1
|
Wood TW, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon-derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. RESEARCH SQUARE 2024:rs.3.rs-4559920. [PMID: 39041030 PMCID: PMC11261967 DOI: 10.21203/rs.3.rs-4559920/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The human genome contains 24 gag-like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag-like genes PNMA1 and PNMA4 support reproductive capacity during aging. Analysis of donated human ovaries shows that expression of both genes declines normally with age, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
Affiliation(s)
- Thomas W.P. Wood
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Harrison B. Cullen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mayra Romero
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Cecilia S. Blengini
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Shreya Sarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Julia Sorkin
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilina Bekele
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Chen Jin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Seungsoo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rishad C. Khondker
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - José V.V. Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY 10032, USA
| | - Binyam Mogessie
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Devanshi Jain
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Yousin Suh
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s and the Aging Brain, New York, NY, USA
| |
Collapse
|
2
|
Wood TWP, Henriques WS, Cullen HB, Romero M, Blengini CS, Sarathy S, Sorkin J, Bekele H, Jin C, Kim S, Chemiakine A, Khondker RC, Isola JVV, Stout MB, Gennarino VA, Mogessie B, Jain D, Schindler K, Suh Y, Wiedenheft B, Berchowitz LE. The retrotransposon - derived capsid genes PNMA1 and PNMA4 maintain reproductive capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592987. [PMID: 38798495 PMCID: PMC11118267 DOI: 10.1101/2024.05.11.592987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.
Collapse
|
3
|
da Silva AL, Guedes BLM, Santos SN, Correa GF, Nardy A, Nali LHDS, Bachi ALL, Romano CM. Beyond pathogens: the intriguing genetic legacy of endogenous retroviruses in host physiology. Front Cell Infect Microbiol 2024; 14:1379962. [PMID: 38655281 PMCID: PMC11035796 DOI: 10.3389/fcimb.2024.1379962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The notion that viruses played a crucial role in the evolution of life is not a new concept. However, more recent insights suggest that this perception might be even more expansive, highlighting the ongoing impact of viruses on host evolution. Endogenous retroviruses (ERVs) are considered genomic remnants of ancient viral infections acquired throughout vertebrate evolution. Their exogenous counterparts once infected the host's germline cells, eventually leading to the permanent endogenization of their respective proviruses. The success of ERV colonization is evident so that it constitutes 8% of the human genome. Emerging genomic studies indicate that endogenous retroviruses are not merely remnants of past infections but rather play a corollary role, despite not fully understood, in host genetic regulation. This review presents some evidence supporting the crucial role of endogenous retroviruses in regulating host genetics. We explore the involvement of human ERVs (HERVs) in key physiological processes, from their precise and orchestrated activities during cellular differentiation and pluripotency to their contributions to aging and cellular senescence. Additionally, we discuss the costs associated with hosting a substantial amount of preserved viral genetic material.
Collapse
Affiliation(s)
- Amanda Lopes da Silva
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Luiz Miranda Guedes
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Samuel Nascimento Santos
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Giovanna Francisco Correa
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ariane Nardy
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Andre Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Hossain MJ, Nyame P, Monde K. Species-Specific Transcription Factors Associated with Long Terminal Repeat Promoters of Endogenous Retroviruses: A Comprehensive Review. Biomolecules 2024; 14:280. [PMID: 38540701 PMCID: PMC10968565 DOI: 10.3390/biom14030280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 11/11/2024] Open
Abstract
Endogenous retroviruses (ERVs) became a part of the eukaryotic genome through endogenization millions of years ago. Moreover, they have lost their innate capability of virulence or replication. Nevertheless, in eukaryotic cells, they actively engage in various activities that may be advantageous or disadvantageous to the cells. The mechanisms by which transcription is triggered and implicated in cellular processes are complex. Owing to the diversity in the expression of transcription factors (TFs) in cells and the TF-binding motifs of viruses, the comprehensibility of ERV initiation and its impact on cellular functions are unclear. Currently, several factors are known to be related to their initiation. TFs that bind to the viral long-terminal repeat (LTR) are critical initiators. This review discusses the TFs shown to actively associate with ERV stimulation across species such as humans, mice, pigs, monkeys, zebrafish, Drosophila, and yeast. A comprehensive summary of the expression of previously reported TFs may aid in identifying similarities between animal species and endogenous viruses. Moreover, an in-depth understanding of ERV expression will assist in elucidating their physiological roles in eukaryotic cell development and in clarifying their relationship with endogenous retrovirus-associated diseases.
