1
|
Zhang Q, Wang Y, Zhu J, Zou M, Zhang Y, Wu H, Jin T. Specialized pro-resolving lipid mediators: a key player in resolving inflammation in autoimmune diseases. Sci Bull (Beijing) 2025:S2095-9273(24)00983-6. [PMID: 39837719 DOI: 10.1016/j.scib.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 01/23/2025]
Abstract
Uncontrolled hyperactivation of the immune system is the central mechanism underlying the pathogenesis of autoimmune diseases. Timely control of the inflammatory response is essential to prevent inflammation progression and organ damage. Specialized pro-resolving lipid mediators (SPMs) are autacoid molecules derived from essential polyunsaturated fatty acids during acute inflammatory responses. They promote the resolution of inflammation and orchestrate endogenous reparative responses. The SPM superfamily includes lipoxins, resolvins, protectins, and maresins, as well as novel conjugates involved in tissue regeneration. Much work has been done focusing on the actions of SPMs in autoimmunity and has identified their deficiencies and therapeutic effects in autoimmune diseases. In this review, we provide a brief introduction of SPMs, summarize their effects on key cells involved in innate and adaptive immunity, and highlight their role and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm 17176, Sweden
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Walker KA, Le Page LM, Terrando N, Duggan MR, Heneka MT, Bettcher BM. The role of peripheral inflammatory insults in Alzheimer's disease: a review and research roadmap. Mol Neurodegener 2023; 18:37. [PMID: 37277738 PMCID: PMC10240487 DOI: 10.1186/s13024-023-00627-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
Peripheral inflammation, defined as inflammation that occurs outside the central nervous system, is an age-related phenomenon that has been identified as a risk factor for Alzheimer's disease. While the role of chronic peripheral inflammation has been well characterized in the context of dementia and other age-related conditions, less is known about the neurologic contribution of acute inflammatory insults that take place outside the central nervous system. Herein, we define acute inflammatory insults as an immune challenge in the form of pathogen exposure (e.g., viral infection) or tissue damage (e.g., surgery) that causes a large, yet time-limited, inflammatory response. We provide an overview of the clinical and translational research that has examined the connection between acute inflammatory insults and Alzheimer's disease, focusing on three categories of peripheral inflammatory insults that have received considerable attention in recent years: acute infection, critical illness, and surgery. Additionally, we review immune and neurobiological mechanisms which facilitate the neural response to acute inflammation and discuss the potential role of the blood-brain barrier and other components of the neuro-immune axis in Alzheimer's disease. After highlighting the knowledge gaps in this area of research, we propose a roadmap to address methodological challenges, suboptimal study design, and paucity of transdisciplinary research efforts that have thus far limited our understanding of how pathogen- and damage-mediated inflammatory insults may contribute to Alzheimer's disease. Finally, we discuss how therapeutic approaches designed to promote the resolution of inflammation may be used following acute inflammatory insults to preserve brain health and limit progression of neurodegenerative pathology.
Collapse
Affiliation(s)
- Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA.
| | - Lydia M Le Page
- Departments of Physical Therapy and Rehabilitation Science, and Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Cell Biology and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute On Aging. Baltimore, Baltimore, MD, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Brianne M Bettcher
- Behavioral Neurology Section, Department of Neurology, University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
dos Santos HT, Nam K, Gil D, Yellepeddi V, Baker OJ. Current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome. Front Immunol 2023; 13:1094278. [PMID: 36713415 PMCID: PMC9878840 DOI: 10.3389/fimmu.2022.1094278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic inflammatory autoimmune disease characterized by diminished secretory function of the exocrine glands. Although extensive investigation has been done to understand Sjögren's syndrome, the causes of the disease are as yet unknown and treatments remain largely ineffective, with established therapeutic interventions being limited to use of saliva substitutes with modest effectiveness. A primary feature of Sjögren's syndrome is uncontrolled inflammation of exocrine tissues and previous studies have demonstrated that lipid-based specialized pro-resolving mediators reduce inflammation and restores tissue integrity in salivary glands. However, these studies are limited to a single specialized pro-resolving lipid mediator's family member resolvin D1 or RvD1 and its aspirin-triggered epimer, AT-RvD1. Consequently, additional studies are needed to explore the potential benefits of other members of the specialized pro-resolving lipid mediator's family and related molecules (e.g., additional resolvin subtypes as well as lipoxins, maresins and protectins). In support of this goal, the current review aims to briefly describe the range of current experimental methods to investigate the impact of specialized pro-resolving lipid mediators on Sjögren's syndrome, including both strengths and weaknesses of each approach where this information is known. With this article, the possibilities presented by specialized pro-resolving lipid mediators will be introduced to a wider audience in immunology and practical advice is given to researchers who may wish to take up this work.
