1
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
2
|
Adonina S, Bazhenova E, Bazovkina D. Effect of Short Photoperiod on Behavior and Brain Plasticity in Mice Differing in Predisposition to Catalepsy: The Role of BDNF and Serotonin System. Int J Mol Sci 2024; 25:2469. [PMID: 38473717 DOI: 10.3390/ijms25052469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Seasonal affective disorder is characterized by depression during fall/winter as a result of shorter daylight. Catalepsy is a syndrome of some grave mental diseases. Both the neurotransmitter serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are involved in the pathophysiological mechanisms underlying catalepsy and depressive disorders. The aim was to compare the response of behavior and brain plasticity to photoperiod alterations in catalepsy-resistant C57BL/6J and catalepsy-prone CBA/Lac male mice. Mice of both strains were exposed for six weeks to standard-day (14 h light/10 h darkness) or short-day (4 h light/20 h darkness) conditions. Short photoperiod increased depressive-like behavior in both strains. Only treated CBA/Lac mice demonstrated increased cataleptic immobility, decreased brain 5-HT level, and the expression of Tph2 gene encoding the key enzyme for 5-HT biosynthesis. Mice of both strains maintained under short-day conditions, compared to those under standard-day conditions, showed a region-specific decrease in the brain transcription of the Htr1a, Htr4, and Htr7 genes. After a short photoperiod exposure, the mRNA levels of the BDNF-related genes were reduced in CBA/Lac mice and were increased in the C57BL/6J mice. Thus, the predisposition to catalepsy considerably influences the photoperiodic changes in neuroplasticity, wherein both C57BL/6J and CBA/Lac mice can serve as a powerful tool for investigating the link between seasons and mood.
Collapse
Affiliation(s)
- Svetlana Adonina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Ekaterina Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| | - Darya Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Lavrentieva 10, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Small L, Lundell LS, Iversen J, Ehrlich AM, Dall M, Basse AL, Dalbram E, Hansen AN, Treebak JT, Barrès R, Zierath JR. Seasonal light hours modulate peripheral clocks and energy metabolism in mice. Cell Metab 2023; 35:1722-1735.e5. [PMID: 37689069 DOI: 10.1016/j.cmet.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonidas S Lundell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo Iversen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann N Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and CNRS, Nice, France.
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physiology and Pharmacology and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Kojima T, Esaki N, Tsuda T. Combination of Exercise and Intake of Amino Acid Mixture Synergistically Induces Beige Adipocyte Formation in Mice. J Nutr Sci Vitaminol (Tokyo) 2021; 67:225-233. [PMID: 34470997 DOI: 10.3177/jnsv.67.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Exercise combined with dietary factors may have significant effects on the suppression of body fat accumulation. Several trials suggest that amino acid mixtures containing alanine, arginine, and phenylalanine (ARF) combined with exercise can significantly reduce body fat accumulation in overweight adults and high-fat diet-induced obesity in mice. We therefore hypothesized that combining ARF and exercise would significantly induce beige adipocyte formation and that this would contribute to reducing body weight, whereas administration of ARF or exercise alone would not. Administration of ARF (1 g/kg body weight, daily) combined with exercise (5 sessions per week) for 4 wk significantly induced formation of beige adipocytes in inguinal white adipose tissue (iWAT) in mice, although ARF or exercise alone did not. Metabolomic analysis showed that plasma lactate concentration was significantly elevated in the exercise+ARF group relative to the exercise group. Furthermore, lactate dehydrogenase B, which increases redox stress by converting lactate to pyruvate in iWAT and triggers induction of uncoupling protein 1 expression was significantly upregulated in iWAT of the exercise+ARF group. These findings demonstrate the unique effect of ARF combined with exercise for inducing beige adipocyte formation, which may be associated with the suggested lactate-mediated pathway. Appropriate mixtures of amino acids could be used as a dietary supplement before exercise and contributed to increasing energy expenditures.
Collapse
Affiliation(s)
- Takuya Kojima
- College of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University
| | - Nana Esaki
- College of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University
| | - Takanori Tsuda
- College of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University
| |
Collapse
|
5
|
Lorsung E, Karthikeyan R, Cao R. Biological Timing and Neurodevelopmental Disorders: A Role for Circadian Dysfunction in Autism Spectrum Disorders. Front Neurosci 2021; 15:642745. [PMID: 33776640 PMCID: PMC7994532 DOI: 10.3389/fnins.2021.642745] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 01/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) are a spectrum of neurodevelopmental disorders characterized by impaired social interaction and communication, as well as stereotyped and repetitive behaviors. ASDs affect nearly 2% of the United States child population and the worldwide prevalence has dramatically increased in recent years. The etiology is not clear but ASD is thought to be caused by a combination of intrinsic and extrinsic factors. Circadian rhythms are the ∼24 h rhythms driven by the endogenous biological clock, and they are found in a variety of physiological processes. Growing evidence from basic and clinical studies suggest that the dysfunction of the circadian timing system may be associated with ASD and its pathogenesis. Here we review the findings that link circadian dysfunctions to ASD in both experimental and clinical studies. We first introduce the organization of the circadian system and ASD. Next, we review physiological indicators of circadian rhythms that are found disrupted in ASD individuals, including sleep-wake cycles, melatonin, cortisol, and serotonin. Finally, we review evidence in epidemiology, human genetics, and biochemistry that indicates underlying associations between circadian regulation and the pathogenesis of ASD. In conclusion, we propose that understanding the functional importance of the circadian clock in normal and aberrant neurodevelopmental processes may provide a novel perspective to tackle ASD, and clinical treatments for ASD individuals should comprise an integrative approach considering the dynamics of daily rhythms in physical, mental, and social processes.
