1
|
Lv X, Zhao L, Song Y, Chen W, Tuo Q. Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. Int J Mol Sci 2024; 25:11462. [PMID: 39519014 PMCID: PMC11546650 DOI: 10.3390/ijms252111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with atherosclerosis (AS) playing a central role in its pathogenesis as a chronic inflammatory condition. Copper, an essential trace element in the human body, participates in various biological processes and plays a significant role in the cardiovascular system. Maintaining normal copper homeostasis is crucial for cardiovascular health, and dysregulation of copper balance is closely associated with the development of CVD. When copper homeostasis is disrupted, it can induce cell death, which has been proposed to be a novel form of "cuproptosis", distinct from traditional programmed cell death. This new form of cell death is closely linked to the occurrence and progression of AS. This article elaborately describes the physiological mechanisms of copper homeostasis and explores its interactions with signaling pathways related to AS. Additionally, we focus on the process and mechanism of cell death induced by imbalances in copper homeostasis and summarize the relationship between copper homeostasis-related genes and AS. We also emphasize potential therapeutic approaches, such as copper balance regulators and nanotechnology interventions, to adjust copper levels in the body, providing new ideas and strategies for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Liyan Zhao
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Yuting Song
- College of Integrative Chinese and Western Medicine, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| |
Collapse
|
2
|
Shareef N, Abid S, Amir A, Ismail A, Ullah A, Ahmad A, Ibenmoussa S, Bin Jardan YA, Bourhia M, Ibrahim A, Iqbal F. Toxicological evaluation of copper oxide nanoparticles following their intraperitoneal injection to Wistar rats. Toxicol Res (Camb) 2024; 13:tfae125. [PMID: 39132193 PMCID: PMC11306316 DOI: 10.1093/toxres/tfae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background Copper oxide (Cu2O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu2O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization. Methods For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects. Results High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [P = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [P < 0.001] levels and Copper concentration in liver [P = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [P = 0.02] and superoxide dismutase [SOD] [P = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex. Conclusion In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.
Collapse
Affiliation(s)
- Nisha Shareef
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shairyar Abid
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aqsa Amir
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Amir Ismail
- Institute of Food Sciences and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Abd Ullah
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Adnan Ahmad
- Department of Zoology, Shaheed Benazir Butto University, Upper Dir 18050, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier 34000, France
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Ather Ibrahim
- Institute of Advanced Materials, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Metallurgical and Materials Engineering, University of Engineering and Technology Lahore, 05422, Pakistan
| | - Furhan Iqbal
- Institute of Zoology, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
3
|
Lou QM, Lai FF, Li JW, Mao KJ, Wan HT, He Y. Mechanisms of cuproptosis and its relevance to distinct diseases. Apoptosis 2024; 29:981-1006. [PMID: 38824478 DOI: 10.1007/s10495-024-01983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Copper is a trace element required by the organism, but once the level of copper exceeds the threshold, it becomes toxic and even causes death. The underlying mechanisms of copper-induced death are inconclusive, with different studies showing different opinions on the mechanism of copper-induced death. Multiple investigations have shown that copper induces oxidative stress, endoplasmic reticulum stress, nucleolar stress, and proteasome inhibition, all of which can result in cell death. The latest research elucidates a copper-dependent death and denominates it as cuproptosis. Cuproptosis takes place through the combination of copper and lipoylated proteins of the tricarboxylic acid cycle, triggering agglomeration of lipoylated proteins and loss of iron-sulfur cluster proteins, leading to proteotoxic stress and ultimately death. Given the toxicity and necessity of copper, abnormal levels of copper lead to diseases such as neurological diseases and cancer. The development of cancer has a high demand for copper, neurological diseases involve the change of copper contents and the binding of copper to proteins. There is a close relationship between these two kinds of diseases and copper. Here, we summarize the mechanisms of copper-related death, and the association between copper and diseases, to better figure out the influence of copper in cell death and diseases, thus advancing the clinical remedy of these diseases.