Collapse
Affiliation(s)
- Harim T. dos Santos
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kihoon Nam
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Diana Gil
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biological and Biomedical Engineering, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Venkata Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT, United States,Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Olga J. Baker
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Missouri, Columbia, MO, United States,Department of Biochemistry, University of Missouri, Columbia, MO, United States,*Correspondence: Olga J. Baker,
| |
Collapse
|
4
|
Dos Santos HT, Maslow F, Nam K, Trump B, Weisman GA, Baker OJ. A combination treatment of low-dose dexamethasone and aspirin-triggered resolvin D1 reduces Sjögren syndrome-like features in a mouse model. JADA FOUNDATIONAL SCIENCE 2022; 2:100016. [PMID: 37622089 PMCID: PMC10448398 DOI: 10.1016/j.jfscie.2022.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Background Sjögren syndrome (SS) is an autoimmune disease characterized by lymphocytic infiltration and diminished secretory function of the salivary glands. Dexamethasone (DEX) resolves dry mouth and lymphocytic infiltration; however, this treatment is difficult to maintain because of multiple adverse effects (eg, osteoporosis and skin thinning); likewise, aspirin-triggered resolvin D1 (AT-RvD1) increases saliva secretion but cannot eliminate lymphocytic infiltration. Previous studies showed that a combination of low-dose DEX with AT-RvD1 before disease onset prevents SS-like features in a mouse model; however, this is not clinically practical because there are no reliable indicators of SS before disease onset. Therefore, the authors applied the combined treatment at disease onset to show its efficacy and comparative lack of adverse effects, so that it may reasonably be maintained over a patient's lifetime. Methods NOD/ShiLtJ mice were treated with ethanol (vehicle control), high-dose DEX alone, AT-RvD1 alone, or a combination of low-dose DEX with AT-RvD1 at disease onset for 8 weeks. Then saliva flow rates were measured, and submandibular glands were harvested for histologic analyses. Results A combined treatment of low-dose DEX with AT-RvD1 significantly decreased mast cell degranulation and lymphocytic infiltration, increased saliva secretion, and restored apical aquaporin-5 expression in submandibular glands of NOD/ShiLtJ mice. Conclusions Low-dose DEX combined with AT-RvD1 reduces the severity of SS-like manifestation and prevents the development of advanced and potentially irreversible damage, all in a form that can reasonably be administered indefinitely without the need to cease treatment because of secondary effects.