Collapse
Affiliation(s)
| | | | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.J.H.); (P.N.)
| |
Collapse
|
5
|
Jern P, Greenwood AD. Wildlife endogenous retroviruses: colonization, consequences, and cooption. Trends Genet 2024; 40:149-159. [PMID: 37985317 DOI: 10.1016/j.tig.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Endogenous retroviruses (ERVs) are inherited genomic remains of past germline retroviral infections. Research on human ERVs has focused on medical implications of their dysregulation on various diseases. However, recent studies incorporating wildlife are yielding remarkable perspectives on long-term retrovirus-host interactions. These initial forays into broader taxonomic analysis, including sequencing of multiple individuals per species, show the incredible plasticity and variation of ERVs within and among wildlife species. This demonstrates that stochastic processes govern much of the vertebrate genome. In this review, we elaborate on discoveries pertaining to wildlife ERV origins and evolution, genome colonization, and consequences for host biology.
Collapse
Affiliation(s)
- Patric Jern
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; School of Veterinary Medicine, Freie Unversität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Katoh H, Honda T. Roles of Human Endogenous Retroviruses and Endogenous Virus-Like Elements in Cancer Development and Innate Immunity. Biomolecules 2023; 13:1706. [PMID: 38136578 PMCID: PMC10741599 DOI: 10.3390/biom13121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections in the host genome. Although mutations and silencing mechanisms impair their original role in viral replication, HERVs are believed to play roles in various biological processes. Long interspersed nuclear elements (LINEs) are non-LTR retrotransposons that have a lifecycle resembling that of retroviruses. Although LINE expression is typically silenced in somatic cells, it also contributes to various biological processes. The aberrant expression of HERVs and LINEs is closely associated with the development of cancer and/or immunological diseases, suggesting that they are integrated into various pathways related to the diseases. HERVs/LINEs control gene expression depending on the context as promoter/enhancer elements. Some RNAs and proteins derived from HERVs/LINEs have oncogenic potential, whereas others stimulate innate immunity. Non-retroviral endogenous viral elements (nrEVEs) are a novel type of virus-like element in the genome. nrEVEs may also be involved in host immunity. This article provides a current understanding of how these elements impact cellular physiology in cancer development and innate immunity, and provides perspectives for future studies.
Collapse
Affiliation(s)
- Hirokazu Katoh
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Tomoyuki Honda
- Department of Virology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
7
|
de Tribolet-Hardy J, Thorball CW, Forey R, Planet E, Duc J, Coudray A, Khubieh B, Offner S, Pulver C, Fellay J, Imbeault M, Turelli P, Trono D. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res 2023; 33:1409-1423. [PMID: 37730438 PMCID: PMC10547255 DOI: 10.1101/gr.277722.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/18/2023] [Indexed: 09/22/2023]
Abstract
Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) are one of the largest groups of transcription factors encoded by tetrapods, with 378 members in human alone. KZFP genes are often grouped in clusters reflecting amplification by gene and segment duplication since the gene family first emerged more than 400 million years ago. Previous work has revealed that many KZFPs recognize transposable element (TE)-embedded sequences as genomic targets, and that KZFPs facilitate the co-option of the regulatory potential of TEs for the benefit of the host. Here, we present a comprehensive survey of the genetic features and genomic targets of human KZFPs, notably completing past analyses by adding data on close to a hundred family members. General principles emerge from our study of the TE-KZFP regulatory system, which point to multipronged evolutionary mechanisms underlaid by highly complex and combinatorial modes of action with strong influences on human speciation.
