1
|
Yin L, Tang H, Qu J, Jia Y, Zhang Q, Wang X. Chemerin regulates glucose and lipid metabolism by changing mitochondrial structure and function associated with androgen/androgen receptor. Am J Physiol Endocrinol Metab 2024; 326:E869-E887. [PMID: 38775724 DOI: 10.1152/ajpendo.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.
Collapse
Affiliation(s)
- Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Sport, Shenzhen University, Shenzhen, People's Republic of China
| | - Hongtai Tang
- Department of Burns, Changhai Hospital, Shanghai, People's Republic of China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yi Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Qilong Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Li Y, Tian X, Yu Q, Bao T, Dai C, Jiang L, Niu K, Yang J, Wang S, Wu X. Alleviation of hepatic insulin resistance and steatosis with NMN via improving endoplasmic reticulum-Mitochondria miscommunication in the liver of HFD mice. Biomed Pharmacother 2024; 175:116682. [PMID: 38703507 DOI: 10.1016/j.biopha.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. β-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Qian Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chao Dai
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Liang Jiang
- ERA Biotechnology (Shenzhen) Co., Ltd, Shenzhen 518115, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Jianying Yang
- The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.
| |
Collapse
|
3
|
García-Peña LM, Abel ED, Pereira RO. Mitochondrial Dynamics, Diabetes, and Cardiovascular Disease. Diabetes 2024; 73:151-161. [PMID: 38241507 PMCID: PMC10796300 DOI: 10.2337/dbi23-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 01/21/2024]
Abstract
Mitochondria undergo repeated cycles of fusion and fission that regulate their size and shape by a process known as mitochondrial dynamics. Numerous studies have revealed the importance of this process in maintaining mitochondrial health and cellular homeostasis, particularly in highly metabolically active tissues such as skeletal muscle and the heart. Here, we review the literature on the relationship between mitochondrial dynamics and the pathophysiology of type 2 diabetes and cardiovascular disease (CVD). Importantly, we emphasize divergent outcomes resulting from downregulating distinct mitochondrial dynamics proteins in various tissues. This review underscores compensatory mechanisms and adaptive pathways that offset potentially detrimental effects, resulting instead in improved metabolic health. Finally, we offer a perspective on potential therapeutic implications of modulating mitochondrial dynamics proteins for treatment of diabetes and CVD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Luis Miguel García-Peña
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - E. Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Renata O. Pereira
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
4
|
Tincknell JB, Kugler BA, Spicuzza H, Berger N, Yan H, You T, Zou K. High-intensity interval training attenuates impairment in regulatory protein machinery of mitochondrial quality control in skeletal muscle of diet-induced obese mice. Appl Physiol Nutr Metab 2024; 49:236-249. [PMID: 37852013 DOI: 10.1139/apnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of high-intensity interval training (HIIT) on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were assigned to low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD + HIIT) groups for another 10 weeks (n = 9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration, and protein markers of mitochondrial quality control processes were determined. HFD-fed mice exhibited lower ADP-stimulated mitochondrial respiration (p < 0.05). However, 10 weeks of HIIT prevented this impairment (p < 0.05). Importantly, the ratio of Drp1(Ser616) over Drp1(Ser637) phosphorylation, an indicator of mitochondrial fission, was significantly higher in HFD-fed mice (p < 0.05), but such increase was attenuated in HFD-HIIT compared to HFD (-35.7%, p < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in the HFD group than the LFD group (-35.1%, p < 0.05); however, such reduction was disappeared in the HFD + HIIT group. In addition, LC3B II/I ratio was higher in the HFD group than the LFD group (15.5%, p < 0.05) but was ameliorated in the HFD + HIIT group (-29.9%, p < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 phosphorylations and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
Affiliation(s)
- James B Tincknell
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Haley Spicuzza
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicolas Berger
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Huimin Yan
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Tongjian You
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kai Zou
- Department of Exercise and Health SciencesManning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
5
|
Shen H, Lei Y, Xie W, Ma T, Bao L, Gao Q, Chen B, Dai B, Qin D. Bioactive peptides PDBSN improve mitochondrial function and suppression the oxidative stress in human adiposity cells. Adipocyte 2023:2278213. [PMID: 37942520 DOI: 10.1080/21623945.2023.2278213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: Mitochondria are essential for generating cellular energy and are significant in the pathogenesis of obesity. Peptide PDBSN has been demonstrated to inhibit the adipogenic differentiation of adipocytes in vitro and improves metabolic homoeostasis in vivo. Therefore, in this study, we further investigated the effects of PDBSN on the morphology, synthesis, and function of adipocyte mitochondria. Methods: Human visceral and subcutaneous primary preadipocytes (HPA-v and HPA-s) were cultured into mature adipocytes. Intracellular triglyceride content was assessed using oil-red O staining and tissue triglyceride determination. Gene and protein levels associated with mitochondrial synthesis were detected using real-time quantitative polymerase chain reaction and western blotting. Mitochondrial membrane potentials and ROS were detected using fluorescent indicators. Morphological changes were observed by electron microscopy. Results: PDBSN significantly increased mitochondrial membrane potential (MMP), while decreasing intracellular triglyceride (TG) and intracellular reactive oxygen species (ROS) levels. On the other hand, the transcription and protein levels of genetic marker genes PGC1-α and MTFA were significantly up-regulated after PDBSN administration. Further studies showed that transcriptional and protein levels of mitochondrial fusion and fission genetic markers MFN1, MFN2, NRF1, and DRP1 increased. Conclusion: PDBSN significantly reduces intracellular TG and ROS levels and increases MMP. The maximum respiratory capacity in adults significantly increases after PDBSN administration, and ROS levels are significantly reduced. This suggests that PDBSN improves mitochondrial function to some extent, which not only provides an essential basis for the pathophysiology of obesity but also provides insights for the development of new drugs to treat obesity and metabolic diseases.
Collapse
Affiliation(s)
- Huiping Shen
- Department of Pediatrics, Yixing People's Hospital, China
| | - Yong Lei
- Department of Pediatrics, Yixing People's Hospital, China
| | - Wen Xie
- Department of Pediatrics, Yixing People's Hospital, China
| | - Tieliang Ma
- Department of Pediatrics, Yixing People's Hospital, China
| | - Li Bao
- Department of Pediatrics, Yixing People's Hospital, China
| | - Qin Gao
- Department of Pediatrics, Yixing People's Hospital, China
| | - Bingyu Chen
- Department of Pediatrics, Yixing People's Hospital, China
| | - Biao Dai
- Department of Pediatrics, Yixing People's Hospital, China
| | - Dani Qin
- Department of Pediatrics, Yixing People's Hospital, China
| |
Collapse
|
6
|
Tagashira H, Abe F, Sato-Numata K, Aizawa K, Hirasawa K, Kure Y, Iwata D, Numata T. Cardioprotective effects of Moku-boi-to and its impact on AngII-induced cardiomyocyte hypertrophy. Front Cell Dev Biol 2023; 11:1264076. [PMID: 38020917 PMCID: PMC10661958 DOI: 10.3389/fcell.2023.1264076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Cardiomyocyte hypertrophy, induced by elevated levels of angiotensin II (AngII), plays a crucial role in cardiovascular diseases. Current therapeutic approaches aim to regress cardiac hypertrophy but have limited efficacy. Widely used Japanese Kampo medicines are highly safe and potential therapeutic agents. This study aims to explore the impact and mechanisms by which Moku-boi-to (MBT), a Japanese Kampo medicine, exerts its potential cardioprotective benefits against AngII-induced cardiomyocyte hypertrophy, bridging the knowledge gap and contributing to the development of novel therapeutic strategies. By evaluating the effects of six Japanese Kampo medicines with known cardiovascular efficiency on AngII-induced cardiomyocyte hypertrophy and cell death, we identified MBT as a promising candidate. MBT exhibited preventive effects against AngII-induced cardiomyocyte hypertrophy, cell death and demonstrated improvements in intracellular Ca2+ signaling regulation, ROS production, and mitochondrial function. Unexpectedly, experiments combining MBT with the AT1 receptor antagonist losartan suggested that MBT may target the AT1 receptor. In an isoproterenol-induced heart failure mouse model, MBT treatment demonstrated significant effects on cardiac function and hypertrophy. These findings highlight the cardioprotective potential of MBT through AT1 receptor-mediated mechanisms, offering valuable insights into its efficacy in alleviating AngII-induced dysfunction in cardiomyocytes. The study suggests that MBT holds promise as a safe and effective prophylactic agent for cardiac hypertrophy, providing a deeper understanding of its mechanisms for cardioprotection against AngII-induced dysfunction.