Collapse
Affiliation(s)
- Qiao-Mei Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei-Fan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing-Wei Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kun-Jun Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hai-Tong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Hosseini Z, Ahmadi A, Shadi A, Hosseini SJ, Nikmanesh H. Green-synthesized copper oxide nanoparticles induce apoptosis and up-regulate HOTAIR and HOTTIP in pancreatic cancer cells. Nanomedicine (Lond) 2024; 19:1629-1641. [PMID: 39011923 PMCID: PMC11389748 DOI: 10.1080/17435889.2024.2367958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: Cu2O nanoparticles were synthesized using an extract from S. latifolium algae (SLCu2O NPs). Their effect on PANC-1 cells and the expression of two drug resistance-related lncRNAs were evaluated in comparison with Arsenic trioxide.Materials & methods: SLCu2O NPs were characterized using XRD, SEM, and TEM microscopies. The effects of SLCu2O NPs on cell cytotoxicity, cell cycle, and apoptosis, and expression of two drug resistance-related lncRNAs were examined using MTT assay, flow cytometry, and real-time PCR, respectively.Results: SLCu2O NPs demonstrated anti-cancer properties against PANC-1 cells comparable to Arsenic trioxide, and the expression of lncRNAs increased upon treatment with them.Conclusion: SLCu2O NPs demonstrate anti-cancer properties against PANC-1 cells; however, using gene silencing strategies along with SLCu2O NPs is suggested.
Collapse
Affiliation(s)
- Zahra Hosseini
- Department of Biological Science & Technology, Persian Gulf University, Bushehr75169, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science & Technology, Persian Gulf University, Bushehr75169, Iran
| | - Ahmad Shadi
- Department of Biological Science & Technology, Persian Gulf University, Bushehr75169, Iran
| | - Seyed Javad Hosseini
- Department of Biological Science & Technology, Persian Gulf University, Bushehr75169, Iran
- Persian Gulf Research Institute, Persian Gulf University, Bushehr75169, Iran
| | | |
Collapse
|
5
|
Karan A, Sharma NS, Darder M, Su Y, Andrabi SM, Shahriar SMS, John JV, Luo Z, DeCoster MA, Zhang YS, Xie J. Copper-Cystine Biohybrid-Embedded Nanofiber Aerogels Show Antibacterial and Angiogenic Properties. ACS OMEGA 2024; 9:9765-9781. [PMID: 38434900 PMCID: PMC10905775 DOI: 10.1021/acsomega.3c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Copper-cystine-based high aspect ratio structures (CuHARS) possess exceptional physical and chemical properties and exhibit remarkable biodegradability in human physiological conditions. Extensive testing has confirmed the biocompatibility and biodegradability of CuHARS under diverse biological conditions, making them a viable source of essential Cu2+. These ions are vital for catalyzing the production of nitric oxide (NO) from the decomposition of S-nitrosothiols (RSNOs) found in human blood. The ability of CuHARS to act as a Cu2+ donor under specific concentrations has been demonstrated in this study, resulting in the generation of elevated levels of NO. Consequently, this dual function makes CuHARS effective as both a bactericidal agent and a promoter of angiogenesis. In vitro experiments have shown that CuHARS actively promotes the migration and formation of complete lumens by redirecting microvascular endothelial cells. To maximize the benefits of CuHARS, they have been incorporated into biomimetic electrospun poly(ε-caprolactone)/gelatin nanofiber aerogels. Through the regulated release of Cu2+ and NO production, these channeled aerogels not only provide antibacterial support but also promote angiogenesis. Taken together, the inclusion of CuHARS in biomimetic scaffolds could hold great promise in revolutionizing tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Anik Karan
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Navatha Shree Sharma
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Margarita Darder
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid 28049, Spain
| | - Yajuan Su
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Syed Muntazir Andrabi
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - S M Shatil Shahriar
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Johnson V. John
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Zeyu Luo
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Mark A. DeCoster
- Biomedical
Engineering, Louisiana Tech University, Ruston, Louisiana 71272, United States
- Institute
for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Yu Shrike Zhang
- Division
of Engineering in Medicine, Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jingwei Xie
- Department
of Surgery-Transplant and Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department
of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
