1
|
Qiu H, Chen Y, Fu J, Zhang C. Expression of ethylene biosynthetic genes during flower senescence and in response to ethephon and silver nitrate treatments in Osmanthus fragrans. Genes Genomics 2024; 46:399-408. [PMID: 38319456 DOI: 10.1007/s13258-023-01489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.
Collapse
Affiliation(s)
- Hui Qiu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Yiwen Chen
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Jianxin Fu
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| | - Chao Zhang
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Jiang Y, Zhang S, Chen K, Xia X, Tao B, Kong W. Impacts of DNA methylases and demethylases on the methylation and expression of Arabidopsis ethylene signal pathway genes. Funct Integr Genomics 2023; 23:143. [PMID: 37127698 DOI: 10.1007/s10142-023-01069-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Arabidopsis ethylene (ET) signal pathway plays important roles in various aspects. Cytosine DNA methylation is significant in controlling gene expression in plants. Here, we analyzed the bisulfite sequencing and mRNA sequencing data from Arabidopsis (de)methylase mutants met1, cmt3, drm1/2, ddm1, ros1-4, and rdd to investigate how DNA (de)methylases influence the DNA methylation and expression of Arabidopsis ET pathway genes. At least 32 genes are found to involved in Arabidopsis ET pathway by text mining. Among them, 14 genes are unmethylated or methylated with very low levels. ACS6 and ACS9 are conspicuously methylated within their upstream regions. The other 16 genes are predominantly methylated at the CG sites within gene body regions in wild-type plants, and mutation of MET1 resulted in almost entire elimination of the CG methylations. In addition, CG methylations within some genes are jointly maintained by MET1 and other (de)methylases. Analyses of mRNA-seq data indicated that some ET pathway genes were differentially expressed between wild-type and diverse mutants. PDF1.2, the marker gene of ET signal pathway, was found being regulated indirectly by the methylases. Eighty-two transposable elements (TEs) were identified to be associated to 15 ET pathway genes. ACS11 is found located in a heterochromatin region that contains 57 TEs, indicating its specific expression and regulation. Together, our results suggest that DNA (de)methylases are implicated in the regulation of CG methylation within gene body regions and transcriptional activity of some ET pathway genes and that maintenance of normal CG methylation is essential for ET pathway in Arabidopsis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shengwei Zhang
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kun Chen
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xue Xia
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Bingqing Tao
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weiwen Kong
- School of Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
3
|
Huang TH, Hsu WH, Mao WT, Yang CH. The Oncidium Ethylene Synthesis Gene Oncidium 1-Aminocyclopropane-1 Carboxylic Acid Synthase 12 and Ethylene Receptor Gene Oncidium ETR1 Affect GA-DELLA and Jasmonic Acid Signaling in Regulating Flowering Time, Anther Dehiscence, and Flower Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:785441. [PMID: 35432433 PMCID: PMC9011138 DOI: 10.3389/fpls.2022.785441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/07/2022] [Indexed: 05/28/2023]
Abstract
In plants, the key enzyme in ethylene biosynthesis is 1-aminocyclopropane-1 carboxylic acid (ACC) synthase (ACS), which catalyzes S-adenosyl-L-methionine (SAM) to ACC, the precursor of ethylene. Ethylene binds to its receptors, such as ethylene response 1 (ETR1), to switch on ethylene signal transduction. To understand the function of ACS and ETR1 in orchids, Oncidium ACC synthase 12 (OnACS12) and Oncidium ETR1 (OnETR1) from Oncidium Gower Ramsey were functionally analyzed in Arabidopsis. 35S::OnACS12 caused late flowering and anther indehiscence phenotypes due to its effect on GA-DELLA signaling pathways. 35S::OnACS12 repressed GA biosynthesis genes (CPS, KS, and GA3ox1), which caused the upregulation of DELLA [GA-INSENSITIVE (GAI), RGA-LIKE1 (RGL1), and RGL2] expression. The increase in DELLAs not only suppressed LEAFY (LFY) expression and caused late flowering but also repressed the jasmonic acid (JA) biosynthesis gene DAD1 and caused anther indehiscence by downregulating the endothecium-thickening-related genes MYB26, NST1, and NST2. The ectopic expression of an OnETR1 dominant-negative mutation (OnETR1-C65Y) caused both ethylene and JA insensitivity in Arabidopsis. 35S::OnETR1-C65Y delayed flower/leaf senescence by suppressing downstream genes in ethylene signaling, including EDF1-4 and ERF1, and in JA signaling, including MYC2 and WRKY33. JA signaling repression also resulted in indehiscent anthers via the downregulation of MYB26, NST1, NST2, and MYB85. These results not only provide new insight into the functions of ACS and ETR1 orthologs but also uncover their functional interactions with other hormone signaling pathways, such as GA-DELLA and JA, in plants.
