1
|
Jeon S, Heo J, Myung N, Shin JY, Kim MK, Kang H. High-Efficiency, Prevascularization-Free Macroencapsulation System for Subcutaneous Transplantation of Pancreatic Islets for Enhanced Diabetes Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408329. [PMID: 39308296 PMCID: PMC11636157 DOI: 10.1002/adma.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Indexed: 12/13/2024]
Abstract
Pancreatic islet macroencapsulation systems for subcutaneous transplantation have garnered significant attention as a therapy for Type I diabetes due to their minimal invasiveness and low complication rates. However, the low vascular density of subcutaneous tissue threatens the long-term survival of islets. To address this issue, prevascularized systems are introduced but various challenges remain, including system complexity and vascular-cell immunogenicity. Here, a novel prevasculature-free macroencapsulation system designed as a multilayer sheet, which ensures sufficient mass transport even in regions with sparse vasculature, is presented. Islets are localized in top/bottom micro-shell layers (≈300 µm thick) to maximize proximity to the surrounding host vasculature. These sheets, fabricated via bioprinting using rat islets and alginate-based bio-ink, double islet viability and optimize islet density, improving insulin secretion function by 240%. The subcutaneous transplantation of small islet masses (≈250 islet equivalent) into diabetic nude mice enable rapid (<1 day) recovery of blood glucose, which remain stable for >120 days. Additionally, antifibrotic drug-loaded multilayer sheets facilitate blood glucose regulation by rat islets at the subcutaneous sites of diabetic immunocompetent mice for >35 days. Thus, this macroencapsulation system can advance the treatment of Type I diabetes and is also effective for islet xenotransplantation in subcutaneous tissue.
Collapse
Affiliation(s)
- Seunggyu Jeon
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Jun‐Ho Heo
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Noehyun Myung
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Ji Yeong Shin
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Min Kyeong Kim
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| | - Hyun‐Wook Kang
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology50, UNIST‐gilUlju‐gunUlsan44919South Korea
| |
Collapse
|
2
|
Longacre M, Ohia L, Boyle S, Conner K, Kaza A, Schure A. The Ketogenic Diet and Pediatric Cardiac Surgery: A Case Report and Narrative Review. J Cardiothorac Vasc Anesth 2024; 38:2383-2387. [PMID: 38926005 DOI: 10.1053/j.jvca.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Mckenna Longacre
- Department of Pediatric Cardiac Anesthesia, Boston Children's Hospital, Boston, MA.
| | - Laurence Ohia
- Department of Pediatric Cardiac Anesthesia, Boston Children's Hospital, Boston, MA
| | - Sharon Boyle
- Department of Pediatric Cardiac Surgery, Boston Children's Hospital, Boston, MA
| | - Kevin Conner
- Department of Pediatric Cardiac Surgery, Boston Children's Hospital, Boston, MA
| | - Aditya Kaza
- Department of Pediatric Cardiac Surgery, Boston Children's Hospital, Boston, MA
| | - Annette Schure
- Department of Pediatric Cardiac Anesthesia, Boston Children's Hospital, Boston, MA
| |
Collapse
|
3
|
Simon Machado R, Mathias K, Joaquim L, de Quadros RW, Rezin GT, Petronilho F. Hyperoxia and brain: the link between necessity and injury from a molecular perspective. Neurotox Res 2024; 42:25. [PMID: 38619632 DOI: 10.1007/s12640-024-00702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Oxygen (O2) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O2, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O2 consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O2 supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O2 concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O2 supplementation, especially in clinical settings, is crucial.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| |
Collapse
|
4
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Singh C, Tran V, McCollum L, Bolok Y, Allan K, Yuan A, Hoppe G, Brunengraber H, Sears JE. Hyperoxia induces glutamine-fuelled anaplerosis in retinal Müller cells. Nat Commun 2020; 11:1277. [PMID: 32152301 PMCID: PMC7062830 DOI: 10.1038/s41467-020-15066-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/17/2020] [Indexed: 01/03/2023] Open
Abstract
Although supplemental oxygen is required to promote survival of severely premature infants, hyperoxia is simultaneously harmful to premature developing tissues such as in the retina. Here we report the effect of hyperoxia on central carbon metabolism in primary mouse Müller glial cells and a human Müller glia cell line (M10-M1 cells). We found decreased flux from glycolysis entering the tricarboxylic acid cycle in Müller cells accompanied by increased glutamine consumption in response to hyperoxia. In hyperoxia, anaplerotic catabolism of glutamine by Müller cells increased ammonium release two-fold. Hyperoxia induces glutamine-fueled anaplerosis that reverses basal Müller cell metabolism from production to consumption of glutamine. Prematurely born babies need extra oxygen to survive, but this can cause damage to the eyes and lead to infant blindness. Here the authors show that this hyperoxia changes the metabolism of Müller cells in the retina such that they use up, rather than produce, glutamine and secrete excess ammonium.