6
|
Zughaibi TA, Jabir NR, Khan AU, Khan MS, Tabrez S. Screening of Cu 4 O 3 NPs efficacy and its anticancer potential against cervical cancer. Cell Biochem Funct 2023; 41:1174-1187. [PMID: 37691077 DOI: 10.1002/cbf.3850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Cu4 O3 is the least explored copper oxide, and its nanoformulation is anticipated to have important therapeutic potential especially against cancer. The current study aimed to biosynthesize Cu4 O3 nanoparticles (NPs) using an aqueous extract of pumpkin seeds and evaluate its antiproliferative efficacy against cervical cells after screening on different cancer cell lines. The obtained NPs were characterized by different spectroscopic analyses, such as UV-vis, thermogravimetric, energy dispersive X-ray, and Fourier-transform infrared spectroscopy (FTIR). In addition, high-resolution transmission electron microscopes (HR-TEM) were used to observe the morphology of the biosynthesized NPs. The UV-vis spectra showed a peak at around 332 nm, confirming the formation of Cu4 O3 NPs. Moreover, FTIR and TAG analyses identified the presence of various bioactive phytoconstituents that might have worked as capping and stabilization agents and comparative stable NPs at very high temperatures, respectively. The HR-TEM data showed the spherical shape of Cu4 O3 NPs in the range of 100 nm. The Cu4 O3 NPs was screened on three different cancer cell lines viz., Hela, MDA-MB-231, and HCT-116 using cytotoxicity (MTT) reduction assay. In addition, Vero was taken as a normal epithelial (control) cell. The high responsive cell line in terms of least IC50 was further assessed for its anticancer potential using a battery of biological tests, including morphological alterations, induction of apoptosis/ROS generation, regulation of mitochondrial membrane potential (MMP), and suppression of cell adhesion/migration. Vero cells (control) showed a slight decline in % cell viability even at the highest tested Cu4 O3 NPs concentration. However, all the studied cancer cells viz., MDA-MB-231, HCT 116, and HeLa cells showed a dose-dependent decline in cell viability after the treatment with Cu4 O3 NPs with a calculated IC50 value of 10, 11, and 7.2 µg/mL, respectively. Based on the above data, Hela cells were chosen for further studies, that showed induction of apoptosis from 3.5 to 9-folds by three different staining techniques acridine orange/ethidium bromide (AO/EB), 4',6-diamidino-2-phenylindole (DAPI), and propidium iodide (PI). The enhanced production of reactive oxygen species (>3.5-fold), modulation in MMP, and suppression of cell adhesion/migration were observed in the cells treated with Cu4 O3 NPs. The current study obtained the significant antiproliferative potential of Cu4 O3 NPs against the cervical cancer cell line, which needs to be confirmed further in a suitable in vivo model. Based on our results, we also recommend the green-based, eco-friendly, and cost-effective alternative method for synthesizing novel nanoformulation.
Collapse
Affiliation(s)
- Torki A Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam Thanjavur, Tamil Nadu, India
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, Siilas Campus, Jaipur National University, Jaipur, Rajasthan, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Alhafez A, Savci A, Alan Y, Söylemez R, Kilic A. Preparation of Cu(II), Ni(II), Ti(IV), VO(IV), and Zn(II) Metal Complexes Derived from Novel vic-Dioxime and Investigation of Their Antioxidant and Antibacterial Activities. Chem Biodivers 2022; 19:e202100768. [PMID: 35170204 DOI: 10.1002/cbdv.202100768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022]
Abstract
In this work, novel vic-dioxime ligand (LH2 ) containing bound to the N4 -oxime core moiety and its complexes with Cu(II), Ni(II), Ti(IV), VO(IV), and Zn(II) salts have been studied. The structure of the ligand and its complexes were successfully synthesized and characterized using NMR (1 H and 13 C), LC/MS/MS spectrometer, FT-IR and UV/VIS spectroscopy, melting point, and magnetic susceptibility measurements. Vic-dioxime ligand (LH2 ) (1) and its metal complexes ([Cu(LH)2 ] (2), [Ni(LH)2 ] (3), [Ti(LH)2 ]Cl2 (4), [VO(LH)2 ] (5), and [Zn(LH)2 ] (6), respectively) were tested for them in-vitro antibacterial and antioxidant activities. According to the metal chelating results of the study, it was determined that compounds (1), (2), (3), and (6) showed very good activity, and especially compound (2), had a stronger metal chelating capacity due to ligand dissociation from the synthesized metal complexes, which then would chelate Fe(II) in the experimental setting. When microorganisms were evaluated in terms of the % viability effect, it was observed that all compounds had activity against C. Albicans and S. Cerevisiae at rates similar to antibiotics.
