG, Vakhtin AA, Mayer AR, van der Horn HJ, Shaff NA, Nitschke SR, Julio KR, Tarawneh RM, Rosenberg GA, Diaz SV, Pirio Richardson SE, Lin HC. Abnormal Cerebrovascular Activity, Perfusion, and Glymphatic Clearance in Lewy Body Diseases. Mov Disord 2024; 39:1258-1268. [PMID: 38817039 PMCID: PMC11341260 DOI: 10.1002/mds.29867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
Cerebrovascular activity is not only crucial to optimal cerebral perfusion, but also plays an important role in the glymphatic clearance of interstitial waste, including α-synuclein. This highlights a need to evaluate how cerebrovascular activity is altered in Lewy body diseases. This review begins by discussing how vascular risk factors and cardiovascular autonomic dysfunction may serve as upstream or direct influences on cerebrovascular activity. We then discuss how patients with Lewy body disease exhibit reduced and delayed cerebrovascular activity, hypoperfusion, and reductions in measures used to capture cerebrospinal fluid flow, suggestive of a reduced capacity for glymphatic clearance. Given the lack of an existing framework, we propose a model by which these processes may foster α-synuclein aggregation and neuroinflammation. Importantly, this review highlights several avenues for future research that may lead to treatments early in the disease course, prior to neurodegeneration. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sephira G Ryman
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Andrei A Vakhtin
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Harm Jan van der Horn
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Nicholas A Shaff
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Stephanie R Nitschke
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Kayla R Julio
- Department of Translational Neuroscience, The Mind Research Network, Albuquerque, New Mexico, USA
| | - Rawan M Tarawneh
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
- Cognitive Neurology Section, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gary A Rosenberg
- Center for Memory and Aging, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Shanna V Diaz
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Sarah E Pirio Richardson
- Nene and Jamie Koch Comprehensive Movement Disorder Center, Department of Neurology, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Henry C Lin
- Department of Internal Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Ge Y. Vascular Contributions to Healthy Aging and Dementia. Aging Dis 2024; 15:1432-1437. [PMID: 39059424 PMCID: PMC11272195 DOI: 10.14336/ad.2023.1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular pathologies are among the most common contributors to neurodegenerative changes across the spectrum of normal aging to dementia. Cerebral small vessel disease (SVD) encompasses a wide range of conditions affecting capillaries, small arteries, and arterioles, as well as perivascular spaces and fluid dynamics in the brain, playing a significant role in vascular contributions to cognitive impairment and dementia (VCID). These factors can accelerate the progression of SVD and neuronal degeneration. Since aging is the primary risk factor for Alzheimer's disease (AD) and AD-related dementias (ADRD), this Research Topic aims to gather recent research to better understand vascular contributions to healthy aging and age-related cognitive impairment. Other risk factors include diabetes, lifestyle factors, high cholesterol, vascular inflammation, and immune remodeling, all of which can accelerate cognitive dysfunction progression. This special issue includes a total of 21 articles comprising Reviews, Perspectives, and Original Research articles. The articles cover various technical and biological aspects related to recent progress in aging and dementia research. We aim to promote research exchange across different fields, including imaging, VCID, molecular biology, neuroinflammation, and immunology. Most papers in this special issue focus on understanding the disease mechanisms of AD/ADRD and developing new therapeutic strategies.
Collapse
Affiliation(s)
- Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Sun YW, Lyu XY, Lei XY, Huang MM, Wang ZM, Gao B. Association study of brain structure-function coupling and glymphatic system function in patients with mild cognitive impairment due to Alzheimer's disease. Front Neurosci 2024; 18:1417986. [PMID: 39139498 PMCID: PMC11320604 DOI: 10.3389/fnins.2024.1417986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Background Mild cognitive impairment (MCI) is a critical transitional phase from healthy cognitive aging to dementia, offering a unique opportunity for early intervention. However, few studies focus on the correlation of brain structure and functional activity in patients with MCI due to Alzheimer's disease (AD). Elucidating the complex interactions between structural-functional (SC-FC) brain connectivity and glymphatic system function is crucial for understanding this condition. Method The aims of this study were to explore the relationship among SC-FC coupling values, glymphatic system function and cognitive function. 23 MCI patients and 18 healthy controls (HC) underwent diffusion tensor imaging (DTI) and resting-state functional MRI (fMRI). DTI analysis along the perivascular space (DTI-ALPS) index and SC-FC coupling values were calculated using DTI and fMRI. Correlation analysis was conducted to assess the relationship between Mini-Mental State Examination (MMSE) scores, DTI-ALPS index, and coupling values. Receiver operating characteristic (ROC) curves was conducted on the SC-FC coupling between the whole brain and subnetworks. The correlation of coupling values with MMSE scores was also analyzed. Result MCI patients (67.74 ± 6.99 years of age) exhibited significantly lower coupling in the whole-brain network and subnetworks, such as the somatomotor network (SMN) and ventral attention network (VAN), than HCs (63.44 ± 6.92 years of age). Whole-brain network coupling was positively correlated with dorsal attention network (DAN), SMN, and visual network (VN) coupling. MMSE scores were significantly positively correlated with whole-brain coupling and SMN coupling. In MCI, whole-brain network demonstrated the highest performance, followed by the SMN and VAN, with the VN, DAN, limbic network (LN), frontoparietal network (FPN), and default mode network (DMN). Compared to HCs, lower DTI-ALPS index was observed in individuals with MCI. Additionally, the left DTI-ALPS index showed a significant positive correlation with MMSE scores and coupling values in the whole-brain network and SMN. Conclusion These findings reveal the critical role of SC-FC coupling values and the ALPS index in cognitive function of MCI. The positive correlations observed in the left DTI-ALPS and whole-brain and SMN coupling values provide a new insight for investigating the asymmetrical nature of cognitive impairments.