Collapse
Affiliation(s)
- Harim Tavares Dos Santos
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Frank Maslow
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Kihoon Nam
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
| | - Bryan Trump
- School of Dentistry and Department of Dermatology, University of Utah, Salt Lake City, UT
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
- Department of Biochemistry, University of Missouri, Columbia, MO
| | - Olga J Baker
- Department of Otolaryngology, Head and Neck Surgery, University of Missouri, Columbia, MO
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO
- Department of Biochemistry, University of Missouri, Columbia, MO
| |
Collapse
|
5
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
6
|
Dos Santos HT, Nam K, Maslow F, Trump B, Baker OJ. Specialized pro-resolving receptors are expressed in salivary glands with Sjögren's syndrome. Ann Diagn Pathol 2021; 56:151865. [PMID: 34847389 DOI: 10.1016/j.anndiagpath.2021.151865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Our previous studies demonstrated that resolvin D1 (RvD1) and its aspirin-trigged (AT) form AT-RvD1, are effective in decreasing inflammation while restoring saliva flow rates in a Sjögren's syndrome (SS)-like mouse model before and after disease onset. Resolvins are specialized pro-resolving mediators (SPM) that actively regulate inflammation. However, we only have extensive data within the salivary glands for RvD1 and AT-RvD1, both of which bind to the receptor ALX/FPR2. As such, the presence of other SPM receptors is unknown within salivary glands. Therefore, the goal of this study was to determine the expression of SPM receptors in non-SS and SS patients. For this purpose, six human minor salivary glands from female subjects were analyzed by H&E using the Chisholm and Mason classification to determine the degree of lymphocytic infiltration. Next, confocal immunofluorescence analysis was performed to determine the presence and distribution of different SPM receptors in mucous acini and striated ducts. We observed diffuse presence of lymphocytic infiltration and clinical data were consistent with SS diagnosis in three patients. Moreover, confocal immunofluorescence analysis indicated the presence of the receptors ALX/FPR2, BLT1 and CMKLR1 in the mucous acini and striated ducts of both non-SS and SS patients. GPR32 was absent in SS and non-SS minor salivary glands. In summary, our results showed that various SPM receptors are expressed in non-SS and SS minor salivary glands, all of which may pose as potential targets for promoting pro-epithelial and anti-inflammatory/pro-resolution signaling on SS patients.
Collapse
Affiliation(s)
- Harim Tavares Dos Santos
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kihoon Nam
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Frank Maslow
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Bryan Trump
- School of Dentistry and Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, University of Missouri, Columbia, MO, USA; Department of Biochemistry, University of Missouri, Columbia, MO, USA; Department of Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
8
|
Song J, Sun R, Zhang Y, Fu Y, Zhao D. Role of the Specialized Pro-resolving Mediator Resolvin D1 in Hashimoto's Thyroiditis. Exp Clin Endocrinol Diabetes 2021; 129:791-797. [PMID: 33465800 DOI: 10.1055/a-1345-0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Resolvins are produced by the catabolism of polyunsaturated fatty acids (PUFAs) and play vital roles in inflammation resolution. Resolvins have been associated with autoimmune disorders. This study aimed to measure the level of Resolvin D1 (RVD1) in the serum of Hashimoto's thyroiditis (HT) patients and healthy controls (HCs) and to further analyse its correlation with thyroid autoantibodies and inflammatory factors. METHODS Sixty-three participants were recruited, namely, 30 untreated HT patients and 33 sex- and age-matched HCs. Serum RVD1 and inflammatory chemokine (MCP-1 and IP-10) levels were measured by ELISA according to the manufacturer's protocol. Serum total T3 (TT3), TT4, free T3 (FT3), FT4, thyroglobulin antibody (TgAb), thyroid peroxidase antibody (TPOAb) and thyroid-stimulating hormone (TSH) levels were measured using an electrochemiluminescence immunoassay. Thyroid homeostasis parameters, including the thyroid secretory capacity (SPINA-GT), the total deiodinase activity (SPINA-GD), Jostel's TSH index (TSHI) and the thyrotroph thyroid hormone sensitivity index (TTSI), were calculated. RESULTS Serum RVD1 levels in HT patients (134.76, 85.35-201.36 pg/mL) were significantly lower than those in HCs (187.64, 131.01-326.85 pg/mL) (P=0.004). As the TPOAb level increased, the RVD1 level showed a decreasing trend (P for trend=0.002). Both multinomial and ordinal logistics analyses revealed that serum RVD1 levels were negatively correlated with TPOAb levels in the adjusted models. Moreover, RVD1 showed a negative correlation with the inflammatory chemokine IP-1 0 (r=-0.276, P=0.034), TSHI (r=-0.269, P=0.036) and TTSI (r=-0.277, P=0.031). CONCLUSIONS Thyroid autoimmunity may be associated with low levels of RVD1. Decreased RVD1 levels indicate impaired resolution of inflammation in HT patients.