Collapse
Affiliation(s)
- Hideaki Tagashira
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Fumiha Abe
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Karen Aizawa
- School of Medicine, Akita University, Akita, Japan
| | - Kei Hirasawa
- School of Medicine, Akita University, Akita, Japan
| | | | - Daiki Iwata
- School of Medicine, Akita University, Akita, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
7
|
Kugler BA, Lourie J, Berger N, Lin N, Nguyen P, DosSantos E, Ali A, Sesay A, Rosen HG, Kalemba B, Hendricks GM, Houmard JA, Sesaki H, Gona P, You T, Yan Z, Zou K. Partial skeletal muscle-specific Drp1 knockout enhances insulin sensitivity in diet-induced obese mice, but not in lean mice. Mol Metab 2023; 77:101802. [PMID: 37690520 PMCID: PMC10511484 DOI: 10.1016/j.molmet.2023.101802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/22/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Dynamin-related protein 1 (Drp1) is the key regulator of mitochondrial fission. We and others have reported a strong correlation between enhanced Drp1 activity and impaired skeletal muscle insulin sensitivity. This study aimed to determine whether Drp1 directly regulates skeletal muscle insulin sensitivity and whole-body glucose homeostasis. METHODS We employed tamoxifen-inducible skeletal muscle-specific heterozygous Drp1 knockout mice (mDrp1+/-). Male mDrp1+/- and wildtype (WT) mice were fed with either a high-fat diet (HFD) or low-fat diet (LFD) for four weeks, followed by tamoxifen injections for five consecutive days, and remained on their respective diet for another four weeks. In addition, we used primary human skeletal muscle cells (HSkMC) from lean, insulin-sensitive, and severely obese, insulin-resistant humans and transfected the cells with either a Drp1 shRNA (shDrp1) or scramble shRNA construct. Skeletal muscle and whole-body insulin sensitivity, skeletal muscle insulin signaling, mitochondrial network morphology, respiration, and H2O2 production were measured. RESULTS Partial deletion of the Drp1 gene in skeletal muscle led to improved whole-body glucose tolerance and insulin sensitivity (P < 0.05) in diet-induced obese, insulin-resistant mice but not in lean mice. Analyses of mitochondrial structure and function revealed that the partial deletion of the Drp1 gene restored mitochondrial dynamics, improved mitochondrial morphology, and reduced mitochondrial Complex I- and II-derived H2O2 (P < 0.05) under the condition of diet-induced obesity. In addition, partial deletion of Drp1 in skeletal muscle resulted in elevated circulating FGF21 (P < 0.05) and in a trend towards increase of FGF21 expression in skeletal muscle tissue (P = 0.095). In primary myotubes derived from severely obese, insulin-resistant humans, ShRNA-induced-knockdown of Drp1 resulted in enhanced insulin signaling, insulin-stimulated glucose uptake and reduced cellular reactive oxygen species (ROS) content compared to the shScramble-treated myotubes from the same donors (P < 0.05). CONCLUSION These data demonstrate that partial loss of skeletal muscle-specific Drp1 expression is sufficient to improve whole-body glucose homeostasis and insulin sensitivity under obese, insulin-resistant conditions, which may be, at least in part, due to reduced mitochondrial H2O2 production. In addition, our findings revealed divergent effects of Drp1 on whole-body metabolism under lean healthy or obese insulin-resistant conditions in mice.
Collapse
Affiliation(s)
- Benjamin A Kugler
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Jared Lourie
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nicolas Berger
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Nana Lin
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Paul Nguyen
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Edzana DosSantos
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Abir Ali
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Amira Sesay
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - H Grace Rosen
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Baby Kalemba
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Gregory M Hendricks
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC, USA; Human Performance Laboratory, East Carolina University, Greenville, NC, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Philimon Gona
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Tongjian You
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Zhen Yan
- Fralin Biomedical Research Institute Center for Exercise Medicine Research, Virginia Tech Carilion, Roanoke, VA, USA; Department of Human Nutrition, Foods, and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kai Zou
- Department of Exercise and Health Sciences, Robert and Donna Manning College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
8
|
Paula VG, Sinzato YK, Gallego FQ, Cruz LL, Aquino AMD, Scarano WR, Corrente JE, Volpato GT, Damasceno DC. Intergenerational Hyperglycemia Impairs Mitochondrial Function and Follicular Development and Causes Oxidative Stress in Rat Ovaries Independent of the Consumption of a High-Fat Diet. Nutrients 2023; 15:4407. [PMID: 37892483 PMCID: PMC10609718 DOI: 10.3390/nu15204407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
We analyzed the influence of maternal hyperglycemia and the post-weaning consumption of a high-fat diet on the mitochondrial function and ovarian development of the adult pups of diabetic rats. Female rats received citrate buffer (Control-C) or Streptozotocin (for diabetes induction-D) on postnatal day 5. These adult rats were mated to obtain female pups (O) from control dams (OC) or from diabetic dams (OD), and they received a standard diet (SD) or high-fat diet (HFD) from weaning to adulthood and were distributed into OC/SD, OC/HFD, OD/SD, and OD/HFD. In adulthood, the OGTT and AUC were performed. These rats were anesthetized and euthanized for sample collection. A high percentage of diabetic rats were found to be in the OD/HFD group (OD/HFD 40% vs. OC/SD 0% p < 0.05). Progesterone concentrations were lower in the experimental groups (OC/HFD 0.40 ± 0.04; OD/SD 0.30 ± 0.03; OD/HFD 0.24 ± 0.04 vs. OC/SD 0.45 ± 0.03 p < 0.0001). There was a lower expression of MFF (OD/SD 0.34 ± 0.33; OD/HFD 0.29 ± 0.2 vs. OC/SD 1.0 ± 0.41 p = 0.0015) and MFN2 in the OD/SD and OD/HFD groups (OD/SD 0.41 ± 0.21; OD/HFD 0.77 ± 0.18 vs. OC/SD 1.0 ± 0.45 p = 0.0037). The number of follicles was lower in the OD/SD and OD/HFD groups. A lower staining intensity for SOD and Catalase and higher staining intensity for MDA were found in ovarian cells in the OC/HFD, OD/SD, and OD/HFD groups. Fetal programming was responsible for mitochondrial dysfunction, ovarian reserve loss, and oxidative stress; the association of maternal diabetes with an HFD was responsible for the higher occurrence of diabetes in female adult pups.