Collapse
Affiliation(s)
- Anas Alhafez
- Department of Chemistry, Faculty of Art and Science, Harran University, Sanlıurfa, 63190, Turkey
| | - Ahmet Savci
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Mus Alparslan University, Mus, 49250, Turkey
| | - Yusuf Alan
- Department of Primary Education, Education Faculty, Mus Alparslan University, Mus, 49250, Turkey
| | - Rahime Söylemez
- Department of Chemistry, Faculty of Art and Science, Harran University, Sanlıurfa, 63190, Turkey
| | - Ahmet Kilic
- Department of Chemistry, Faculty of Art and Science, Harran University, Sanlıurfa, 63190, Turkey.,Research Center for Science and Technology, Harran University, Sanlıurfa, 63190, Turkey
| |
Collapse
|
8
|
Wang H, Wang A, Wang X, Zeng X, Xing H. AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118659. [PMID: 34896222 DOI: 10.1016/j.envpol.2021.118659] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The experiment was conducted to investigate the effects of Cadmium (Cd) on growth performance, blood biochemical parameters, oxidative stress, hepatocyte apoptosis and autophagy of weaned piglets. A total of 12 healthy weaned piglets were randomly assigned to the control and the Cd group, which were fed with a basal diet and the basal diet supplemented with 15 ± 0.242 mg/kg CdCl2 for 30 d, respectively. Our results demonstrated that Cd significantly decreased final body weight, average daily feed intake (ADFI), average daily gain (ADG) and increased feed-to-gain (F/G) ratio (P < 0.05). For blood biochemical parameters, Cd treatment significantly decreased the red blood cell (RBC), hemoglobin (HGB), hematocrit (HCT), total protein, albumin, copper content and iron content (P < 0.05). In addition, liver injury was observed in the Cd-exposed group. Our results also demonstrated that Cd exposure contributed to the production of ROS, activated the AMPK/PPAR-γ/NF-κB pathway (increasing the expressions of P-AMPK/AMPK, NF-κB, I-κB-β, COX-2, and iNOS, decreasing the expressions of PPAR-γ and I-κB-α), finally induced autophagy (increasing the expressions of Beclin-1, the ratio of LC3-II/LC3-I and p62), and apoptosis (increasing the expressions of Bax, Bak, Caspase-9, and Caspase-3, decreasing the expression of Bcl-2). Overall, these findings revealed the vital role of AMPK/PPAR-γ/NF-κB pathway in Cd-induced liver apoptosis and autophagy, which provided deeper insights into a better understanding of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Huan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinqiao Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, People's Republic of China
| | - Xiangyin Zeng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F. Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 2021; 459:152855. [PMID: 34252479 DOI: 10.1016/j.tox.2021.152855] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
10
|
Pezzotti G, Boschetto F, Ohgitani E, Fujita Y, Zhu W, Marin E, McEntire BJ, Bal BS, Mazda O. Silicon nitride: a potent solid-state bioceramic inactivator of ssRNA viruses. Sci Rep 2021; 11:2977. [PMID: 33536558 PMCID: PMC7858580 DOI: 10.1038/s41598-021-82608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Surface inactivation of human microbial pathogens has a long history. The Smith Papyrus (2600 ~ 2200 B.C.) described the use of copper surfaces to sterilize chest wounds and drinking water. Brass and bronze on doorknobs can discourage microbial spread in hospitals, and metal-base surface coatings are used in hygiene-sensitive environments, both as inactivators and modulators of cellular immunity. A limitation of these approaches is that the reactive oxygen radicals (ROS) generated at metal surfaces also damage human cells by oxidizing their proteins and lipids. Silicon nitride (Si3N4) is a non-oxide ceramic compound with known surface bacterial resistance. We show here that off-stoichiometric reactions at Si3N4 surfaces are also capable of inactivating different types of single-stranded RNA (ssRNA) viruses independent of whether their structure presents an envelop or not. The antiviral property of Si3N4 derives from a hydrolysis reaction at its surface and the subsequent formation of reactive nitrogen species (RNS) in doses that could be metabolized by mammalian cells but are lethal to pathogens. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of viral RNA and in situ Raman spectroscopy suggested that the products of Si3N4 hydrolysis directly react with viral proteins and RNA. Si3N4 may have a role in controlling human epidemics related to ssRNA mutant viruses.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.410793.80000 0001 0663 3325Department of Orthopedic Surgery, Tokyo Medical University, 6–7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160–0023 Japan ,grid.136593.b0000 0004 0373 3971The Center for Advanced Medical Engineering and Informatics, Osaka University, 2–2 Yamadaoka, Suita, Osaka 565–0854 Japan ,grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan ,grid.272458.e0000 0001 0667 4960Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602–8566 Japan