Collapse
Affiliation(s)
- Jing Song
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Rongxin Sun
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Ying Fu
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| | - Dong Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Center for Endocrine Metabolism and Immune Diseases, Lu He Hospital Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Yellepeddi VK, Parashar K, Dean SM, Watt KM, Constance JE, Baker OJ. Predicting Resolvin D1 Pharmacokinetics in Humans with Physiologically-Based Pharmacokinetic Modeling. Clin Transl Sci 2020; 14:683-691. [PMID: 33202089 PMCID: PMC7993257 DOI: 10.1111/cts.12930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Sjögren’s syndrome (SS) is an autoimmune disease with no effective treatment options. Resolvin D1 (RvD1) belongs to a class of lipid‐based specialized pro‐resolving mediators that showed efficacy in preclinical models of SS. We developed a physiologically‐based pharmacokinetic (PBPK) model of RvD1 in mice and optimized the model using plasma and salivary gland pharmacokinetic (PK) studies performed in NOD/ShiLtJ mice with SS‐like features. The predictive performance of the PBPK model was also evaluated with two external datasets from the literature reporting RvD1 PKs. The PBPK model adequately captured the observed concentrations of RvD1 administered at different doses and in different species. The PKs of RvD1 in virtual humans were predicted using the verified PBPK model at various doses (0.01–10 mg/kg). The first‐in‐human predictions of RvD1 will be useful for the clinical trial design and translation of RvD1 as an effective treatment strategy for SS.
Collapse
Affiliation(s)
- Venkata K Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | | | - Spencer M Dean
- School of Dentistry, University of Utah, Salt Lake City, Utah, USA
| | - Kevin M Watt
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Jonathan E Constance
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Olga J Baker
- Department of Otolaryngology-Head and Neck Surgery, Department of Biochemistry, Christopher S. Bond Life Sciences Center, School of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
10
|
Zhao L, Ye Y, Jiao J, Liao J, Lin Z, Zhong J, Wu J, Fang Z, Kontos F, Chen W, Huang X, Dias-Ribeiro E, Yang Z, Li J, Fan S. Comparison of postoperative cytokine and hormone between endoscopically assisted and open parotid tumor resection. Oral Dis 2020; 27:1720-1727. [PMID: 33188651 DOI: 10.1111/odi.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Endoscopically assisted extracapsular dissection through a single incision along the cephaloauricular furrow has been adapted as a method of access for operating on benign parotid gland tumors. However, no study has compared the immune and stress responses after surgery between the endoscopic procedure and conventional open surgery. METHODS Through a randomized method, 50 patients with benign parotid gland tumors were assigned to undergo either endoscopically assisted extracapsular dissection or open parotidectomy. The postoperative inflammatory changes and hormonal response in the patients were analyzed at serum level during the preoperative period and at 12, 24, and 72 hr after either surgery. RESULTS Twenty-three patients received an endoscopic procedure, while 27 underwent open surgery. The size of the incision, amount of intraoperative bleeding, volume of drainage, postoperative pain score, and satisfaction with appearance were all improved in the endoscopic procedure group. Additionally, the serum levels of C-reactive protein, interleukin (IL)-6, IL-10, and cortisol were significantly lower in the endoscopy group in comparison with those in the open surgery group. CONCLUSION Endoscopically assisted extracapsular dissection on patients with benign parotid gland tumors is associated with lower inflammatory changes and hormone responses than open surgery, thereby reducing perioperative pathophysiological disturbance and enhancing recovery after surgery.