Collapse
Affiliation(s)
- Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Larissa Lopes Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Ariana Musa de Aquino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| | - Gustavo Tadeu Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças 78600-000, MG, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Gynecology, Postgraduate Course on Tocogynecology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil
| |
Collapse
|
9
|
Maneechote C, Pintana H, Kerdphoo S, Janjek S, Chattipakorn N, Chattipakorn SC. Differential temporal therapies with pharmacologically targeted mitochondrial fission/fusion protect the brain against acute myocardial ischemia-reperfusion injury in prediabetic rats: The crosstalk between mitochondrial apoptosis and inflammation. Eur J Pharmacol 2023; 956:175939. [PMID: 37536625 DOI: 10.1016/j.ejphar.2023.175939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
An imbalance of brain mitochondrial dynamics, increases in brain inflammation and apoptosis, and increasing cognitive dysfunction, have been reported as being associated with prediabetes and myocardial ischemia-reperfusion (IR) injury. Since inhibiting mitochondrial fission with Mdivi-1 or promoting fusion with M1 had cardioprotective effects in myocardial IR injury and obesity, the neuroprotective roles of Mdivi-1 and M1 when administered at different time points of myocardial IR injury in obese prediabetes have never been determined. Ninety-six male Wistar rats were fed with either a normal (ND: n = 8) or a high-fat diet to induce prediabetes (HFD: n = 88) for 12 weeks. At week 13, all rats were subjected to left anterior descending coronary artery ligation for 30 min, followed by reperfusion for 120 min. HFD rats were randomly divided into 10 groups and assigned into either a pre-ischemic group treated with vehicle (HFV), pre-ischemic, during-ischemic, or onset of reperfusion groups treated with either Mdivi-1 (MDV), M1, or combined (COM). Heart function was examined invasively, with the heart being terminated to investigate myocardial infarction. Brains were collected to determine mitochondrial functions, inflammation, apoptosis, and pathological markers. Mdivi-1, M1, and COM treatment at different periods exerted cardioprotection against myocardial IR injury in HFD-fed rats by reducing infarct size and left ventricular dysfunction. All interventions also improved all brain pathologies against myocardial IR injury in prediabetic rats. These findings suggest that differential temporal modulation of mitochondrial dynamics may be appropriate regimens for preventing heart and brain complications after myocardial IR injury in obese prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sornram Janjek
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
10
|
Tincknell JB, Kugler B, Spicuzza H, Yan H, You T, Zou K. High-Intensity Interval Training Attenuates Impairment in Regulatory Protein Machinery of Mitochondrial Quality Control in Skeletal Muscle of Diet-Induced Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546902. [PMID: 37425824 PMCID: PMC10326985 DOI: 10.1101/2023.06.28.546902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mitochondrial quality control processes are essential in governing mitochondrial integrity and function. The purpose of the study was to examine the effects of 10 weeks of HIIT on the regulatory protein machinery of skeletal muscle mitochondrial quality control and whole-body glucose homeostasis in diet-induced obese mice. Male C57BL/6 mice were randomly assigned to a low-fat diet (LFD) or high-fat diet (HFD) group. After 10 weeks, HFD-fed mice were divided into sedentary and HIIT (HFD+HIIT) groups and remained on HFD for another 10 weeks (n=9/group). Graded exercise test, glucose and insulin tolerance tests, mitochondrial respiration and regulatory protein markers of mitochondrial quality control processes were determined by immunoblots. Ten weeks of HIIT enhanced ADP-stimulated mitochondrial respiration in diet-induced obese mice (P < 0.05) but did not improve whole-body insulin sensitivity. Importantly, the ratio of Drp1(Ser 616 ) over Drp1(Ser 637 ) phosphorylation, an indicator of mitochondrial fission, was attenuated in HFD-HIIT compared to HFD (-35.7%, P < 0.05). Regarding autophagy, skeletal muscle p62 content was lower in HFD group than LFD group (-35.1%, P < 0.05), however, such reduction was disappeared in HFD+HIIT group. In addition, LC3B II/I ratio was higher in HFD than LFD group (15.5%, P < 0.05) but was ameliorated in HFD+HIIT group (-29.9%, P < 0.05). Overall, our study demonstrated that 10 weeks of HIIT was effective in improving skeletal muscle mitochondrial respiration and the regulatory protein machinery of mitochondrial quality control in diet-induced obese mice through the alterations of mitochondrial fission protein Drp1 activity and p62/LC3B-mediated regulatory machinery of autophagy.
Collapse
|
11
|
Reynaud O, Wang J, Ayoub MB, Leduc-Gaudet JP, Mayaki D, Dulac M, Hussain SNA, Bergeron R, Gouspillou G. The impact of high-fat feeding and parkin overexpression on skeletal muscle mass, mitochondrial respiration, and H 2O 2 emission. Am J Physiol Cell Physiol 2023; 324:C366-C376. [PMID: 36571445 DOI: 10.1152/ajpcell.00388.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is a major risk factor for developing various health problems, including insulin resistance and type 2 diabetes. Although controversial, accumulation of mitochondrial dysfunction, and notably an increase in mitochondrial reactive oxygen species (ROS) production, was proposed as a key contributor leading to obesity-induced insulin resistance. Here, our goal was to investigate whether Parkin overexpression, a key regulator of the removal of dysfunctional mitochondria through mitophagy, could confer protection against obesity-induced mitochondrial dysfunction. To this end, intramuscular injections of adeno-associated viruses (AAVs) were performed to overexpress Parkin in limb muscle of 6-mo-old mice fed a control diet (CD) or a high-fat diet (HFD) for 12 wk. An AAV-expressing the green fluorescent protein (GFP) was used as control. HFD increased fat mass, altered glycemia, and resulted in insulin resistance. Parkin overexpression resulted in an increase in muscle mass in both CD and HFD mice. In CD mice, Parkin overexpression increased maximal mitochondrial respiration and lowered H2O2 emission. HFD increased mitochondrial respiration and, surprisingly, also lowered H2O2 emission. Parkin overexpression did not significantly impact mitochondrial function in HFD mice. Taken altogether, our results indicate that Parkin overexpression positively impacts muscle and mitochondrial health under basal conditions and challenges the notion that intrinsic mitochondrial dysfunction is involved in the development of insulin resistance caused by high-fat feeding.
Collapse
Affiliation(s)
- Olivier Reynaud
- Département des sciences biologiques, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jennifer Wang
- Département de médecine, Faculté de médecine, Université de Laval, Quebec City, Québec, Canada
| | - Marie-Belle Ayoub
- Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Venetian Institute of Molecular Medicine (VIMM) and Department of Biomedical Science, University of Padova, Padova, Italy
| | - Dominique Mayaki
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maude Dulac
- Département des sciences biologiques, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Sabah N A Hussain
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Raynald Bergeron
- École de kinésiologie et des sciences de l'activité physique, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des Sciences, Université du Québec à Montréal, Montréal, Québec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Maneechote C, Chunchai T, Apaijai N, Chattipakorn N, Chattipakorn SC. Pharmacological Targeting of Mitochondrial Fission and Fusion Alleviates Cognitive Impairment and Brain Pathologies in Pre-diabetic Rats. Mol Neurobiol 2022; 59:3690-3702. [PMID: 35364801 DOI: 10.1007/s12035-022-02813-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
It has recently been accepted that long-term high-fat diet (HFD) intake is a significant possible cause for prediabetes and cognitive and brain dysfunction through the disruption of brain mitochondrial function and dynamic balance. Although modulation of mitochondrial dynamics by inhibiting fission and promoting fusion has been shown to reduce the morbidity and mortality associated with a variety of chronic diseases, the impact of either pharmacological inhibition of mitochondrial fission (Mdivi-1) or stimulation of fusion (M1) on brain function in HFD-induced prediabetic models has never been studied. Thirty-two male Wistar rats were separated into 2 groups and fed either a normal diet (ND, n = 8) or HFD (n = 24) for 14 weeks. At week 12, HFD-fed rats were divided into 3 subgroups (n = 8/subgroup) and given an intraperitoneal injection of either saline, Mdivi-1 (1.2 mg/kg/day), or M1 (2 mg/kg/day) for 2 weeks. Cognitive function and metabolic parameters were determined toward the end of the protocol. The rats then were euthanized, and the brain was immediately removed in order to evaluate brain mitochondrial function and mitochondrial dynamics. HFD-fed rats experienced prediabetes, evidenced by elevated plasma insulin and the HOMA index, impaired mitochondrial function in the brain, altered dynamic regulation, and cognitive impairment were also found. Mdivi-1 and M1 treatment exerted neuroprotection to a similar extent by improving metabolic parameters, balancing mitochondrial dynamics, and reducing mitochondrial dysfunction, resulting in a gradual increase in cognitive function. Therefore, pharmacological targeting of mitochondrial fission and fusion protected the brain against chronic HFD-induced prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
13
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
14
|
Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem J 2021; 478:3809-3826. [PMID: 34751699 DOI: 10.1042/bcj20210145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
While the etiology of type 2 diabetes is multifaceted, the induction of insulin resistance in skeletal muscle is a key phenomenon, and impairments in insulin signaling in this tissue directly contribute to hyperglycemia. Despite the lack of clarity regarding the specific mechanisms whereby insulin signaling is impaired, the key role of a high lipid environment within skeletal muscle has been recognized for decades. Many of the proposed mechanisms leading to the attenuation of insulin signaling - namely the accumulation of reactive lipids and the pathological production of reactive oxygen species (ROS), appear to rely on this high lipid environment. Mitochondrial biology is a central component to these processes, as these organelles are almost exclusively responsible for the oxidation and metabolism of lipids within skeletal muscle and are a primary source of ROS production. Classic studies have suggested that reductions in skeletal muscle mitochondrial content and/or function contribute to lipid-induced insulin resistance; however, in recent years the role of mitochondria in the pathophysiology of insulin resistance has been gradually re-evaluated to consider the biological effects of alterations in mitochondrial content. In this respect, while reductions in mitochondrial content are not required for the induction of insulin resistance, mechanisms that increase mitochondrial content are thought to enhance mitochondrial substrate sensitivity and submaximal adenosine diphosphate (ADP) kinetics. Thus, this review will describe the central role of a high lipid environment in the pathophysiology of insulin resistance, and present both classic and contemporary views of how mitochondrial biology contributes to insulin resistance in skeletal muscle.