| | - Francesco Boschetto
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| | - Eriko Ohgitani
- grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| | - Yuki Fujita
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan
| | - Wenliang Zhu
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan
| | - Elia Marin
- grid.419025.b0000 0001 0723 4764Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto, 606–8585 Japan ,grid.272458.e0000 0001 0667 4960Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, 602–8566 Japan
| | - Bryan J. McEntire
- grid.422391.f0000 0004 6010 3714SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119 USA
| | - B. Sonny Bal
- grid.422391.f0000 0004 6010 3714SINTX Technologies Corporation, 1885 West 2100 South, Salt Lake City, UT 84119 USA
| | - Osam Mazda
- grid.272458.e0000 0001 0667 4960Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto, 602–8566 Japan
| |
Collapse
|
11
|
Patwa J, Flora SJS. Heavy Metal-Induced Cerebral Small Vessel Disease: Insights into Molecular Mechanisms and Possible Reversal Strategies. Int J Mol Sci 2020; 21:ijms21113862. [PMID: 32485831 PMCID: PMC7313017 DOI: 10.3390/ijms21113862] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Heavy metals are considered a continuous threat to humanity, as they cannot be eradicated. Prolonged exposure to heavy metals/metalloids in humans has been associated with several health risks, including neurodegeneration, vascular dysfunction, metabolic disorders, cancer, etc. Small blood vessels are highly vulnerable to heavy metals as they are directly exposed to the blood circulatory system, which has comparatively higher concentration of heavy metals than other organs. Cerebral small vessel disease (CSVD) is an umbrella term used to describe various pathological processes that affect the cerebral small blood vessels and is accepted as a primary contributor in associated disorders, such as dementia, cognitive disabilities, mood disorder, and ischemic, as well as a hemorrhagic stroke. In this review, we discuss the possible implication of heavy metals/metalloid exposure in CSVD and its associated disorders based on in-vitro, preclinical, and clinical evidences. We briefly discuss the CSVD, prevalence, epidemiology, and risk factors for development such as genetic, traditional, and environmental factors. Toxic effects of specific heavy metal/metalloid intoxication (As, Cd, Pb, Hg, and Cu) in the small vessel associated endothelium and vascular dysfunction too have been reviewed. An attempt has been made to highlight the possible molecular mechanism involved in the pathophysiology, such as oxidative stress, inflammatory pathway, matrix metalloproteinases (MMPs) expression, and amyloid angiopathy in the CSVD and related disorders. Finally, we discussed the role of cellular antioxidant defense enzymes to neutralize the toxic effect, and also highlighted the potential reversal strategies to combat heavy metal-induced vascular changes. In conclusion, heavy metals in small vessels are strongly associated with the development as well as the progression of CSVD. Chelation therapy may be an effective strategy to reduce the toxic metal load and the associated complications.
Collapse
|
12
|
Yang Z, Ma C, Wang W, Zhang M, Hao X, Chen S. Fabrication of Cu2O-Ag nanocomposites with enhanced durability and bactericidal activity. J Colloid Interface Sci 2019; 557:156-167. [DOI: 10.1016/j.jcis.2019.09.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
|
13
|
Chen Y, Wang M, Zhang T, Du E, Liu Y, Qi S, Xu Y, Zhang Z. Autophagic effects and mechanisms of silver nanoparticles in renal cells under low dose exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:71-77. [PMID: 30248563 DOI: 10.1016/j.ecoenv.2018.09.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
With the advancement of nanotechnology and unique properties, silver nanoparticles (AgNPs) have been generally used in our work and life. However, the concerns on nanosafety have not been thoroughly understood. Although mounting studies have documented AgNPs-mediated autophagy under toxic dose, very few studies have been made to reveal the mechanisms of AgNPs-induced autophagy at non-toxic concentrations. Here, we investigated AgNPs-mediated biological effects on autophagy in renal cells under sublethal exposure. Sublethal AgNPs resulted in increase of LC3II level and accumulation of autophagy related genes in HEK293T and A498 cells, which demonstrated AgNPs could activate autophagy at lower concentrations. Mechanistic investigation manifested that AMPK-mTOR signaling was enrolled in AgNPs-induced autophagy process rather than PI3K/AKT/mTOR signaling. In addition, P62 was elevated in AgNPs-treated cells in an mTOR-independent manner. We further uncovered that sublethal AgNPs exposure impaired the integrity and protease activities of lysosome. Together, our results revealed the mechanism by which AgNPs induced autophagy in renal cells under sublethal concentration.