Collapse
Affiliation(s)
- Charandeep Singh
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Vincent Tran
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Leah McCollum
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Youstina Bolok
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kristin Allan
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.,Molecular Medicine, Case Western Reserve School of Medicine Cleveland, Cleveland, OH, 44106, USA
| | - Alex Yuan
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - George Hoppe
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve School of Medicine Cleveland, Cleveland, OH, 44106, USA
| | - Jonathan E Sears
- Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA. .,Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
6
|
Mattos JD, Campos MO, Rocha MP, Mansur DE, Rocha HNM, Garcia VP, Batista G, Alvares TS, Oliveira GV, Souza MV, Videira RLR, Rocha NG, Secher NH, Nóbrega ACL, Fernandes IA. Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species. J Physiol 2018; 597:741-755. [PMID: 30506968 DOI: 10.1113/jp277122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS It is unknown whether excessive reactive oxygen species (ROS) production drives the isocapnic hyperoxia (IH)-induced decline in human cerebral blood flow (CBF) via reduced nitric oxide (NO) bioavailability and leads to disruption of the blood-brain barrier (BBB) or neural-parenchymal damage. Cerebral metabolic rate for oxygen (CMR O 2 ) and transcerebral exchanges of NO end-products, oxidants, antioxidants and neural-parenchymal damage markers were simultaneously quantified under IH with intravenous saline and ascorbic acid infusion. CBF and CMR O 2 were reduced during IH, responses that were followed by increased oxidative stress and reduced NO bioavailability when saline was infused. No indication of neural-parenchymal damage or disruption of the BBB was observed during IH. Antioxidant defences were increased during ascorbic acid infusion, while CBF, CMR O 2 , oxidant and NO bioavailability markers remained unchanged. ROS play a role in the regulation of CBF and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage. ABSTRACT To test the hypothesis that isocapnic hyperoxia (IH) affects cerebral blood flow (CBF) and metabolism through exaggerated reactive oxygen species (ROS) production, reduced nitric oxide (NO) bioavailability, disturbances in the blood-brain barrier (BBB) and neural-parenchymal homeostasis, 10 men (24 ± 1 years) were exposed to a 10 min IH trial (100% O2 ) while receiving intravenous saline and ascorbic acid (AA, 3 g) infusion. Internal carotid artery blood flow (ICABF), vertebral artery blood flow (VABF) and total CBF (tCBF, Doppler ultrasound) were determined. Arterial and right internal jugular venous blood was sampled to quantify the cerebral metabolic rate of oxygen (CMR O 2 ), transcerebral exchanges (TCE) of NO end-products (plasma nitrite), antioxidants (AA and AA plus dehydroascorbic acid (AA+DA)) and oxidant biomarkers (thiobarbituric acid-reactive substances (TBARS) and 8-isoprostane), and an index of BBB disruption and neuronal-parenchymal damage (neuron-specific enolase; NSE). IH reduced ICABF, tCBF and CMR O 2 , while VABF remained unchanged. Arterial 8-isoprostane and nitrite TCE increased, indicating that CBF decline was related to ROS production and reduced NO bioavailability. AA, AA+DA and NSE TCE did not change during IH. AA infusion did not change the resting haemodynamic and metabolic parameters but raised antioxidant defences, as indicated by increased AA/AA+DA concentrations. Negative AA+DA TCE, unchanged nitrite, reductions in arterial and venous 8-isoprostane, and TBARS TCE indicated that AA infusion effectively inhibited ROS production and preserved NO bioavailability. Similarly, AA infusion prevented IH-induced decline in regional and total CBF and re-established CMR O 2 . These findings indicate that ROS play a role in CBF regulation and metabolism during IH without evidence of BBB disruption or neural-parenchymal damage.
Collapse
Affiliation(s)
- João D Mattos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Monique O Campos
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Marcos P Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Daniel E Mansur
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Helena N M Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Vinicius P Garcia
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Gabriel Batista
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | | | | | | | | | - Natalia G Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Niels H Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Denmark
| | - Antonio C L Nóbrega
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil
| | - Igor A Fernandes
- Laboratory of Exercise Sciences, Fluminense Federal University, Niterói, Brazil.,NeuroVASQ - Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brazil
| |
Collapse
|
7
|
Hals I, Ohki T, Singh R, Ma Z, Björklund A, Balasuriya C, Scholz H, Grill V. Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates. Physiol Rep 2017; 5:5/19/e13447. [PMID: 29038359 PMCID: PMC5641934 DOI: 10.14814/phy2.13447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS‐1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS‐1 832/13 cells were exposed to 24 h of hyperoxia (90–92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose‐stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down‐regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia‐exposed INS‐1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates.
Collapse
Affiliation(s)
- Ingrid Hals
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tsuyoshi Ohki
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rinku Singh
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anneli Björklund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chandima Balasuriya
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Endocrinology, St Olavs University Hospital, Trondheim, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Valdemar Grill
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Endocrinology, St Olavs University Hospital, Trondheim, Norway
| |
Collapse
|