Collapse
|
15
|
Nederveen JP, Manta K, Bujak AL, Simone AC, Fuda MR, Nilsson MI, Hettinga BP, Hughes MC, Perry CGR, Tarnopolsky MA. A Novel Multi-Ingredient Supplement Activates a Browning Program in White Adipose Tissue and Mitigates Weight Gain in High-Fat Diet-Fed Mice. Nutrients 2021; 13:3726. [PMID: 34835983 PMCID: PMC8623014 DOI: 10.3390/nu13113726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
We investigated the effects of a novel multi-ingredient supplement comprised of polyphenol antioxidants and compounds known to facilitate mitochondrial function and metabolic enhancement (ME) in a mouse model of obesity. In this study, 6-week-old male C57/BL6J mice were placed on a high-fat diet (HFD; ~60% fat) for 6 weeks, with subsequent allocation into experimentalgroups for 4 weeks: HFD control, HFD + ME10 (10 components), HFD + ME7 (7 components), HFD + ME10 + EX, HFD + EX (where '+EX' animals exercised 3 days/week), and chow-fed control. After the intervention, HFD control animals had significantly greater body weight and fat mass. Despite the continuation of HFD, animals supplemented with multi-ingredient ME or who performed exercise training showed an attenuation of fat mass and preservation of lean body mass, which was further enhanced when combined (ME+EX). ME supplementation stimulated the upregulation of white and brown adipose tissue mRNA transcripts associated with mitochondrial biogenesis, browning, fatty acid transport, and fat metabolism. In WAT depots, this was mirrored by mitochodrial oxidative phosphorylation (OXPHOS) protein expression, and increased in vivo fat oxidation measured via CLAMS. ME supplementation also decreased systemic and local inflammation markers. Herein, we demonstrated that novel multi-ingredient nutritional supplements induced significant fat loss independent of physical activity while preserving muscle mass in obese mice. Mechanistically, these MEs appear to act by inducing a browning program in white adipose tissue and decreasing other pathophysiological impairments associated with obesity, including mitochondrial respiration alterations induced by HFD.
Collapse
Affiliation(s)
- Joshua P. Nederveen
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Katherine Manta
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Alexander C. Simone
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Matthew R. Fuda
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
| | - Mats I. Nilsson
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| | - Meghan C. Hughes
- Muscle Health Research Centre (MHRC), School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (M.C.H.); (C.G.R.P.)
| | - Christopher G. R. Perry
- Muscle Health Research Centre (MHRC), School of Kinesiology & Health Science, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada; (M.C.H.); (C.G.R.P.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, Faculty of Health Sciences, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (J.P.N.); (K.M.); (A.C.S.); (M.R.F.)
- Exerkine Corporation, McMaster University Medical Centre (MUMC), 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada; (A.L.B.); (M.I.N.); (B.P.H.)
| |
Collapse
|
16
|
Trimetazidine and exercise provide comparable improvements to high fat diet-induced muscle dysfunction through enhancement of mitochondrial quality control. Sci Rep 2021; 11:19116. [PMID: 34580406 PMCID: PMC8476493 DOI: 10.1038/s41598-021-98771-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023] Open
Abstract
Obesity induces skeletal muscle dysfunction. The pathogenesis of which appears to substantially involve mitochondrial dysfunction, arising from impaired quality control. Exercise is a major therapeutic strategy against muscle dysfunction. Trimetazidine, a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, the effects of Trimetazidine on regulating skeletal muscle function are largely unknown. Our present study used cell culture and obese mice models to test a novel hypothesis that Trimetazidine could improve muscle atrophy with similar results to exercise. In C2C12 cells, high palmitic acid-induced atrophy and mitochondrial dysfunction, which could be reversed by the treatment of Trimetazidine. In our animal models, with high-fat diet-induced obesity associated with skeletal muscle atrophy, Trimetazidine prevented muscle dysfunction, corrected metabolic abnormalities, and improved mitochondrial quality control and mitochondrial functions similarly to exercise. Thus, our study suggests that Trimetazidine successfully mimics exercise to enhance mitochondrial quality control leading to improved high-fat diet-induced muscle dysfunction.
Collapse
|
17
|
Cartwright DM, Oakey LA, Fletcher RS, Doig CL, Heising S, Larner DP, Nasteska D, Berry CE, Heaselgrave SR, Ludwig C, Hodson DJ, Lavery GG, Garten A. Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity. J Endocrinol 2021; 251:111-123. [PMID: 34370682 PMCID: PMC8494379 DOI: 10.1530/joe-21-0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 11/15/2022]
Abstract
Supplementation with precursors of NAD has been shown to prevent and reverse insulin resistance, mitochondrial dysfunction, and liver damage in mouse models of diet-induced obesity. We asked whether the beneficial effects of supplementation with the NAD precursor nicotinamide riboside (NR) are dependent on mouse strain. We compared the effects of NR supplementation on whole-body energy metabolism and mitochondrial function in mildly obese C57BL/6N and C57BL/6J mice, two commonly used strains to investigate metabolism. Male C57BL/6N and C57BL/6J mice were fed a high-fat diet (HFD) or standard chow with or without NR supplementation for 8 weeks. Body and organ weights, glucose tolerance, and metabolic parameters as well as mitochondrial O2 flux in liver and muscle fibers were assessed. We found that NR supplementation had no influence on body or organ weight, glucose metabolism or hepatic lipid accumulation, energy expenditure, or metabolic flexibility but increased mitochondrial respiration in soleus muscle in both mouse strains. Strain-dependent differences were detected for body and fat depot weight, fasting blood glucose, hepatic lipid accumulation, and energy expenditure. We conclude that, in mild obesity, NR supplementation does not alter metabolic phenotype in two commonly used laboratory mouse strains.
Collapse
Affiliation(s)
- David M Cartwright
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Lucy A Oakey
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Craig L Doig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Silke Heising
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean P Larner
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Caitlin E Berry
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sam R Heaselgrave
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antje Garten
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Pediatric Research Center, Hospital for Child and Adolescent Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Kugler BA, Deng W, Duguay AL, Garcia JP, Anderson MC, Nguyen PD, Houmard JA, Zou K. Pharmacological inhibition of dynamin-related protein 1 attenuates skeletal muscle insulin resistance in obesity. Physiol Rep 2021; 9:e14808. [PMID: 33904649 PMCID: PMC8077121 DOI: 10.14814/phy2.14808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/27/2023] Open
Abstract
Dynamin-related protein-1 (Drp1) is a key regulator in mitochondrial fission. Excessive Drp1-mediated mitochondrial fission in skeletal muscle under the obese condition is associated with impaired insulin action. However, it remains unknown whether pharmacological inhibition of Drp1, using the Drp1-specific inhibitor Mitochondrial Division Inhibitor 1 (Mdivi-1), is effective in alleviating skeletal muscle insulin resistance and improving whole-body metabolic health under the obese and insulin-resistant condition. We subjected C57BL/6J mice to a high-fat diet (HFD) or low-fat diet (LFD) for 5-weeks. HFD-fed mice received Mdivi-1 or saline injections for the last week of the diet intervention. Additionally, myotubes derived from obese insulin-resistant humans were treated with Mdivi-1 or saline for 12 h. We measured glucose area under the curve (AUC) from a glucose tolerance test (GTT), skeletal muscle insulin action, mitochondrial dynamics, respiration, and H2 O2 content. We found that Mdivi-1 attenuated impairments in skeletal muscle insulin signaling and blood glucose AUC from a GTT induced by HFD feeding (p < 0.05). H2 O2 content was elevated in skeletal muscle from the HFD group (vs. LFD, p < 0.05), but was reduced with Mdivi-1 treatment, which may partially explain the improvement in skeletal muscle insulin action. Similarly, Mdivi-1 enhanced the mitochondrial network structure, reduced reactive oxygen species, and improved insulin action in myotubes from obese humans (vs. saline, p < 0.05). In conclusion, inhibiting Drp1 with short-term Mdivi-1 administration attenuates the impairment in skeletal muscle insulin signaling and improves whole-body glucose tolerance in the setting of obesity-induced insulin resistance. Targeting Drp1 may be a viable approach to treat obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Benjamin A. Kugler
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| | - Wenqian Deng
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
- School of Sports Medicine and HealthChengdu Sport InstituteChengduChina
| | - Abigail L. Duguay
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| | - Jessica P. Garcia
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| | - Meaghan C. Anderson
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| | - Paul D. Nguyen
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| | - Joseph A. Houmard
- Department of KinesiologyEast Carolina UniversityGreenvilleNCUSA
- Human Performance LaboratoryEast Carolina UniversityGreenvilleNCUSA
| | - Kai Zou
- Department of Exercise and Health SciencesCollege of Nursing and Health SciencesUniversity of Massachusetts BostonBostonMAUSA
| |
Collapse
|
19
|
High fat suppresses SOD1 activity by reducing copper chaperone for SOD1 associated with neurodegeneration and memory decline. Life Sci 2021; 272:119243. [PMID: 33607157 DOI: 10.1016/j.lfs.2021.119243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023]
Abstract
High fat consumption leads to reactive oxygen species (ROS) which is associated with age-progressive neurological disorders. Cu/Zn superoxide dismutase (SOD1) is a critical enzyme against ROS. However, the relationship between SOD1 and the high-fat-induced ROS and neurodegeneration is poorly known. Here we showed that, upon treatment with a saturated fatty acid palmitic acid (PA), the SOD1 activity was decreased in mouse neuronal HT-22 cell line accompanied by elevation of ROS, but not in mouse microglial BV-2 cell line. We further showed that PA decreased the levels of copper chaperone for SOD1 (CCS) in HT-22 cells, which promoted the nuclear import of SOD1 and decreased its activity. We demonstrated that the reduction of CCS is involved in the PA-induced decrease of SOD1 activity and elevation of ROS. In addition, compared with the adult mice fed with a standard diet, the high-fat-diet adult mice presented an increase of plasma free fatty acids, reduction of hippocampal SOD1 activity and CCS, mitochondrial degeneration and long-term memory decline. Taken together, our findings suggest that the high-fat-induced lower CCS level is essential for SOD1 suppression which may be associated with neurodegeneration and cognitive decline.