Collapse
Affiliation(s)
- Yue Chen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Meng Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China; Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tianke Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - E Du
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yan Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shiyong Qi
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| |
Collapse
|
14
|
Lin J, Xia J, Zhao HS, Hou R, Talukder M, Yu L, Guo JY, Li JL. Lycopene Triggers Nrf2-AMPK Cross Talk to Alleviate Atrazine-Induced Nephrotoxicity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12385-12394. [PMID: 30360616 DOI: 10.1021/acs.jafc.8b04341] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atrazine (ATR), an environmental persistent and bioaccumulative herbicide, has been associated with environmental nephrosis. Lycopene (LYC) exhibits important properties of nephroprotection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to explore the therapeutic effect of LYC on ATR-induced nephrotoxicity in mice. The mice were divided randomly into 6 groups and treated as follows: control group (C), 5 mg/kg LYC group (L), 50 mg/kg ATR group (A1), 200 mg/kg ATR group (A2), 50 mg/kg ATR plus 5 mg/kg LYC group (A1+L), and 200 mg/kg ATR plus 5 mg/kg LYC group (A2+L) by oral gavage administration for 21 days. We found that pretreatment with LYC significantly suppressed the ATR-induced renal tubular epithelial cell swelling. Furthermore, LYC mitigated ATR-induced dysregulation of oxidative stress markers by reducing MDA, H2O2 levels, and increasing SOD, GPx, CAT concentration, and Nrf2 activation. Moreover, LYC activated the autophagic flux by a detectable change in autophagy-related genes (Beclin-1 and ATGs) and proteins (p62/SQSTM) and by the formation of autophagic vacuole (AV) and LC3 aggregation, in parallel with AMPK activation (pAMPK/AMPK). Herein, ATR-up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes, including quinoneoxidoreductase-1 (NQO1) and heme oxidase-1 (HO1), whereas LYC down-regulated those of the above genes. In addition, LYC suppressed ATR-induced activation of autophagy (increased LC3II/LC3I, ATGs, Beclin1, and p62, in parallel with increased AMPK activation). Collectively, our findings identified a cross talk between AMPK-activated autophagy and the Nrf2 signaling pathway in LYC-mediated nephroprotection against ATR-induced toxicity in mice kidney.
Collapse
Affiliation(s)
- Jia Lin
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Jun Xia
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Hua-Shan Zhao
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Rui Hou
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Milton Talukder
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine , Patuakhali Science and Technology University , Barishal 8210 , Bangladesh
| | - Lei Yu
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Jian-Ying Guo
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine , ‡Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment , and §Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine , Northeast Agricultural University , Harbin 150030 , P.R. China
| |
Collapse
|
15
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
16
|
Liu Y, Yu H, Zhang X, Wang Y, Song Z, Zhao J, Shi H, Li R, Wang Y, Zhang LW. The protective role of autophagy in nephrotoxicity induced by bismuth nanoparticles through AMPK/mTOR pathway. Nanotoxicology 2018; 12:586-601. [PMID: 29732938 DOI: 10.1080/17435390.2018.1466932] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bismuth is widely used in metallurgy, cosmetic industry, and medical diagnosis and recently, bismuth nanoparticles (NPs) (BiNP) have been made and proved to be excellent CT imaging agents. Previously, we have synthesized bovine serum albumin based BiNP for imaging purpose but we found a temporary kidney injury by BiNP. Due to the reported adverse events of bismuth on human health, we extended our studies on the mechanisms for BiNP induced nephrotoxicity. Blood biochemical analysis indicated the increase in creatinine (CREA) and blood urea nitrogen (BUN), and intraluminal cast formation with cell apoptosis/necrosis was evident in proximal convoluted tubules (PCTs) of mice. BiNP induced acute kidney injury (AKI) was associated with an increase in LC3II, while the autophagic flux indicator p62 remained unchanged. Chloroquine and rapamycin were used to evaluate the role of autophagy in AKI caused by BiNP. Results showed that BiNP induced AKI was further attenuated by rapamycin, while AKI became severe when chloroquine was applied. In vitro studies further proved BiNP induced autophagy in human embryonic kidney cells 293, presented as autophagic vacuole (AV) formation along with increased levels of autophagy-related proteins including LC3II, Beclin1, and Atg12. Specifically, reactive oxygen species (ROS) generated by BiNP could be the major inducer of autophagy, because ROS blockage attenuated autophagy. Autophagy induced by BiNP was primarily regulated by AMPK/mTOR signal pathway and partially regulated by Akt/mTOR. Our study provides fundamental theory to better understand bismuth induced nephrotoxicity for better clinical application of bismuth related compounds.