Collapse
Affiliation(s)
- Jonas de Tribolet-Hardy
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Christian W Thorball
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Romain Forey
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alexandre Coudray
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bara Khubieh
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cyril Pulver
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital (CHUV) and University of Lausanne, 1010 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
8
|
Sano R, Fukuda H, Kubo R, Oishi T, Miyabe-Nishiwaki T, Kaneko A, Masato H, Takahashi Y, Hayakawa A, Yazawa S, Kominato Y. Emergence of an erythroid cell-specific regulatory region in ABO intron 1 attributable to A- or B-antigen expression on erythrocytes in Hominoidea. Sci Rep 2023; 13:4947. [PMID: 36973299 PMCID: PMC10043005 DOI: 10.1038/s41598-023-31961-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
A- and B-antigens are present on red blood cells (RBCs) as well as other cells and secretions in Hominoidea including humans and apes such as chimpanzees and gibbons, whereas expression of these antigens on RBCs is subtle in monkeys such as Japanese macaques. Previous studies have indicated that H-antigen expression has not completely developed on RBCs in monkeys. Such antigen expression requires the presence of H-antigen and A- or B-transferase expression in cells of erythroid lineage, although whether or not ABO gene regulation is associated with the difference of A- or B-antigen expression between Hominoidea and monkeys has not been examined. Since it has been suggested that ABO expression on human erythrocytes is dependent upon an erythroid cell-specific regulatory region or the + 5.8-kb site in intron 1, we compared the sequences of ABO intron 1 among non-human primates, and demonstrated the presence of sites orthologous to the + 5.8-kb site in chimpanzees and gibbons, and their absence in Japanese macaques. In addition, luciferase assays revealed that the former orthologues enhanced promoter activity, whereas the corresponding site in the latter did not. These results suggested that the A- or B-antigens on RBCs might be ascribed to emergence of the + 5.8-kb site or the corresponding regions in ABO through genetic evolution.
Collapse
Affiliation(s)
- Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, 371-8511, Japan.
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, 371-8511, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, 371-8511, Japan
| | - Takao Oishi
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | | | - Akihisa Kaneko
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | | | - Yoichiro Takahashi
- Department of Legal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, 371-8511, Japan
| | - Shin Yazawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, 371-8511, Japan
| |
Collapse
|
9
|
Bao H, Yan J, Huang J, Deng W, Zhang C, Liu C, Huang A, Zhang Q, Xiong Y, Wang Q, Wu H, Hou L. Activation of endogenous retrovirus triggers microglial immuno-inflammation and contributes to negative emotional behaviors in mice with chronic stress. J Neuroinflammation 2023; 20:37. [PMID: 36793064 PMCID: PMC9933381 DOI: 10.1186/s12974-023-02724-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The "missing" link of complex and multifaceted interplay among endogenous retroviruses (ERVs) transcription, chronic immuno-inflammation, and the development of psychiatric disorders is still far from being completely clarified. The present study was aimed to investigate the mechanism of protective role of inhibiting ERVs on reversing microglial immuno-inflammation in basolateral amygdala (BLA) in chronic stress-induced negative emotional behaviors in mice. METHODS Male C57BL/6 mice were exposed to chronic unpredictable mild stress (CUMS) for 6 w. Negative emotional behaviors were comprehensively investigated to identify the susceptible mice. Microglial morphology, ERVs transcription, intrinsic nucleic acids sensing response, and immuno-inflammation in BLA were assessed. RESULTS Mice with chronic stress were presented as obviously depressive- and anxiety-like behaviors, and accompanied with significant microglial morphological activation, murine ERVs genes MuERV-L, MusD, and IAP transcription, cGAS-IFI16-STING pathway activation, NF-κB signaling pathway priming, as well as NLRP3 inflammasome activation in BLA. Antiretroviral therapy, pharmacological inhibition of reverse transcriptases, as well as knocking-down the ERVs transcriptional regulation gene p53 significantly inhibited microglial ERVs transcription and immuno-inflammation in BLA, as well as improved the chronic stress-induced negative emotional behaviors. CONCLUSIONS Our results provided an innovative therapeutic approach that targeting ERVs-associated microglial immuno-inflammation may be beneficial to the patients with psychotic disorders.
Collapse
Affiliation(s)
- Han Bao
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Jinqi Yan
- grid.452438.c0000 0004 1760 8119Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Jiancheng Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Wenjuan Deng
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ce Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Cong Liu
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ailing Huang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiao Zhang
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Ying Xiong
- grid.12955.3a0000 0001 2264 7233Department of Anesthesiology, School of Medicine, Xiang’an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang’an Rd, Xiamen, 361102 China
| | - Qiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West of Yanta Rd, Xi'an, 710061, China.
| | - Huanghui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China. .,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, No.1279, Sanmen Rd, Shanghai, 200434, China.
| | - Lichao Hou
- Department of Anesthesiology, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, No. 2000, East of Xiang'an Rd, Xiamen, 361102, China.