Collapse
|
20
|
Heo JW, No MH, Cho J, Choi Y, Cho EJ, Park DH, Kim TW, Kim CJ, Seo DY, Han J, Jang YC, Jung SJ, Kang JH, Kwak HB. Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice. FASEB J 2021; 35:e21340. [PMID: 33455027 DOI: 10.1096/fj.202002394r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study is to determine whether moderate aerobic exercise training improves high-fat diet-induced alterations in mitochondrial function and structure in the skeletal muscle. Male 4-week-old C57BL/6 mice were randomly divided into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and high-fat diet plus exercise (HFD + EX). After obesity was induced by 20 weeks of 60% HFD, treadmill exercise training was performed at 13-16 m/min, 40-50 min/day, and 6 days/week for 12 weeks. Mitochondrial structure, function, and dynamics, and mitophagy were analyzed in the skeletal muscle fibers from the red gastrocnemius. Exercise training increased mitochondrial number and area and reduced high-fat diet-induced obesity and hyperglycemia. In addition, exercise training attenuated mitochondrial dysfunction in the permeabilized myofibers, indicating that HFD-induced decrease of mitochondrial O2 respiration and Ca2+ retention capacity and increase of mitochondrial H2 O2 emission were attenuated in the HFD + EX group compared to the HFD group. Exercise also ameliorated HFD-induced imbalance of mitochondrial fusion and fission, demonstrating that HFD-induced decrease in fusion protein levels was elevated, and increase in fission protein levels was reduced in the HFD + EX groups compared with the HFD group. Moreover, dysregulation of mitophagy induced by HFD was mitigated in the HFD + EX group, indicating a decrease in PINK1 protein level. Our findings demonstrated that moderate aerobic exercise training mitigated obesity-induced insulin resistance by improving mitochondrial function, and reversed obesity-induced mitochondrial structural damage by improving mitochondrial dynamics and mitophagy, suggesting that moderate aerobic exercise training may play a therapeutic role in protecting the skeletal muscle against mitochondrial impairments and insulin resistance induced by obesity.
Collapse
Affiliation(s)
- Jun-Won Heo
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Jinkyung Cho
- Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Youngju Choi
- Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| |
Collapse
|
21
|
Ehrlicher SE, Stierwalt HD, Newsom SA, Robinson MM. Short-Term High-Fat Feeding Does Not Alter Mitochondrial Lipid Respiratory Capacity but Triggers Mitophagy Response in Skeletal Muscle of Mice. Front Endocrinol (Lausanne) 2021; 12:651211. [PMID: 33868178 PMCID: PMC8044530 DOI: 10.3389/fendo.2021.651211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Lipid overload of the mitochondria is linked to the development of insulin resistance in skeletal muscle which may be a contributing factor to the progression of type 2 diabetes during obesity. The targeted degradation of mitochondria through autophagy, termed mitophagy, contributes to the mitochondrial adaptive response to changes in dietary fat. Our previous work demonstrates long-term (2-4 months) consumption of a high-fat diet increases mitochondrial lipid oxidation capacity but does not alter markers of mitophagy in mice. The purpose of this study was to investigate initial stages of mitochondrial respiratory adaptations to high-fat diet and the activation of mitophagy. C57BL/6J mice consumed either a low-fat diet (LFD, 10% fat) or high-fat diet (HFD, 60% fat) for 3 or 7 days. We measured skeletal muscle mitochondrial respiration and protein markers of mitophagy in a mitochondrial-enriched fraction of skeletal muscle. After 3 days of HFD, mice had lower lipid-supported oxidative phosphorylation alongside greater electron leak compared with the LFD group. After 7 days, there were no differences in mitochondrial respiration between diet groups. HFD mice had greater autophagosome formation potential (Beclin-1) and greater activation of mitochondrial autophagy receptors (Bnip3, p62) in isolated mitochondria, but no difference in downstream autophagosome (LC3II) or lysosome (Lamp1) abundance after both 3 and 7 days compared with the LFD groups. In cultured myotubes, palmitate treatment decreased mitochondrial membrane potential and hydrogen peroxide treatment increased accumulation of upstream mitophagy markers. We conclude that several days of high-fat feeding stimulated upstream activation of skeletal muscle mitophagy, potentially through lipid-induced oxidative stress, without downstream changes in respiration.
Collapse
|
22
|
Genders AJ, Holloway GP, Bishop DJ. Are Alterations in Skeletal Muscle Mitochondria a Cause or Consequence of Insulin Resistance? Int J Mol Sci 2020; 21:ijms21186948. [PMID: 32971810 PMCID: PMC7554894 DOI: 10.3390/ijms21186948] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a major site of glucose uptake following a meal, skeletal muscle has an important role in whole-body glucose metabolism. Evidence in humans and animal models of insulin resistance and type 2 diabetes suggests that alterations in mitochondrial characteristics accompany the development of skeletal muscle insulin resistance. However, it is unclear whether changes in mitochondrial content, respiratory function, or substrate oxidation are central to the development of insulin resistance or occur in response to insulin resistance. Thus, this review will aim to evaluate the apparent conflicting information placing mitochondria as a key organelle in the development of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Amanda J. Genders
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
- Correspondence: ; Tel.: +61-3-9919-9556
| | - Graham P. Holloway
- Dept. Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne 8001, Australia;
| |
Collapse
|
23
|
Politis-Barber V, Brunetta HS, Paglialunga S, Petrick HL, Holloway GP. Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. Am J Physiol Endocrinol Metab 2020; 319:E376-E387. [PMID: 32543945 PMCID: PMC7473917 DOI: 10.1152/ajpendo.00028.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
White adipose tissue (WAT) dysfunction in obesity is implicated in the onset of whole body insulin resistance. Alterations in mitochondrial bioenergetics, namely impaired mitochondrial respiration and increased mitochondrial reactive oxygen species (mtROS) production, have been suggested to contribute to this metabolic dysregulation. However, techniques investigating mitochondrial function are classically normalized to tissue weight, which may be confounding when considering obesity-related adipocyte hypertrophy. Furthermore, the effect of long-term high-fat diet (HFD) on mtROS in WAT has yet to be elucidated. Therefore, we sought to determine the HFD-mediated temporal changes in mitochondrial respiration and mtROS emission in WAT. C57BL/6N mice received low-fat diet or HFD for 1 or 8 wk and changes in inguinal WAT (iWAT) and epididymal WAT (eWAT) were assessed. While tissue weight-normalized mitochondrial respiration was reduced in iWAT following 8-wk HFD-feeding, this effect was mitigated when adipocyte cell size and/or number were considered. These data suggest HFD does not impair mitochondrial respiratory capacity per adipocyte within WAT. In support of this assertion, within eWAT compensatory increases in lipid-supported and maximal succinate-supported respiration occurred at 8 wk despite cell hypertrophy and increases in WAT inflammation. Although these data suggest impairments in mitochondrial respiration do not contribute to HFD-mediated WAT phenotype, lipid-supported mtROS emission increased following 1-wk HFD in eWAT, while both lipid and carbohydrate-supported mtROS were increased at 8 wk in both depots. Combined, these data establish that while HFD does not impair adipocyte mitochondrial respiratory capacity, increased mtROS is an enduring physiological occurrence within WAT in HFD-induced obesity.