Collapse
Affiliation(s)
- Yongming Liu
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Huan Yu
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Xihui Zhang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Yong Wang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Zhentao Song
- b State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Jian Zhao
- b State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Haibin Shi
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Ruibin Li
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Yangyun Wang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| | - Leshuai W Zhang
- a School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , PR China
| |
Collapse
|
17
|
Liu C, Dong H, Wu N, Cao Y, Zhang X. Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO 2@Cu 2O/Perfluorohexane Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:6991-7002. [PMID: 29405051 DOI: 10.1021/acsami.8b00112] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Reactive oxygen species generation efficiency of photosensitizers and hypoxia microenvironment in solid tumor hamper photodynamic therapy (PDT) efficacy. Here, we introduce an efficient inorganic photosensitizer by incorporating plasmonic gold metal nanostructures into Cu2O semiconductors for PDT. By utilizing the plasmon-induced resonance energy transfer (PIRET) process from Au to Cu2O, Au@SiO2@Cu2O (ASC) demonstrates a high singlet oxygen quantum yield of 0.71 under a 670 nm laser irradiation. The ASC is loaded into oxygen self-enriched perfluorohexane (PFH) droplets and coated with liposome (Lip) to form Lip(ASC/PFH) nanocomposites. The achieved Lip(ASC/PFH) shows considerable anticancer efficacy for in vitro cancer cells and in vivo tumor growth. The proposed oxygen self-enriched PIRET-PDT concept has significant implication in PDT design.
Collapse
Affiliation(s)
- Conghui Liu
- Research Center for Bioengineering & Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering & Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, P. R. China
| | - Nianqiang Wu
- Department of Mechanical and Aerospace Engineering, West Virginia University , Morgantown, West Virginia 26506-6106, United States
| | - Yu Cao
- Research Center for Bioengineering & Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering & Sensing Technology, School of Chemistry & Biological Engineering, University of Science & Technology Beijing , Beijing 100083, P. R. China
| |
Collapse
|
18
|
Grasso G, Santoro AM, Lanza V, Sbardella D, Tundo GR, Ciaccio C, Marini S, Coletta M, Milardi D. The double faced role of copper in Aβ homeostasis: A survey on the interrelationship between metal dyshomeostasis, UPS functioning and autophagy in neurodegeneration. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Naatz H, Lin S, Li R, Jiang W, Ji Z, Chang CH, Köser J, Thöming J, Xia T, Nel AE, Mädler L, Pokhrel S. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS NANO 2017; 11:501-515. [PMID: 28026936 PMCID: PMC5824973 DOI: 10.1021/acsnano.6b06495] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu+/Cu2+ and Fe2+/Fe3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.
Collapse
Affiliation(s)
- Hendrik Naatz
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Sijie Lin
- California NanoSystems Institute, University of California, Los Angeles, California
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai China
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
- School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Wen Jiang
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Zhaoxia Ji
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Chong Hyun Chang
- California NanoSystems Institute, University of California, Los Angeles, California
| | - Jan Köser
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Germany
| | - Jorg Thöming
- Centre for Environmental Research and Sustainable Technology, University of Bremen, Germany
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
| | - Andre E. Nel
- California NanoSystems Institute, University of California, Los Angeles, California
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California
| | - Lutz Mädler
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| | - Suman Pokhrel
- Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
| |
Collapse
|
20
|
Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|