Collapse
Affiliation(s)
- Luodan Zhao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yushan Ye
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiuyang Jiao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junkun Liao
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyu Lin
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jianglong Zhong
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jialing Wu
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zezhen Fang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiliang Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Huang
- Department of Otorhinolaryngology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Zhaohui Yang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Shikayama T, Fujita-Yoshigaki J, Sago-Ito M, Nakamura-Kiyama M, Naniwa M, Hitomi S, Ujihara I, Kataoka S, Yada N, Ariyoshi W, Usui M, Nakashima K, Ono K. Hematogenous apoptotic mechanism in salivary glands in chronic periodontitis. Arch Oral Biol 2020; 117:104775. [PMID: 32512258 DOI: 10.1016/j.archoralbio.2020.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The aim of the study is to investigate the apoptotic mechanism in salivary glands in the rat experimental periodontitis model. DESIGN A rat periodontitis model was prepared by using a ligature around the second upper molar. In the salivary (parotid and submandibular) glands and blood samples, putative apoptotic factors and pathway molecules were investigated in vivo and in vitro. RESULTS Four weeks of ligation (chronic periodontitis) demonstrated significant apoptotic atrophy of the salivary gland, but one week of ligation (initial periodontitis) did not. In the blood plasma, tumor necrosis factor-α (TNF-α) was increased in the periodontitis model, but interleukin-1β and -6 were not. TNF-α receptor type 1, which has an intracellular apoptotic pathway, was expressed in the salivary glands of rats. Western blot analysis of cultured rat primary salivary gland cells demonstrated that TNF-α induced cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3 in a dose-dependent manner, indicating apoptosis induction. Additionally, we found increment of circulating lymphocytes in the model. Expression of mRNA and immunoreactive cells for the B lymphocyte marker CD19 were increased in the salivary gland in the model. Western blotting showed that coculture with extracted B cells from the periodontitis model increased cleaved PARP in salivary gland cells. CONCLUSIONS Chronic periodontitis status leads to an increase in circulating TNF-α and B lymphocyte infiltration, resulting in apoptotic atrophy of the salivary gland as a periodontitis-induced systemic response.
Collapse
Affiliation(s)
- T Shikayama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - J Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan.
| | - M Sago-Ito
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Nakamura-Kiyama
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Naniwa
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan; Division of Oral Health Sciences, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - S Hitomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - I Ujihara
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - S Kataoka
- Division of Anatomy, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - N Yada
- Division of Oral Pathology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - W Ariyoshi
- Division of Infections and Molecular Biology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - M Usui
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Nakashima
- Division of Periodontology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka 803-8580, Japan.
| | - K Ono
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakitaku, Kitakyushu, Fukuoka, 803-8580, Japan.
| |
Collapse
|
12
|
Li C, Wu X, Liu S, Shen D, Zhu J, Liu K. Role of Resolvins in the Inflammatory Resolution of Neurological Diseases. Front Pharmacol 2020; 11:612. [PMID: 32457616 PMCID: PMC7225325 DOI: 10.3389/fphar.2020.00612] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The occurrence of neurological diseases including neurodegenerative disorders, neuroimmune diseases, and cerebrovascular disorders is closely related to neuroinflammation. Inflammation is a response against infection or injury. Genetic abnormalities, the aging process, or environmental factors can lead to dysregulation of the inflammatory response. Our immune system can cause massive damage when the inflammatory response becomes dysregulated. Inflammatory resolution is an effective process that terminates the inflammatory response to maintain health. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-three polyunsaturated fatty acids that play a crucial regulatory role in the development of inflammation. Resolvins (Rvs) derived from EPA and DHA constitute the Rvs E and Rvs D series, respectively. Numerous studies on the effect of Rvs over inflammation using animal models reveal that they have both anti-inflammatory and pro-resolving capabilities. Here, we review the current knowledge on the classification, biosynthesis, receptors, mechanisms of action, and role of Rvs in neurological diseases.