Collapse
Affiliation(s)
| | - Henver S. Brunetta
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- 2Department of Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Sabina Paglialunga
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Heather L. Petrick
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Graham P. Holloway
- 1Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
24
|
Low-Intensity Exercise Training Additionally Increases Mitochondrial Dynamics Caused by High-Fat Diet (HFD) but Has No Additional Effect on Mitochondrial Biogenesis in Fast-Twitch Muscle by HFD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155461. [PMID: 32751208 PMCID: PMC7432492 DOI: 10.3390/ijerph17155461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023]
Abstract
This study examines how the high-fat diet (HFD) affects mitochondrial dynamics and biogenesis, and also whether combining it with low-intensity endurance exercise adds to these effects. Six 8-week-old male Sprague–Dawley (SD) rats were put on control (CON; standard chow diet), HF (HFD intake), and HFEx (HFD + low-intensity treadmill exercise) for 6 weeks. As a result, no change in body weight was observed among the groups. However, epididymal fat mass increased significantly in the two groups that had been given HFD. Blood free fatty acid (FFA) also increased significantly in the HF group. While HFD increased insulin resistance (IR), this was improved significantly in the HFEx group. HFD also significantly increased mitochondrial biogenesis-related factors (PPARδ, PGC-1α, and mtTFA) and mitochondrial electron transport chain proteins; however, no additional effect from exercise was observed. Mitochondrial dynamic-related factors were also affected: Mfn2 increased significantly in the HFEx group, while Drp1 and Fis-1 increased significantly in both the HF and HFEx groups. The number of mitochondria in the subsarcolemmal region, and their size in the subsarcolemmal and intermyofibrillar regions, also increased significantly in the HFEx group. Taken overall, these results show that HFD in combination with low-intensity endurance exercise has no additive effect on mitochondrial biogenesis, although it does have such an effect on mitochondrial dynamics by improving IR.
Collapse
|
25
|
Obri A, Serra D, Herrero L, Mera P. The role of epigenetics in the development of obesity. Biochem Pharmacol 2020; 177:113973. [DOI: 10.1016/j.bcp.2020.113973] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
|
26
|
Mitochondrial dynamic modulation exerts cardiometabolic protection in obese insulin-resistant rats. Clin Sci (Lond) 2020; 133:2431-2447. [PMID: 31808509 DOI: 10.1042/cs20190960] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022]
Abstract
Obese insulin resistance impairs cardiac mitochondrial dynamics by increasing mitochondrial fission and decreasing mitochondrial fusion, leading to mitochondrial damage, myocardial cell death and cardiac dysfunction. Therefore, inhibiting fission and promoting fusion could provide cardioprotection in this pre-diabetic condition. We investigated the combined effects of the mitochondrial fission inhibitor (Mdivi1) and fusion promoter (M1) on cardiac function in obese insulin-resistant rats. We hypothesized that Mdivi1 and M1 protect heart against obese insulin-resistant condition, but also there will be greater improvement using Mdivi1 and M1 as a combined treatment. Wistar rats (n=56, male) were randomly assigned to a high-fat diet (HFD) and normal diet (ND) fed groups. After feeding with either ND or HFD for 12 weeks, rats in each dietary group were divided into groups to receive either the vehicle, Mdivi1 (1.2 mg/kg, i.p.), M1 (2 mg/kg, i.p.) or combined treatment for 14 days. The cardiac function, cardiac mitochondrial function, metabolic and biochemical parameters were monitored before and after the treatment. HFD rats developed obese insulin resistance which led to impaired dynamics balance and function of mitochondria, increased cardiac cell apoptosis and dysfunction. Although Mdivi1, M1 and combined treatment exerted similar cardiometabolic benefits in HFD rats, the combined therapy showed a greater reduction in mitochondrial reactive oxygen species (ROS). Mitochondrial fission inhibitor and fusion promoter exerted similar levels of cardioprotection in a pre-diabetic condition.
Collapse
|
27
|
Carvalho E, Adams SH, Børsheim E, Blackburn ML, Ono-Moore KD, Cotter M, Bowlin AK, Yeruva L. Neonatal diet impacts liver mitochondrial bioenergetics in piglets fed formula or human milk. BMC Nutr 2020; 6:13. [PMID: 32318270 PMCID: PMC7158137 DOI: 10.1186/s40795-020-00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neonatal diet impacts many physiological systems and can modify risk for developing metabolic disease and obesity later in life. Less well studied is the effect of postnatal diet (e.g., comparing human milk (HM) or milk formula (MF) feeding) on mitochondrial bioenergetics. Such effects may be most profound in splanchnic tissues that would have early exposure to diet-associated or gut microbe-derived factors. METHODS To address this question, we measured ileal and liver mitochondrial bioenergetics phenotypes in male piglets fed with HM or MF from day 2 to day 21 age. Ileal and liver tissue were processed for mitochondrial respiration (substrate only [pyruvate, malate, glutamate], substrate + ADP, and proton "leak" post-oligomycin; measured by Oroboros methods), mitochondrial DNA (mtDNA) and metabolically-relevant gene expression analyses. RESULTS No differences between the diet groups were observed in mitochondrial bioenergetics indices in ileal tissue. In contrast, ADP-dependent liver Complex I-linked OXPHOS capacity and Complex I + II-linked OXPHOS capacity were significantly higher in MF animals relative to HM fed piglets. Interestingly, p53, Trap1, and Pparβ transcript abundances were higher in MF-fed relative to HM-fed piglets in the liver. Mitochondrial DNA copy numbers (normalized to nuclear DNA) were similar within-tissue regardless of postnatal diet, and were ~ 2-3 times higher in liver vs. ileal tissue. CONCLUSION While mechanisms remain to be identified, the data indicate that neonatal diet can significantly impact liver mitochondrial bioenergetics phenotypes, even in the absence of a change in mtDNA abundance. Since permeabilized liver mitochondrial respiration was increased in MF piglets only in the presence of ADP, it suggests that formula feeding led to a higher ATP turnover. Specific mechanisms and signals involved with neonatal diet-associated differences in liver bioenergetics remain to be elucidated.
Collapse
Affiliation(s)
- Eugenia Carvalho
- Department of Geriatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sean H. Adams
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Elisabet Børsheim
- Department of Geriatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Kikumi D. Ono-Moore
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Matthew Cotter
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Anne K. Bowlin
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| | - Laxmi Yeruva
- Arkansas Children’s Research Institute, Little Rock, AR USA
- Department of Pediatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, USA
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
| |
Collapse
|
28
|
Yuan J, Jiang Q, Song L, Liu Y, Li M, Lin Q, Li Y, Su K, Ma Z, Wang Y, Liu D, Dong J. L-Carnitine Is Involved in Hyperbaric Oxygen-Mediated Therapeutic Effects in High Fat Diet-Induced Lipid Metabolism Dysfunction. Molecules 2020; 25:molecules25010176. [PMID: 31906305 PMCID: PMC6982999 DOI: 10.3390/molecules25010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/14/2019] [Accepted: 12/25/2019] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism dysfunction and obesity are serious health issues to human beings. The current study investigated the effects of hyperbaric oxygen (HBO) against high fat diet (HFD)-induced lipid metabolism dysfunction and the roles of L-carnitine. C57/B6 mice were fed with HFD or normal chew diet, with or without HBO treatment. Histopathological methods were used to assess the adipose tissues, serum free fatty acid (FFA) levels were assessed with enzymatic methods, and the endogenous circulation and skeletal muscle L-carnitine levels were assessed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, western blotting was used to assess the expression levels of PPARα, CPT1b, pHSL/HSL, and UCP1. HFD treatment increased body/adipose tissue weight, serum FFA levels, circulation L-carnitines and decreased skeletal muscle L-carnitine levels, while HBO treatment alleviated such changes. Moreover, HFD treatment increased fatty acid deposition in adipose tissues and decreased the expression of HSL, while HBO treatment alleviated such changes. Additionally, HFD treatment decreased the expression levels of PPARα and increased those of CPT1b in skeletal muscle, while HBO treatment effectively reverted such changes as well. In brown adipose tissues, HFD increased the expression of UCP1 and the phosphorylation of HSL, which was abolished by HBO treatment as well. In summary, HBO treatment may alleviate HFD-induced fatty acid metabolism dysfunction in C57/B6 mice, which seems to be associated with circulation and skeletal muscle L-carnitine levels and PPARα expression.