Collapse
Affiliation(s)
- Tzu-Hsiang Huang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Ting Mao
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
He B, Zhang Y, Wang L, Guo D, Jia X, Wu J, Qi S, Wu H, Gao Y, Guo M. Both Two CtACO3 Transcripts Promoting the Accumulation of the Flavonoid Profiles in Overexpressed Transgenic Safflower. FRONTIERS IN PLANT SCIENCE 2022; 13:833811. [PMID: 35463446 PMCID: PMC9019494 DOI: 10.3389/fpls.2022.833811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
The unique flavonoids, quinochalcones, such as hydroxysafflor yellow A (HSYA) and carthamin, in the floret of safflower showed an excellent pharmacological effect in treating cardiocerebral vascular disease, yet the regulating mechanisms governing the flavonoid biosynthesis are largely unknown. In this study, CtACO3, the key enzyme genes required for the ethylene signaling pathway, were found positively related to the flavonoid biosynthesis at different floret development periods in safflower and has two CtACO3 transcripts, CtACO3-1 and CtACO3-2, and the latter was a splice variant of CtACO3 that lacked 5' coding sequences. The functions and underlying probable mechanisms of the two transcripts have been explored. The quantitative PCR data showed that CtACO3-1 and CtACO3-2 were predominantly expressed in the floret and increased with floret development. Subcellular localization results indicated that CtACO3-1 was localized in the cytoplasm, whereas CtACO3-2 was localized in the cytoplasm and nucleus. Furthermore, the overexpression of CtACO3-1 or CtACO3-2 in transgenic safflower lines significantly increased the accumulation of quinochalcones and flavonols. The expression of the flavonoid pathway genes showed an upward trend, with CtCHS1, CtF3H1, CtFLS1, and CtDFR1 was considerably induced in the overexpression of CtACO3-1 or CtACO3-2 lines. An interesting phenomenon for CtACO3-2 protein suppressing the transcription of CtACO3-1 might be related to the nucleus location of CtACO3-2. Yeast two-hybrid (Y2H), glutathione S-transferase (GST) pull-down, and BiFC experiments revealed that CtACO3-2 interacted with CtCSN5a. In addition, the interactions between CtCSN5a and CtCOI1, CtCOI1 and CtJAZ1, CtJAZ1 and CtbHLH3 were observed by Y2H and GST pull-down methods, respectively. The above results suggested that the CtACO3-2 promoting flavonoid accumulation might be attributed to the transcriptional activation of flavonoid biosynthesis genes by CtbHLH3, whereas the CtbHLH3 might be regulated through CtCSN5-CtCOI1-CtJAZ1 signal molecules. Our study provided a novel insight of CtACO3 affected the flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yanjie Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lunuan Wang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jianhui Wu
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Qi
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Hong Wu,
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Yue Gao,
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Meili Guo,
| |
Collapse
|
5
|
Birdseye D, de Boer LA, Bai H, Zhou P, Shen Z, Schmelz EA, Springer NM, Briggs SP. Plant height heterosis is quantitatively associated with expression levels of plastid ribosomal proteins. Proc Natl Acad Sci U S A 2021; 118:e2109332118. [PMID: 34782463 PMCID: PMC8617506 DOI: 10.1073/pnas.2109332118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
The use of hybrids is widespread in agriculture, yet the molecular basis for hybrid vigor (heterosis) remains obscure. To identify molecular components that may contribute to trait heterosis, we analyzed paired proteomic and transcriptomic data from seedling leaf and mature leaf blade tissues of maize hybrids and their inbred parents. Nuclear- and plastid-encoded subunits of complexes required for protein synthesis in the chloroplast and for the light reactions of photosynthesis were expressed above midparent and high-parent levels, respectively. Consistent with previous reports in Arabidopsis, ethylene biosynthetic enzymes were expressed below midparent levels in the hybrids, suggesting a conserved mechanism for heterosis between monocots and dicots. The ethylene biosynthesis mutant, acs2/acs6, largely phenocopied the hybrid proteome, indicating that a reduction in ethylene biosynthesis may mediate the differences between inbreds and their hybrids. To rank the relevance of expression differences to trait heterosis, we compared seedling leaf protein levels to the adult plant height of 15 hybrids. Hybrid/midparent expression ratios were most positively correlated with hybrid/midparent plant height ratios for the chloroplast ribosomal proteins. Our results show that increased expression of chloroplast ribosomal proteins in hybrid seedling leaves is mediated by reduced expression of ethylene biosynthetic enzymes and that the degree of their overexpression in seedlings can quantitatively predict adult trait heterosis.