Collapse
Affiliation(s)
- Chunrong Li
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiujuan Wu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Shan Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Donghui Shen
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Kangding Liu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
13
|
Barden A, Phillips M, Hill LM, Fletcher EM, Mas E, Loh PS, French MA, Ho KM, Mori TA, Corcoran TB. Antiemetic doses of dexamethasone and their effects on immune cell populations and plasma mediators of inflammation resolution in healthy volunteers. Prostaglandins Leukot Essent Fatty Acids 2018; 139:31-39. [PMID: 30471772 DOI: 10.1016/j.plefa.2018.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The synthetic glucocorticoid dexamethasone is a commonly administered antiemetic. It has immunosuppressive effects and may alter postoperative blood glucose concentrations. Dexamethasone can effect key enzymes involved in inflammation resolution that is an active process driven by specialised lipid mediators of inflammation resolution (SPM). The purpose of this study in healthy volunteers was to examine whether dexamethasone effects cell populations and synthesis of SPM that are critical for the resolution of inflammation. METHODS Thirty-two healthy volunteers were randomly allocated to receive saline (Control) or dexamethasone 2 mg, 4 mg or 8 mg intravenously. Venous blood samples were collected at baseline before administration of treatment, and at 4 h, 24 h and one-week post-treatment. At each time point, measurements included blood glucose and macrophage migration inhibition factor (MMIF), full blood count including lymphocyte subsets, monocytes, neutrophils, eosinophils and basophils by flow cytometry, and plasma SPM using liquid chromatography tandem mass spectrometry. The effect of dexamethasone dose and time on all measures was analysed using linear mixed models. RESULTS There was a dose-dependent increase in neutrophil count after dexamethasone that persisted for 24 h. In contrast, there was a dose-dependent reduction in counts of monocytes, lymphocytes, basophils and eosinophils 4 h after dexamethasone, followed by a rebound increase in cell counts at 24 h. Seven days after administration of dexamethasone, all cell counts were similar to baseline levels. MMIF concentration, glucose and natural killer cell counts were not significantly affected by dexamethasone. There was a significant gender effect on plasma SPM such that levels of 17-HDHA, RvD1, 17R-RvD1 and RvE2 in females were on average 14%-50% lower than males. In a linear mixed model that adjusted for neutrophil count, there was a significant interaction between the dose of dexamethasone and time, on plasma 17R-RvD1 such that plasma 17R-RvD1 fell in a dose-dependent manner until 4 h after administration of dexamethasone. There were no significant effects of dexamethasone on the other plasma SPM (18-HEPE, RvE2, 17-HDHA, RvD1, RvD2 and 14-HDHA) measured. DISCUSSION This is the first study in healthy volunteers to demonstrate that commonly employed antiemetic doses of dexamethasone affect immune cell populations and plasma levels of 17R-RvD1 an SPM with anti-nociceptive properties. If similar changes occur in surgical patients, then this may have implications for acute infection risk in the post-operative period.
Collapse
Affiliation(s)
- Anne Barden
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia.