Collapse
Affiliation(s)
- Junhua Yuan
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| | - Limin Song
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yuan Liu
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Manwen Li
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Qian Lin
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
| | - Yanrun Li
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Kaizhen Su
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Zhengye Ma
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Yifei Wang
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Defeng Liu
- Department of Clinical Medicine, Medical Collage, Qingdao University, Qingdao 266071, China; (Y.L.); (K.S.); (Z.M.); (Y.W.); (D.L.)
| | - Jing Dong
- Department of Specialty Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China; (J.Y.); (L.S.); (Y.L.); (M.L.); (Q.L.)
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Correspondence: (Q.J.); (J.D.); Tel.: +86-18300267138 (Q.J.); +86-0532-83780035 (J.D.)
| |
Collapse
|
29
|
Young A, Gardiner D, Kuksal N, Gill R, O'Brien M, Mailloux RJ. Deletion of the Glutaredoxin-2 Gene Protects Mice from Diet-Induced Weight Gain, Which Correlates with Increased Mitochondrial Respiration and Proton Leaks in Skeletal Muscle. Antioxid Redox Signal 2019; 31:1272-1288. [PMID: 31317766 DOI: 10.1089/ars.2018.7715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aims: The aim of this study was to determine whether deleting the gene encoding glutaredoxin-2 (GRX2) could protect mice from diet-induced weight gain. Results: Subjecting wild-type littermates to a high fat diet (HFD) induced a significant increase in overall body mass, white adipose tissue hypertrophy, lipid droplet accumulation in hepatocytes, and higher circulating insulin and triglyceride levels. In contrast, GRX2 heterozygotes (GRX2+/-) fed an HFD had a body mass, white adipose tissue weight, and hepatic and circulating lipid and insulin levels similar to littermates fed a control diet. Examination of the bioenergetics of muscle mitochondria revealed that this protective effect was associated with an increase in respiration and proton leaks. Muscle mitochondria from GRX2+/- mice had a ∼2- to 3-fold increase in state 3 (phosphorylating) respiration when pyruvate/malate or succinate served as substrates and a ∼4-fold increase when palmitoyl-carnitine was being oxidized. Proton leaks were ∼2- to 3-fold higher in GRX2+/- muscle mitochondria. Treatment of mitochondria with either guanosine diphosphate, genipin, or octanoyl-carnitine revealed that the higher rate of O2 consumption under state 4 conditions was associated with increased leaks through uncoupling protein-3 and adenine nucleotide translocase. GRX2+/- mitochondria also had better protection from oxidative distress. Innovation: For the first time, we demonstrate that deleting the Grx2 gene can protect from diet-induced weight gain and the development of obesity-related disorders. Conclusions: Deleting the Grx2 gene protects mice from diet-induced weight gain. This effect was related to an increase in muscle fuel combustion, mitochondrial respiration, proton leaks, and reactive oxygen species handling. Antioxid. Redox Signal. 31, 1272-1288.
Collapse
Affiliation(s)
- Adrian Young
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Danielle Gardiner
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Nidhi Kuksal
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Robert Gill
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Marisa O'Brien
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| | - Ryan J Mailloux
- Department of Biochemistry, Faculty of Science, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
30
|
Gundersen AE, Kugler BA, McDonald PM, Veraksa A, Houmard JA, Zou K. Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes. Appl Physiol Nutr Metab 2019; 45:283-293. [PMID: 31356754 DOI: 10.1139/apnm-2019-0208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Healthy mitochondrial networks are maintained via balanced integration of mitochondrial quality control processes (biogenesis, fusion, fission, and mitophagy). The purpose of this study was to investigate the effects of severe obesity and type 2 diabetes (T2D) on mitochondrial network morphology and expression of proteins regulating mitochondrial quality control processes in cultured human myotubes. Primary human skeletal muscle cells were isolated from biopsies from lean, severely obese nondiabetic individuals and severely obese type 2 diabetic individuals (n = 8-9/group) and were differentiated to myotubes. Mitochondrial network morphology was determined in live cells via confocal microscopy and protein markers of mitochondrial quality control were measured by immunoblotting. Myotubes from severely obese nondiabetic and type 2 diabetic humans exhibited fragmented mitochondrial networks (P < 0.05). Mitochondrial fission protein Drp1 (Ser616) phosphorylation was higher in myotubes from severely obese nondiabetic humans when compared with the lean controls (P < 0.05), while mitophagy protein Parkin expression was lower in myotubes from severely obese individuals with T2D in comparison to the other groups (P < 0.05). These data suggest that regulatory proteins in mitochondrial quality control processes, specifically mitochondrial fission protein Drp1 (Ser616) phosphorylation and mitophagy protein Parkin, are intrinsically dysregulated at cellular level in skeletal muscle from severely obese nondiabetic and type 2 diabetic humans, respectively. These differentially expressed mitochondrial quality control proteins may play a role in mitochondrial fragmentation evident in skeletal muscle from severely obese and type 2 diabetic humans. Novelty Mitochondrial network morphology and mitochondrial quality control proteins are intrinsically dysregulated in skeletal muscle cells from severely obese humans with or without T2D.
Collapse
Affiliation(s)
- Anders E Gundersen
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Benjamin A Kugler
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Paul M McDonald
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Joseph A Houmard
- Human Performance Laboratory, East Carolina University, Greenville, NC 27858, USA.,Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Kai Zou
- Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA
| |
Collapse
|
31
|
Andrich DE, Melbouci L, Ou Y, Auclair N, Mercier J, Grenier JC, Lira FS, Barreiro LB, Danialou G, Comtois AS, Lavoie JC, St-Pierre DH. A Short-Term High-Fat Diet Alters Glutathione Levels and IL-6 Gene Expression in Oxidative Skeletal Muscles of Young Rats. Front Physiol 2019; 10:372. [PMID: 31024337 PMCID: PMC6468044 DOI: 10.3389/fphys.2019.00372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 01/03/2023] Open
Abstract
Obesity and ensuing disorders are increasingly prevalent worldwide. High-fat diets (HFD) and diet-induced obesity have been shown to induce oxidative stress and inflammation while altering metabolic homeostasis in many organs, including the skeletal muscle. We previously observed that 14 days of HFD impairs contractile functions of the soleus (SOL) oxidative skeletal muscle. However, the mechanisms underlying these effects are not clarified. In order to determine the effects of a short-term HFD on skeletal muscle glutathione metabolism, young male Wistar rats (100–125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Reduced (GSH) and disulfide (GSSG) glutathione levels were measured in the SOL. The expression of genes involved in the regulation of glutathione metabolism, oxidative stress, antioxidant defense and inflammation were measured by RNA-Seq. We observed a significant 25% decrease of GSH levels in the SOL muscle. Levels of GSSG and the GSH:GSSG ratio were similar in both groups. Further, we observed a 4.5 fold increase in the expression of pro-inflammatory cytokine interleukin 6 (IL-6) but not of other cytokines or markers of inflammation and oxidative stress. We hereby demonstrate that a short-term HFD significantly lowers SOL muscle GSH levels. This effect could be mediated through the increased expression of IL-6. Further, the skeletal muscle antioxidant defense could be impaired under cellular stress. We surmise that these early alterations could contribute to HFD-induced insulin resistance observed in longer protocols.
Collapse
Affiliation(s)
- David E Andrich
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Lilya Melbouci
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Ya Ou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Nickolas Auclair
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | - Jocelyne Mercier
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| | | | - Fábio Santos Lira
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Luis B Barreiro
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Pédiatrie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Gawiyou Danialou
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Royal Military College Saint-Jean, Saint-Jean-sur-Richelieu, QC, Canada
| | - Alain-Steve Comtois
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Jean-Claude Lavoie
- Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada.,Département de Nutrition, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - David H St-Pierre
- Département des Sciences de l'Activité Physique, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée (GRAPA), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
32
|
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol Biol Rep 2019; 46:2273-2283. [PMID: 30747384 DOI: 10.1007/s11033-019-04681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.