Collapse
Affiliation(s)
- Devon Birdseye
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Laura A de Boer
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Hua Bai
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108
| | - Zhouxin Shen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Eric A Schmelz
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108
| | - Steven P Briggs
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
6
|
Wen T, Wu X, Hu L, Qiu Y, Rui L, Zhang Y, Ding X, Ye J. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine. MOLECULAR PLANT PATHOLOGY 2021; 22:1399-1412. [PMID: 34396673 PMCID: PMC8518578 DOI: 10.1111/mpp.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 05/13/2023]
Abstract
The plant-parasitic nematode Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), causes enormous economic loss every year. Currently, little is known about the pathogenic mechanisms of PWD. Several effectors have been identified in B. xylophilus, but their functions and host targets have yet to be elucidated. Here, we demonstrated that BxSCD1 suppresses cell death and inhibits B. xylophilus PAMP BxCDP1-triggered immunity in Nicotiana benthamiana and Pinus thunbergii. BxSCD1 was transcriptionally upregulated in the early stage of B. xylophilus infection. In situ hybridization experiments showed that BxSCD1 was specifically expressed in the dorsal glands and intestine. Cysteine residues are essential for the function of BxSCD1. Transient expression of BxSCD1 in N. benthamiana revealed that it was primarily targeted to the cytoplasm and nucleus. The morbidity was significantly reduced in P. thunbergii infected with B. xylophilus when BxSCD1 was silenced. We identified 1-aminocyclopropane-1-carboxylate oxidase 1, the actual ethylene-forming enzyme, as a host target of BxSCD1 by yeast two-hybrid and coimmunoprecipitation. Overall, this study illustrated that BxSCD1 played a critical role in the B. xylophilus-plant interaction.
Collapse
Affiliation(s)
- Tong‐Yue Wen
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Qin Wu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Long‐Jiao Hu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yi‐Jun Qiu
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Lin Rui
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Yan Zhang
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Xiao‐Lei Ding
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| | - Jian‐Ren Ye
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaCollege of ForestryNanjing Forestry UniversityNanjingChina
- Jiangsu Key Laboratory for Prevention and Management of Invasive SpeciesNanjing Forestry UniversityNanjingChina
| |
Collapse
|
7
|
Liu HQ, Zou YJ, Li XF, Wu L, Guo GQ. Stablization of ACOs by NatB mediated N-terminal acetylation is required for ethylene homeostasis. BMC PLANT BIOLOGY 2021; 21:320. [PMID: 34217224 PMCID: PMC8254318 DOI: 10.1186/s12870-021-03090-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
N-terminal acetylation (NTA) is a highly abundant protein modification catalyzed by N-terminal acetyltransferases (NATs) in eukaryotes. However, the plant NATs and their biological functions have been poorly explored. Here we reveal that loss of function of CKRC3 and NBC-1, the auxiliary subunit (Naa25) and catalytic subunit (Naa20) of Arabidopsis NatB, respectively, led to defects in skotomorphogenesis and triple responses of ethylene. Proteome profiling and WB test revealed that the 1-amincyclopropane-1-carboxylate oxidase (ACO, catalyzing the last step of ethylene biosynthesis pathway) activity was significantly down-regulated in natb mutants, leading to reduced endogenous ethylene content. The defective phenotypes could be fully rescued by application of exogenous ethylene, but less by its precursor ACC. The present results reveal a previously unknown regulation mechanism at the co-translational protein level for ethylene homeostasis, in which the NatB-mediated NTA of ACOs render them an intracellular stability to maintain ethylene homeostasis for normal growth and responses.