| |
Collapse
|
10
|
Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens 2023; 12:pathogens12020162. [PMID: 36839434 PMCID: PMC9963469 DOI: 10.3390/pathogens12020162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations that rendered them non-infectious; thereby, the genome could co-opt them into constructive roles with important biological functions. In the past two decades, with the help of advances in sequencing technology, ERVs are increasingly considered to be important components of the innate immune response. While typically silenced, expression of HERVs can be induced in response to traumatic, toxic, or infection-related stress, leading to a buildup of viral transcripts and under certain circumstances, proteins, including functionally active reverse transcriptase and viral envelopes. The biological activity of HERVs in the context of the innate immune response can be based on the functional effect of four major viral components: (1) HERV LTRs, (2) HERV-derived RNAs, (3) HERV-derived RNA:DNA duplexes and cDNA, and (4) HERV-derived proteins and ribonucleoprotein complexes. In this review, we will discuss the implications of HERVs in all four contexts in relation to innate immunity and their association with various pathological disease states.
Collapse
|
11
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
12
|
Rangel SC, da Silva MD, da Silva AL, dos Santos JDMB, Neves LM, Pedrosa A, Rodrigues FM, Trettel CDS, Furtado GE, de Barros MP, Bachi ALL, Romano CM, Nali LHDS. Human endogenous retroviruses and the inflammatory response: A vicious circle associated with health and illness. Front Immunol 2022; 13:1057791. [PMID: 36518758 PMCID: PMC9744114 DOI: 10.3389/fimmu.2022.1057791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous retroviral infections that have infected our ancestors' germline cells, underwent endogenization process, and were passed throughout the generations by retrotransposition and hereditary transmission. HERVs comprise 8% of the human genome and are critical for several physiological activities. Yet, HERVs reactivation is involved in pathological process as cancer and autoimmune diseases. In this review, we summarize the multiple aspects of HERVs' role within the human genome, as well as virological and molecular aspects, and their fusogenic property. We also discuss possibilities of how the HERVs are possibly transactivated and participate in modulating the inflammatory response in health conditions. An update on their role in several autoimmune, inflammatory, and aging-related diseases is also presented.
Collapse
Affiliation(s)
- Sara Coelho Rangel
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | | | - Amanda Lopes da Silva
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucas Melo Neves
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Ana Pedrosa
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, (3004-504), Coimbra, Portugal
| | | | - Caio dos Santos Trettel
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - Guilherme Eustáquio Furtado
- Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos Cortiços – S. Martinho do Bispo, Coimbra, Portugal
| | - Marcelo Paes de Barros
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- UNISA Research Center, Universidade Santo Amaro, Post-Graduation in Health Sciences, São Paulo, Brazil
| | - Camila Malta Romano
- Laboratório de Virologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
- Hospital das Clínicas HCFMUSP (LIM52), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
13
|
Lee H, Min JW, Mun S, Han K. Human Retrotransposons and Effective Computational Detection Methods for Next-Generation Sequencing Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101583. [PMID: 36295018 PMCID: PMC9605557 DOI: 10.3390/life12101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are classified into two classes according to their mobilization mechanism. Compared to DNA transposons that move by the "cut and paste" mechanism, retrotransposons mobilize via the "copy and paste" method. They have been an essential research topic because some of the active elements, such as Long interspersed element 1 (LINE-1), Alu, and SVA elements, have contributed to the genetic diversity of primates beyond humans. In addition, they can cause genetic disorders by altering gene expression and generating structural variations (SVs). The development and rapid technological advances in next-generation sequencing (NGS) have led to new perspectives on detecting retrotransposon-mediated SVs, especially insertions. Moreover, various computational methods have been developed based on NGS data to precisely detect the insertions and deletions in the human genome. Therefore, this review discusses details about the recently studied and utilized NGS technologies and the effective computational approaches for discovering retrotransposons through it. The final part covers a diverse range of computational methods for detecting retrotransposon insertions with human NGS data. This review will give researchers insights into understanding the TEs and how to investigate them and find connections with research interests.
Collapse
Affiliation(s)
- Haeun Lee
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
| | - Jun Won Min
- Department of Surgery, Dankook University College of Medicine, Cheonan 31116, Korea
| | - Seyoung Mun
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- Correspondence: (S.M.); (K.H.)
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea
- Center for Bio Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
- HuNbiome Co., Ltd., R&D Center, Seoul 08507, Korea
- Correspondence: (S.M.); (K.H.)
| |
Collapse
|
14
|
Lee DH, Bae WH, Ha H, Park EG, Lee YJ, Kim WR, Kim HS. Z-DNA-Containing Long Terminal Repeats of Human Endogenous Retrovirus Families Provide Alternative Promoters for Human Functional Genes. Mol Cells 2022; 45:522-530. [PMID: 35950452 PMCID: PMC9385571 DOI: 10.14348/molcells.2022.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.