Collapse
|
33
|
Leduc-Gaudet JP, Reynaud O, Chabot F, Mercier J, Andrich DE, St-Pierre DH, Gouspillou G. The impact of a short-term high-fat diet on mitochondrial respiration, reactive oxygen species production, and dynamics in oxidative and glycolytic skeletal muscles of young rats. Physiol Rep 2019; 6. [PMID: 29479852 PMCID: PMC6430054 DOI: 10.14814/phy2.13548] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022] Open
Abstract
Multiple aspects of mitochondrial function and dynamics remain poorly studied in the skeletal muscle of pediatric models in response to a short-term high-fat diet (HFD). This study investigated the impact of a short-term HFD on mitochondrial function and dynamics in the oxidative soleus (SOL) and glycolytic extensor digitorum longus (EDL) muscles in young rats. Young male Wistar rats were submitted to either HFD or normal chow (NCD) diets for 14 days. Permeabilized myofibers from SOL and EDL were prepared to assess mitochondrial respiration and reactive oxygen species (ROS) production. The expression and content of protein involved in mitochondrial metabolism and dynamics (fusion/fission) were also quantified. While no effects of HFD was observed on mitochondrial respiration when classical complex I and II substrates were used, both SOL and EDL of rats submitted to a HFD displayed higher basal and ADP-stimulated respiration rates when Malate + Palmitoyl-L-carnitine were used as substrates. HFD did not alter ROS production and markers of mitochondrial content. The expression of CPT1b was significantly increased in SOL and EDL of HFD rats. Although the expression of UCP3 was increased in SOL and EDL muscles from HFD rats, mitochondrial coupling efficiency was not altered. In SOL of HFD rats, the transcript levels of Mfn2 and Fis1 were significantly upregulated. The expression and content of proteins regulating mitochondrial dynamics was not modulated by HFD in the EDL. Finally, DRP1 protein content was increased by over fourfold in the SOL of HFD rats. Taken altogether, our findings show that exposing young animals to short-term HFD results in an increased capacity of skeletal muscle mitochondria to oxidize fatty acids, without altering ROS production, coupling efficiency, and mitochondrial content. Our results also highlight that the impact of HFD on mitochondrial dynamics appears to be muscle specific.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Canada.,Meakins-Christie Laboratories, Department of Medicine and Division of Experimental Medicine, McGill University, Québec, Canada
| | - Olivier Reynaud
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Canada
| | - François Chabot
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Canada
| | | | - David E Andrich
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada
| | - David H St-Pierre
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Canada.,Centre de Recherche du CHU Sainte-Justine, Montréal, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'activité physique, Faculté des Sciences, UQAM, Montréal, Canada.,Groupe de recherche en Activité Physique Adaptée, Montréal, Canada.,Centre de Recherche de l'Institut, Universitaire de Gériatrie de Montréal, Montréal, Canada
| |
Collapse
|
34
|
Fealy CE, Mulya A, Axelrod CL, Kirwan JP. Mitochondrial dynamics in skeletal muscle insulin resistance and type 2 diabetes. Transl Res 2018; 202:69-82. [PMID: 30153426 DOI: 10.1016/j.trsl.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/08/2018] [Accepted: 07/23/2018] [Indexed: 01/09/2023]
Abstract
The traditional view of mitochondria as isolated, spherical, energy producing organelles, is undergoing a revolutionary change. Emerging data show that mitochondria form a dynamic reticulum that is regulated by cycles of fission and fusion. The discovery of proteins that modulate these activities has led to important advances in understanding human disease. Here, we review the latest evidence that connects the emerging field of mitochondrial dynamics to skeletal muscle insulin resistance and propose some potential mechanisms that may explain the long debated link between mitochondria and the development of type 2 diabetes.
Collapse
Affiliation(s)
- CiarÁn E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher L Axelrod
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - John P Kirwan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana.
| |
Collapse
|
35
|
Andrich DE, Ou Y, Melbouci L, Leduc-Gaudet JP, Auclair N, Mercier J, Secco B, Tomaz LM, Gouspillou G, Danialou G, Comtois AS, St-Pierre DH. Altered Lipid Metabolism Impairs Skeletal Muscle Force in Young Rats Submitted to a Short-Term High-Fat Diet. Front Physiol 2018; 9:1327. [PMID: 30356919 PMCID: PMC6190893 DOI: 10.3389/fphys.2018.01327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity and ensuing disorders are increasingly prevalent in young populations. Prolonged exposure to high-fat diets (HFD) and excessive lipid accumulation were recently suggested to impair skeletal muscle functions in rodents. We aimed to determine the effects of a short-term HFD on skeletal muscle function in young rats. Young male Wistar rats (100–125 g) were fed HFD or a regular chow diet (RCD) for 14 days. Specific force, resistance to fatigue and recovery were tested in extensor digitorum longus (EDL; glycolytic) and soleus (SOL; oxidative) muscles using an ex vivo muscle contractility system. Muscle fiber typing and insulin signaling were analyzed while intramyocellular lipid droplets (LD) were characterized. Expression of key markers of lipid metabolism was also measured. Weight gain was similar for both groups. Specific force was decreased in SOL, but not in EDL of HFD rats. Muscle resistance to fatigue and force recovery were not altered in response to the diets. Similarly, muscle fiber type distribution and insulin signaling were not influenced by HFD. On the other hand, percent area and average size of intramyocellular LDs were significantly increased in the SOL of HFD rats. These effects were consistent with the increased expression of several mediators of lipid metabolism in the SOL muscle. A short-term HFD impairs specific force and alters lipid metabolism in SOL, but not EDL muscles of young rats. This indicates the importance of clarifying the early mechanisms through which lipid metabolism affects skeletal muscle functions in response to obesogenic diets in young populations.
Collapse
Affiliation(s)
- David E Andrich
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Montreal, QC, Canada
| | - Ya Ou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Lilya Melbouci
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Jean-Philippe Leduc-Gaudet
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - Nickolas Auclair
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Jocelyne Mercier
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Blandine Secco
- Centre de Recherche de l'Institut de Cardiologie et de Pneumologie de Québec, Ville de Québec, QC, Canada
| | - Luciane Magri Tomaz
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| | - Gilles Gouspillou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - Gawiyou Danialou
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Royal Military College Saint-Jean, Saint-Jean-sur-Richelieu, QC, Canada
| | - Alain-Steve Comtois
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada
| | - David H St-Pierre
- Département des Sciences de l'Activités Physique, Université du Québec à Montréal, Montreal, QC, Canada.,Groupe de Recherche en Activité Physique Adaptée, Université du Québec à Montréal, Montreal, QC, Canada.,Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada
| |
Collapse
|
36
|
Parker BA, Walton CM, Carr ST, Andrus JL, Cheung ECK, Duplisea MJ, Wilson EK, Draney C, Lathen DR, Kenner KB, Thomson DM, Tessem JS, Bikman BT. β-Hydroxybutyrate Elicits Favorable Mitochondrial Changes in Skeletal Muscle. Int J Mol Sci 2018; 19:E2247. [PMID: 30071599 PMCID: PMC6121962 DOI: 10.3390/ijms19082247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 01/01/2023] Open
Abstract
The clinical benefit of ketosis has historically and almost exclusively centered on neurological conditions, lending insight into how ketones alter mitochondrial function in neurons. However, there is a gap in our understanding of how ketones influence mitochondria within skeletal muscle cells. The purpose of this study was to elucidate the specific effects of β-hydroxybutyrate (β-HB) on muscle cell mitochondrial physiology. In addition to increased cell viability, murine myotubes displayed beneficial mitochondrial changes evident in reduced H₂O₂ emission and less mitochondrial fission, which may be a result of a β-HB-induced reduction in ceramides. Furthermore, muscle from rats in sustained ketosis similarly produced less H₂O₂ despite an increase in mitochondrial respiration and no apparent change in mitochondrial quantity. In sum, these results indicate a general improvement in muscle cell mitochondrial function when β-HB is provided as a fuel.
Collapse
Affiliation(s)
- Brian A Parker
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Chase M Walton
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Sheryl T Carr
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Jacob L Andrus
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Eric C K Cheung
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Michael J Duplisea
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Esther K Wilson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Carrie Draney
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Daniel R Lathen
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Kyle B Kenner
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84604, USA.
| | - Benjamin T Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|