Collapse
Affiliation(s)
- Yong-Wen Sun
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xin-Yue Lyu
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao-Yang Lei
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ming-Ming Huang
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhen-Min Wang
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Cao Y, Huang M, Fu F, Chen K, Liu K, Cheng J, Li Y, Liu X. Abnormally glymphatic system functional in patients with migraine: a diffusion kurtosis imaging study. J Headache Pain 2024; 25:118. [PMID: 39039435 PMCID: PMC11265182 DOI: 10.1186/s10194-024-01825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) method has been used to evaluate glymphatic system function in patients with migraine. However, since the diffusion tensor model cannot accurately describe the diffusion coefficient of the nerve fibre crossing region, we proposed a diffusion kurtosis imaging ALPS (DKI-ALPS) method to evaluate glymphatic system function in patients with migraine. METHODS The study included 29 healthy controls and 37 patients with migraine. We used diffusion imaging data from a 3T MRI scanner to calculate DTI-ALPS and DKI-ALPS indices of the two groups. We compared the DTI-ALPS and DKI-ALPS indices between the two groups using a two-sample t-test and performed correlation analyses with clinical variables. RESULTS There was no significant difference in DTI-ALPS index between the two groups. Patients with migraine showed a significantly increased right DKI-ALPS index compared to healthy controls (1.6858 vs. 1.5729; p = 0.0301). There was no significant correlation between ALPS indices and clinical variables. CONCLUSIONS DKI-ALPS is a potential method to assess glymphatic system function and patients with migraine do not have impaired glymphatic system function.
Collapse
Affiliation(s)
- Yungang Cao
- Department of Neurology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Mei Huang
- Department of Radiology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang, 325027, China
| | - Fangwang Fu
- Department of Neurology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keyang Chen
- Department of Neurology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Kun Liu
- Department of Radiology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang, 325027, China
| | - Jinming Cheng
- Department of Neurology of the Hebei General Hospital, Shijiazhuang, Hebei, 050051, China
| | - Yan Li
- Department of Neurology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
- Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
8
|
Tian B, Zhao C, Liang JL, Zhang HT, Xu YF, Zheng HL, Zhou J, Gong JN, Lu ST, Zeng ZS. Glymphatic function and its influencing factors in different glucose metabolism states. World J Diabetes 2024; 15:1537-1550. [PMID: 39099805 PMCID: PMC11292332 DOI: 10.4239/wjd.v15.i7.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Dysfunction of the glymphatic system in the brain in different stages of altered glucose metabolism and its influencing factors are not well characterized. AIM To investigate the function of the glymphatic system and its clinical correlates in patients with different glucose metabolism states, the present study employed diffusion tensor imaging along the perivascular space (DTI-ALPS) index. METHODS Sample size was calculated using the pwr package in R software. This cross-sectional study enrolled 22 patients with normal glucose metabolism (NGM), 20 patients with prediabetes, and 22 patients with type 2 diabetes mellitus (T2DM). A 3.0T magnetic resonance imaging was used to evaluate the function of the glymphatic system. The mini-mental state examination (MMSE) was used to assess general cognitive function. The DTI-ALPS index of bilateral basal ganglia and the mean DTI-ALPS index was calculated. Further, the correlation between DTI-ALPS and clinical features was assessed. RESULTS The left-side, right-side, and mean DTI-ALPS index in the T2DM group were significantly lower than that in the NGM group. The right-side DTI-ALPS and mean DTI-ALPS index in the T2DM group were significantly lower than those in the prediabetes group. DTI-ALPS index lateralization was not observed. The MMSE score in the T2DM group was significantly lower than that in the NGM and prediabetes group. After controlling for sex, the left-side DTI-ALPS and mean DTI-ALPS index in the prediabetes group were positively correlated with 2-hour postprandial blood glucose level; the left-side DTI-ALPS index was negatively correlated with total cholesterol and low-density lipoprotein level. The right-side DTI-ALPS and mean DTI-ALPS index were negatively correlated with the glycosylated hemoglobin level and waist-to-hip ratio in the prediabetes group. The left-side, right-side, and mean DTI-ALPS index in the T2DM group were positively correlated with height. The left-side and mean DTI-ALPS index in the T2DM group were negatively correlated with high-density lipoprotein levels. CONCLUSION Cerebral glymphatic system dysfunction may mainly occur in the T2DM stage. Various clinical variables were found to affect the DTI-ALPS index in different glucose metabolism states. This study enhances our understanding of the pathophysiology of diabetic brain damage and provides some potential biological evidence for its early diagnosis.