Collapse
Affiliation(s)
- Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Hongseok Ha
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46231, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
15
|
Ruberto S, Santovito A, Simula ER, Noli M, Manca MA, Sechi LA. Bisphenols induce human genomic damage and modulate HERVs/env expression. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:275-285. [PMID: 36054626 PMCID: PMC9826028 DOI: 10.1002/em.22499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA), a recognized endocrine-disrupting chemical, is used in the production of epoxy and polycarbonate resins. Since human exposure to BPA has been associated with increased cancer susceptibility, the market has shifted to products often labeled as "BPA free" containing BPA analogs such as bisphenol F (BPF) and bisphenol S (BPS). However, the European legislation on BPF and BPS is still unclear. This study analyzed the effects of BPA, BPF, and BPS exposure on human peripheral blood mononuclear cells by using in vitro micronucleus assay. Furthermore, it investigated the impact of bisphenols exposure on human endogenous retroviruses (HERVs) expression, which is implicated with the pathogenesis of several human diseases. The micronucleus assay revealed a significant genotoxic effect in peripheral blood cells after exposure to BPA and BPF at concentrations of 0.1, 0.05, and 0.025 μg/ml, and to BPS at 0.1 and 0.05 μg/ml. In addition, BPA exposure seems to upregulate the expression of HERVs, while a downregulation was observed after BPF and BPS treatments. Overall, our data showed the toxic effect of BPA and its analogs on circulating cells in the blood and demonstrated that they could modulate the HERVs expression.
Collapse
Affiliation(s)
- Stefano Ruberto
- Department of Biomedical SciencesDivision of Microbiology and Virology, University of SassariSassariItaly
| | - Alfredo Santovito
- Department of Life Sciences and Systems BiologyUniversity of TurinTorinoItaly
| | - Elena R. Simula
- Department of Biomedical SciencesDivision of Microbiology and Virology, University of SassariSassariItaly
| | - Marta Noli
- Department of Biomedical SciencesDivision of Microbiology and Virology, University of SassariSassariItaly
| | - Maria A. Manca
- Department of Biomedical SciencesDivision of Microbiology and Virology, University of SassariSassariItaly
| | - Leonardo A. Sechi
- Department of Biomedical SciencesDivision of Microbiology and Virology, University of SassariSassariItaly
| |
Collapse
|
16
|
Di Giorgio E, Xodo LE. Endogenous Retroviruses (ERVs): Does RLR (RIG-I-Like Receptors)-MAVS Pathway Directly Control Senescence and Aging as a Consequence of ERV De-Repression? Front Immunol 2022; 13:917998. [PMID: 35757716 PMCID: PMC9218063 DOI: 10.3389/fimmu.2022.917998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional transcription of Human Endogenous Retroviruses (hERVs) is a common feature of autoimmunity, neurodegeneration and cancer. Higher rates of cancer incidence, neurodegeneration and autoimmunity but a lower prevalence of autoimmune diseases characterize elderly people. Although the re-expression of hERVs is commonly observed in different cellular models of senescence as a result of the loss of their epigenetic transcriptional silencing, the hERVs modulation during aging is more complex, with a peak of activation in the sixties and a decline in the nineties. What is clearly accepted, instead, is the impact of the re-activation of dormant hERV on the maintenance of stemness and tissue self-renewing properties. An innate cellular immunity system, based on the RLR-MAVS circuit, controls the degradation of dsRNAs arising from the transcription of hERV elements, similarly to what happens for the accumulation of cytoplasmic DNA leading to the activation of cGAS/STING pathway. While agonists and inhibitors of the cGAS-STING pathway are considered promising immunomodulatory molecules, the effect of the RLR-MAVS pathway on innate immunity is still largely based on correlations and not on causality. Here we review the most recent evidence regarding the activation of MDA5-RIG1-MAVS pathway as a result of hERV de-repression during aging, immunosenescence, cancer and autoimmunity. We will also deal with the epigenetic mechanisms controlling hERV repression and with the strategies that can be adopted to modulate hERV expression in a therapeutic perspective. Finally, we will discuss if the RLR-MAVS signalling pathway actively modulates physiological and pathological conditions or if it is passively activated by them.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| | - Luigi E Xodo
- Laboratory of Biochemistry, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
17
|
Milani D, Caruso L, Zauli E, Al Owaifeer AM, Secchiero P, Zauli G, Gemmati D, Tisato V. p53/NF-kB Balance in SARS-CoV-2 Infection: From OMICs, Genomics and Pharmacogenomics Insights to Tailored Therapeutic Perspectives (COVIDomics). Front Pharmacol 2022; 13:871583. [PMID: 35721196 PMCID: PMC9201997 DOI: 10.3389/fphar.2022.871583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Daniela Milani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adi Mohammed Al Owaifeer