| | - Michael Phillips
- Harry Perkins Institute for Medical Research, University of Western Australia, Australia
| | - Lisa M Hill
- Department of Anaesthesia, St John of God Midland and Mount Lawley Hospitals, Perth, Western Australia, Australia
| | - Evelyn M Fletcher
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Australia
| | - Emilie Mas
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia
| | - P S Loh
- Department of Anaesthesiology and Intensive Care, University of Malaya, Malaysia
| | - Martyn A French
- UWA Medical School and School of Biomedical Sciences, University of Western Australia, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, Australia
| | - Kwok M Ho
- Department of Intensive Care Medicine, Royal Perth Hospital, Australia; School of Population Health, University of Western Australia, Australia
| | - Trevor A Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia
| | - Tomás B Corcoran
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Box X2214 GPO Perth, Western Australia 6847, Australia; Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Australia
| |
Collapse
|
14
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
The G-Protein-Coupled Receptor ALX/Fpr2 Regulates Adaptive Immune Responses in Mouse Submandibular Glands. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1555-1562. [PMID: 29684359 DOI: 10.1016/j.ajpath.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/07/2018] [Accepted: 04/02/2018] [Indexed: 01/25/2023]
Abstract
Lipoxin receptor (ALX)/N-formyl peptide receptor (FPR)-2 is a G-protein-coupled receptor that has multiple binding partners, including the endogenous lipid mediators resolvin D1, lipoxin A4, and the Ca2+-dependent phospholipid-binding protein annexin A1. Previous studies have demonstrated that resolvin D1 activates ALX/Fpr2 to resolve salivary gland inflammation in the NOD/ShiLtJ mouse model of Sjögren syndrome. Moreover, mice lacking the ALX/Fpr2 display an exacerbated salivary gland inflammation in response to lipopolysaccharide. Additionally, activation of ALX/Fpr2 has been shown to be important for regulating antibody production in B cells. These previous studies indicate that ALX/Fpr2 promotes resolution of salivary gland inflammation while modulating adaptive immunity, suggesting the need for investigation of the role of ALX/Fpr2 in regulating antibody production and secretory function in mouse salivary glands. Our results indicate that aging female knockout mice lacking ALX/Fpr2 display a significant reduction in saliva flow rates and weight loss, an increased expression of autoimmune-associated genes, an up-regulation of autoantibody production, and increased CD20-positive B-cell population. Although not all effects were noted among the male knockout mice, the results nonetheless indicate that ALX/Fpr2 is clearly involved in the adaptive immunity and secretory function in salivary glands, with further investigation warranted to determine the cause(s) of these between-sex differences.
Collapse
|
16
|
Easley JT, Maruyama CLM, Wang CS, Baker OJ. AT-RvD1 combined with DEX is highly effective in treating TNF-α-mediated disruption of the salivary gland epithelium. Physiol Rep 2017; 4:4/19/e12990. [PMID: 27694530 PMCID: PMC5064142 DOI: 10.14814/phy2.12990] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder characterized by chronic inflammation and destruction of salivary and lacrimal glands leading to dry mouth and dry eyes, respectively. Currently, the etiology of SS is unknown and the current therapies have no permanent benefit; therefore, new approaches are necessary to effectively treat this condition. Resolvins are highly potent endogenous lipid mediators that are synthesized during the resolution of inflammation to restore tissue homeostasis. Previous studies indicate that the resolvin family member, RvD1, binds to the ALX/FPR2 receptor to block inflammatory signals caused by tumor necrosis factor-alpha (TNF-α) in the salivary epithelium. More recently, the corticosteroid, dexamethasone (DEX), was shown to be effective in reducing salivary gland inflammation. However, DEX, as with other corticosteroids, elicits adverse secondary effects that could be ameliorated when used in smaller doses. Therefore, we investigated whether the more stable aspirin-triggered (AT) epimer, AT-RvD1, combined with reduced doses of DEX is effective in treating TNF-α-mediated disruption of polarized rat parotid gland (Par-C10) epithelial cell clusters. Our results indicate that AT-RvD1 and DEX individually reduced TNF-α-mediated alteration in the salivary epithelium (i.e, maintained cell cluster formation, increased lumen size, reduced apoptosis, and preserved cell survival signaling responses) as compared to untreated cells. Furthermore, AT-RvD1 combined with a reduced dose of DEX produced stronger responses (i.e., robust salivary cell cluster formation, larger lumen sizes, further reduced apoptosis, and sustained survival signaling responses) as compared to those observed with individual treatments. These studies demonstrate that AT-RvD1 combined with DEX is highly effective in treating TNF-α-mediated disruption of salivary gland epithelium.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, Utah
| | | | | | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, Utah
| |
Collapse
|