Collapse
Affiliation(s)
- Bin Tian
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Chen Zhao
- Magnetic Resonance Research Collaboration, Siemens Healthineers, Guangzhou 510620, Guangdong Province, China
| | - Jia-Li Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ting Zhang
- Magnetic Resonance Research Collaboration, Siemens Healthineers Ltd., Wuhan 430071, Hubei Province, China
| | - Yi-Fan Xu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Lei Zheng
- Department of Health Management, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jia Zhou
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jiang-Nian Gong
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shu-Ting Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zi-San Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
10
|
Hong H, Tozer DJ, Markus HS. Relationship of Perivascular Space Markers With Incident Dementia in Cerebral Small Vessel Disease. Stroke 2024; 55:1032-1040. [PMID: 38465597 PMCID: PMC10962441 DOI: 10.1161/strokeaha.123.045857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Recent studies, using diffusion tensor image analysis along the perivascular space (DTI-ALPS), suggest impaired perivascular space (PVS) function in cerebral small vessel disease, but they were cross-sectional, making inferences on causality difficult. We determined associations between impaired PVS, measured using DTI-ALPS and PVS volume, and cognition and incident dementia. METHODS In patients with lacunar stroke and confluent white matter hyperintensities, without dementia at baseline, recruited prospectively in a single center, magnetic resonance imaging was performed annually for 3 years, and cognitive assessments, including global, memory, executive function, and processing speed, were performed annually for 5 years. We determined associations between DTI-ALPS and PVS volume with cerebral small vessel disease imaging markers (white matter hyperintensity volume, lacunes, and microbleeds) at baseline and with changes in imaging markers. We determined whether DTI-ALPS and PVS volume at baseline and change over 3 years predicted incident dementia. Analyses were controlled for conventional diffusion tensor image metrics using 2 markers (median mean diffusivity [MD] and peak width of skeletonized MD) and adjusted for age, sex, and vascular risk factors. RESULTS A total of 120 patients, mean age 70.0 years and 65.0% male, were included. DTI-ALPS declined over 3 years, while no change in PVS volume was found. Neither DTI-ALPS nor PVS volume was associated with cerebral small vessel disease imaging marker progression. Baseline DTI-ALPS was associated with changes in global cognition (β=0.142, P=0.032), executive function (β=0.287, P=0.027), and long-term memory (β=0.228, P=0.027). Higher DTI-ALPS at baseline predicted a lower risk of dementia (hazard ratio, 0.328 [0.183-0.588]; P<0.001), and this remained significant after including median MD as a covariate (hazard ratio, 0.290 [0.139-0.602]; P<0.001). Change in DTI-ALPS predicted dementia conversion (hazard ratio, 0.630 [0.428-0.964]; P=0.048), but when peak width of skeletonized MD and median MD were entered as covariates, the association was not significant. There was no association between baseline PVS volume, or PVS change over 3 years, and conversion to dementia. CONCLUSIONS DTI-ALPS predicts future dementia risk in patients with lacunar strokes and confluent white matter hyperintensities. However, the weakening of the association between change in DTI-ALPS and incident dementia after controlling for peak width of skeletonized MD and median MD suggests part of the signal may represent conventional diffusion tensor image metrics. PVS volume is not a predictor of future dementia risk.
Collapse
Affiliation(s)
- Hui Hong
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
- Department of Radiology, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China (H.H.)
| | - Daniel J. Tozer
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
| | - Hugh S. Markus
- Department of Clinical Neurosciences, University of Cambridge, United Kingdom (H.H., D.J.T., H.S.M.)
| |
Collapse
|