Collapse
Affiliation(s)
- Ethan Lorsung
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ramanujam Karthikeyan
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
6
|
Takaki N, Uchiwa T, Furuse M, Yasuo S. Effect of postnatal photoperiod on DNA methylation dynamics in the mouse brain. Brain Res 2020; 1733:146725. [DOI: 10.1016/j.brainres.2020.146725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 10/26/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023]
|
7
|
Tackenberg MC, McMahon DG. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast 2018; 2018:8217345. [PMID: 29552032 PMCID: PMC5818903 DOI: 10.1155/2018/8217345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
Collapse
Affiliation(s)
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Uchiwa T, Takai Y, Tashiro A, Furuse M, Yasuo S. Exposure of C57BL/6J mice to long photoperiod during early life stages increases body weight and alters plasma metabolomic profiles in adulthood. Physiol Rep 2017; 4:4/18/e12974. [PMID: 27650252 PMCID: PMC5037922 DOI: 10.14814/phy2.12974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/24/2016] [Indexed: 01/21/2023] Open
Abstract
Perinatal photoperiod is an important regulator of physiological phenotype in adulthood. In this study, we demonstrated that postnatal (0–4 weeks old) exposure of C57BL/6J mice to long photoperiod induced persistent increase in body weight until adulthood, compared with the mice maintained under short photoperiod. The expression of peroxisome proliferator‐activated receptor δ, a gene involved in fatty acid metabolism, was decreased in 10‐week‐old mice exposed to long photoperiod during 0–4 or 4–8 weeks of age. Plasma metabolomic profiles of adult mice exposed to a long photoperiod during the postnatal period (0–4 LD) were compared to those in the mice exposed to short photoperiod during the same period. Cluster analysis revealed that both carbon metabolic pathway and nucleic acid pathway were altered by the postnatal photoperiod. Levels of metabolites involved in glycolysis were significantly upregulated in 0–4 LD, suggesting that the mice in 0–4 LD use the glycolytic pathway for energy expenditure rather than the fatty acid oxidation pathway. In addition, the mice in 0–4 LD exhibited high levels of purine metabolites, which have a role in neuroprotection. In conclusion, postnatal exposure of C57BL/6J mice to long photoperiod induces increase in body weight and various changes in plasma metabolic profiles during adulthood.
Collapse
Affiliation(s)
- Tatsuhiro Uchiwa
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yusuke Takai
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Ayako Tashiro
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Lewis P, Erren TC. Perinatal light imprinting of circadian clocks and systems (PLICCS): A signature of photoperiod around birth on circadian system stability and association with cancer. Chronobiol Int 2017; 34:782-801. [PMID: 28430521 DOI: 10.1080/07420528.2017.1315125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recent findings from animal models suggest that plasticity of human circadian clocks and systems may be differentially affected by different paradigms of perinatal photoperiod exposure to the detriment of health in later life, including cancer development. Focusing on the example of cancer, we carry out a series of systematic literature reviews concerning perinatal light imprinting of circadian clocks and systems (PLICCS) in animal models, and concerning the risk of cancer development with the primary determinants of the perinatal photoperiod, namely season of birth or latitude of birth. The results from these systematic reviews provide supporting evidence of the PLICCS and cancer rationale and highlight that investigations of PLICCS in humans are warranted. Overall, we discuss findings from experimental research and insights from epidemiological studies. Considerations as to how to "test" PLICCS in epidemiological studies and as to the potential for non-invasive preventative measures during perinatal periods close our synthesis. If the PLICCS rationale holds true, it opens the exciting prospect for amenable, early-life, preventative measures against cancer development (and other disorders) in later life. Indeed, non-invasive anthropogenic light exposure may have enormous potential to alleviate the public health and economic burden of circadian-related diseases.
Collapse
Affiliation(s)
- Philip Lewis
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| | - Thomas C Erren
- a Institute and Policlinic for Occupational Medicine, Environmental Medicine and Prevention Research , University Hospital of Cologne , Cologne , Germany
| |
Collapse
|