Collapse
Affiliation(s)
- Hai-Qing Liu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ya-Jie Zou
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Feng Li
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lei Wu
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Qin Guo
- Institute of Cell Biology and MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Moon J, Kim SY, Park CH, Kim SK. BES1 negatively regulates the expression of ACC oxidase 2 to control the endogenous level of ethylene in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1850625. [PMID: 33258709 PMCID: PMC7849781 DOI: 10.1080/15592324.2020.1850625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Quantitative reverse transcription PCR (qRT-PCR) analysis and ProACO2::GUS expression showed that ACO2 was highly expressed in the shoots of Arabidopsis seedlings under light conditions. Exogenously applied aminocyclopropane-1-carboxylic acid (ACC) enhanced the expression of ACO2, whereas Co2+ ions suppressed its expression. In comparison with wild-type seedlings, the ACO2 knockdown mutant aco2-1 produced less ethylene, which resulted in the inhibited growth of Arabidopsis seedlings. Exogenously applied brassinolide reduced the expression of ACO2. ACO2 expression was increased in det2, a brassinosteroid (BR)-deficient mutant; however, it was decreased in bes1-D, a brassinosteroid insensitive 1-EMS-suppressor 1 (BES1)-dominant mutant. In the putative promoter region of ACO2, 11 E-box sequences for BES1 binding but not BR regulatory element sequences for brassinazole-resistant 1 (BZR1) binding were found. Chromatin immunoprecipitation assay showed that BES1 could directly bind to the E-boxes located in the putative promoter region of ACO4. Less ethylene was produced in bes1-D seedlings compared with wild-type seedlings, suggesting that the direct binding of BES1 to the ACO2 promoter may negatively regulate ACO2 expression to control the endogenous level of ethylene in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong, Republic of Korea
| | - Chan-Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Standford, CA, USA
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
10
|
Jang JH, Nguyen NQ, Légeret B, Beisson F, Kim YJ, Sim HJ, Lee OR. Phospholipase pPLAIIIα Increases Germination Rate and Resistance to Turnip Crinkle Virus when Overexpressed. PLANT PHYSIOLOGY 2020; 184:1482-1498. [PMID: 32859754 PMCID: PMC7608167 DOI: 10.1104/pp.20.00630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/15/2020] [Indexed: 05/12/2023]
Abstract
Patatin-related phospholipase As (pPLAs) are major hydrolases acting on acyl-lipids and play important roles in various plant developmental processes. pPLAIII group members, which lack a canonical catalytic Ser motif, have been less studied than other pPLAs. We report here the characterization of pPLAIIIα in Arabidopsis (Arabidopsis thaliana) based on the biochemical and physiological characterization of pPLAIIIα knockouts, complementants, and overexpressors, as well as heterologous expression of the protein. In vitro activity assays on the purified recombinant protein showed that despite lack of canonical phospholipase motifs, pPLAIIIα had a phospholipase A activity on a wide variety of phospholipids. Overexpression of pPLAIIIα in Arabidopsis resulted in a decrease in many lipid molecular species, but the composition in major lipid classes was not affected. Fluorescence tagging indicated that pPLAIIIα localizes to the plasma membrane. Although Arabidopsis pplaIIIα knockout mutants showed some phenotypes comparable to other pPLAIIIs, such as reduced trichome length and increased hypocotyl length, control of seed size and germination were identified as distinctive pPLAIIIα-mediated functions. Expression of some PLD genes was strongly reduced in the pplaIIIα mutants. Overexpression of pPLAIIIα caused increased resistance to turnip crinkle virus, which associated with a 2-fold higher salicylic acid/jasmonic acid ratio and an increased expression of the defense gene pathogenesis-related protein1. These results therefore show that pPLAIIIα has functions that overlap with those of other pPLAIIIs but also distinctive functions, such as the control of seed germination. This study also provides new insights into the pathways downstream of pPLAIIIα.