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
- Ophthalmology Unit, Department of Surgery, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Paola Secchiero
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Research, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Centre Haemostasis and Thrombosis, University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
18
|
Shah AH, Govindarajan V, Doucet-O'Hare TT, Rivas S, Ampie L, DeMarino C, Banasavadi-Siddegowda YK, Zhang Y, Johnson KR, Almsned F, Gilbert MR, Heiss JD, Nath A. Differential expression of an endogenous retroviral element [HERV-K(HML-6)] is associated with reduced survival in glioblastoma patients. Sci Rep 2022; 12:6902. [PMID: 35477752 PMCID: PMC9046263 DOI: 10.1038/s41598-022-10914-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Comprising approximately 8% of our genome, Human Endogenous RetroViruses (HERVs) represent a class of germline retroviral infections that are regulated through epigenetic modifications. In cancer cells, which often have epigenetic dysregulation, HERVs have been implicated as potential oncogenic drivers. However, their role in gliomas is not known. Given the link between HERV expression in cancer cell lines and the distinct epigenetic dysregulation in gliomas, we utilized a tailored bioinformatic pipeline to characterize and validate the glioma retrotranscriptome and correlate HERV expression with locus-specific epigenetic modifications. We identified robust overexpression of multiple HERVs in our cell lines, including a retroviral transcript, HML-6, at 19q13.43b in glioblastoma cells. HERV expression inversely correlated with loci-specific DNA methylation. HML-6 contains an intact open reading frame encoding a small envelope protein, ERVK3-1. Increased expression of ERVK3-1 in GBM patients is associated with a poor prognosis independent of IDH-mutational status. Our results suggest that not only is HML-6 uniquely overexpressed in highly invasive cell lines and tissue samples, but also its gene product, ERVK3-1, may be associated with reduced survival in GBM patients. These results may have implications for both the tumor biology of GBM and the role of ERVK3-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Ashish H Shah
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.
| | - Vaidya Govindarajan
- Department of Neurosurgery, University of Miami School of Medicine, Miami, FL, USA
| | - Tara T Doucet-O'Hare
- Center for Cancer Research (CCR), National Institutes of Health, National Cancer Institute (NCI), Neuro-Oncology Branch (NOB), Bethesda, MD, USA
| | - Sarah Rivas
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Leo Ampie
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Catherine DeMarino
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | | | - Yong Zhang
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Kory R Johnson
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Fahad Almsned
- Bioinformatics Section, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Mark R Gilbert
- Center for Cancer Research (CCR), National Institutes of Health, National Cancer Institute (NCI), Neuro-Oncology Branch (NOB), Bethesda, MD, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| | - Avindra Nath
- Surgical Neurology Branch, National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| |
Collapse
|
19
|
Durnaoglu S, Lee SK, Ahnn J. Syncytin, envelope protein of human endogenous retrovirus (HERV): no longer 'fossil' in human genome. Anim Cells Syst (Seoul) 2022; 25:358-368. [PMID: 35059135 PMCID: PMC8765258 DOI: 10.1080/19768354.2021.2019109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are 'fossil viruses' that resulted from stable integrations of exogenous retroviruses throughout evolution. HERVs are defective and do not produce infectious viral particles. However, some HERVs retain a limited coding capacity and produce retroviral transcripts and proteins, which function in human developmental process and various pathologies, including many cancers and neurological diseases. Recently, it has been reported that HERVs are differently expressed in COVID-19 disease caused by infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review, we discuss the molecular structure and function of HERV ENV proteins, particularly syncytins, and their conventional roles in human development and diseases, and potential involvement in COVID-19 regarding the newly reported mental symptoms. We also address COVID-19 vaccine-related infertility concerns arising from the similarity of syncytin with the spike protein of SARS-CoV-2, which have been proved invalid.
Collapse
Affiliation(s)
- Serpen Durnaoglu
- College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Joohong Ahnn
- College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|