Collapse
Affiliation(s)
- Jin Hoon Jang
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ngoc Quy Nguyen
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bertrand Légeret
- Biosciences and Biotechnologies Institute of Aix-Marseille, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique and Aix-Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Fred Beisson
- Biosciences and Biotechnologies Institute of Aix-Marseille, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de la Recherche Scientifique and Aix-Marseille University, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hee-Jung Sim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jinju-si, 52834, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Ok Ran Lee
- Department of Applied Plant Science, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
11
|
Moon J, Park YJ, Son SH, Roh J, Youn JH, Kim SY, Kim SK. Brassinosteroids signaling via BZR1 down-regulates expression of ACC oxidase 4 to control growth of Arabidopsis thaliana seedlings. PLANT SIGNALING & BEHAVIOR 2020; 15:1734333. [PMID: 32114884 PMCID: PMC7194390 DOI: 10.1080/15592324.2020.1734333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 05/18/2023]
Abstract
ProACO4-GUS expression and RT-PCR analysis revealed that ACO4 is predominantly expressed in shoots of Arabidopsis seedlings under light conditions. ACO4-overexpressed mutant 35S-ACO4 produced more ethylene relative to the wild-type, which resulted in reduced growth of Arabidopsis seedlings. The abnormal growth of seedlings recurred after the application of Co2+ ions, suggesting that ACO4 is a functional ACO necessary to regulate the growth and development of Arabidopsis seedlings. Exogenously-applied brassinosteroids (BRs) inhibited the expression of ACO4, and an enhanced ACO4 expression was found in det2, a BR-deficient mutant. Additionally, expression of ACO4 was decreased in bzr1-D (a BZR1-dominant mutant), implying that BR signaling negatively regulates ACO4 expression via BZR1 in Arabidopsis. In the intergenic region of ACO4, four E-boxes and a BR regulatory element (BRRE) are found. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that BZR1 binds directly to the BRRE in the putative promoter region of ACO4. By binding of BZR1 to BRRE, less ethylene was produced, which seems to regulate the growth and development of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Ji Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
- CONTACT Seong-Ki Kim
| |
Collapse
|
12
|
Zheng H, Dong L, Han X, Jin H, Yin C, Han Y, Li B, Qin H, Zhang J, Shen Q, Zhang K, Wang D. The TuMYB46L-TuACO3 module regulates ethylene biosynthesis in einkorn wheat defense to powdery mildew. THE NEW PHYTOLOGIST 2020; 225:2526-2541. [PMID: 31675430 PMCID: PMC7065006 DOI: 10.1111/nph.16305] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/22/2019] [Indexed: 05/22/2023]
Abstract
Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.
Collapse
Affiliation(s)
- Hongyuan Zheng
- College of AgronomyHenan Agricultural UniversityZhengzhou450002China
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Lingli Dong
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Xinyun Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Huaibing Jin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Cuicui Yin
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yali Han
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Bei Li
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Huanju Qin
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Jinsong Zhang
- The State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qianhua Shen
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kunpu Zhang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Daowen Wang
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- The State Key Laboratory of Wheat and Maize Crop ScienceHenan Agricultural UniversityZhengzhou450002China
| |
Collapse
|
13
|
Park CH, Seo C, Park YJ, Youn JH, Roh J, Moon J, Kim SK. BES1 directly binds to the promoter of the ACC oxidase 1 gene to regulate gravitropic response in the roots of Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2020; 15:1690724. [PMID: 31718454 PMCID: PMC7012152 DOI: 10.1080/15592324.2019.1690724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) are known to be endogenous regulators of ethylene production, suggesting that some BR activity in plant growth and development is associated with ethylene. Here, we demonstrated that ethylene production in Arabidopsis thaliana roots is increased by BR signaling via the ethylene biosynthetic gene for ACC oxidase 1 (ACO1). Electrophoretic mobility shift and chromatin immune-precipitation assays showed that the BR transcription factor BES1 directly binds to two E-box sequences located in the intergenic region of ACO1. GUS expression using site mutations of the E-box sequences verified that ACO1 is normally expressed only when BES1 binds to the E-boxes in the putative promoter of ACO1, indicating that this binding is essential for ACO1 expression and the subsequent production of ethylene in A. thaliana roots. BR exogenously applied to A. thaliana roots enhanced the gravitropic response. Additionally, bes1-D exhibited a greater gravitropic response than did the wild-type specimens, proving that BR is a positive regulator of the gravitropic response in A. thaliana roots. The knock-down mutant aco1-1 showed a slightly lower gravitropic response than did the wild-type specimens, while bes1-D X aco1-1 exhibited a lower gravitropic response than did bes1-D. Therefore, ACO1 is a direct downstream target for BR transcription factor BES1, which controls ethylene production for gravitropism in A. thaliana roots.
Collapse
Affiliation(s)
- Chan-Ho Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Chaiweon Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Yeon Ju Park
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jinyoung Moon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
- CONTACT Seong-Ki Kim Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
14
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Gu SY, Wang LC, Cheuh CM, Lo WS. CHITINASE LIKE1 Regulates Root Development of Dark-Grown Seedlings by Modulating Ethylene Biosynthesis in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:600. [PMID: 31156671 PMCID: PMC6530356 DOI: 10.3389/fpls.2019.00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/24/2019] [Indexed: 05/07/2023]
Abstract
The plant hormone ethylene plays a regulatory role in development in light- and dark-grown seedlings. We previously isolated a group of small-molecule compounds with a quinazolinone backbone, which were named acsinones (for ACC synthase inhibitor quinazolinones), that act as uncompetitive inhibitors of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). Thus, the triple response phenotype, which consists of shortened hypocotyls and roots, radial swelling of hypocotyls and exaggerated curvature of apical hooks, was suppressed by acsinones in dark-grown (etiolated) ethylene overproducer (eto) seedlings. Here, we describe our isolation and characterization of an Arabidopsis revert to eto1 9 (ret9) mutant, which showed reduced sensitivity to acsinones in etiolated eto1 seedlings. Map-based cloning of RET9 revealed an amino acid substitution in CHITINASE LIKE1 (CTL1), which is required for cell wall biogenesis and stress resistance in Arabidopsis. Etiolated seedlings of ctl1ret9 showed short hypocotyls and roots, which were augmented in combination with eto1-4. Consistently, ctl1ret9 seedlings showed enhanced sensitivity to exogenous ACC to suppress primary root elongation as compared with the wild type. After introducing ctl1ret9 to mutants completely insensitive to ethylene, genetic analysis indicated that an intact ethylene response pathway is essential for the alterations in root and apical hook but not hypocotyl in etiolated ctl1ret9 seedlings. Furthermore, a mild yet significantly increased ethylene level in ctl1 mutants was related to elevated mRNA level and activity of ACC oxidase (ACO). Moreover, genes associated with ethylene biosynthesis (ACO1 and ACO2) and response (ERF1 and EDF1) were upregulated in etiolated ctl1ret9 seedlings. By characterizing a new recessive allele of CTL1, we reveal that CTL1 negatively regulates ACO activity and the ethylene response, which thus contributes to understanding a role for ethylene in root elongation in response to perturbed cell wall integrity.
Collapse
Affiliation(s)
- Shin-Yuan Gu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Long-Chi Wang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chiao-Mei Cheuh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wan-Sheng Lo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|