1
|
Gogeascoechea A, Ornelas-Kobayashi R, Yavuz US, Sartori M. Characterization of Motor Unit Firing and Twitch Properties for Decoding Musculoskeletal Force in the Human Ankle Joint In Vivo. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4040-4050. [PMID: 37756177 DOI: 10.1109/tnsre.2023.3319959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Understanding how motor units (MUs) contribute to skeletal mechanical force is crucial for unraveling the underlying mechanism of human movement. Alterations in MU firing, contractile and force-generating properties emerge in response to physical training, aging or injury. However, how changes in MU firing and twitch properties dictate skeletal muscle force generation in healthy and impaired individuals remains an open question. In this work, we present a MU-specific approach to identify firing and twitch properties of MU samples and employ them to decode musculoskeletal function in vivo. First, MU firing events were decomposed offline from high-density electromyography (HD-EMG) of six lower leg muscles involved in ankle plantar-dorsi flexion. We characterized their twitch responses based on the statistical distributions of their firing properties and employed them to compute MU-specific activation dynamics. Subsequently, we decoded ankle joint moments by linking our framework to a subject-specific musculoskeletal model. We validated our approach at different ankle positions and levels of activation and compared it with traditional EMG-driven models. Our proposed MU-specific formulation achieves higher generalization across conditions than the EMG-driven models, with significantly lower coefficients of variation in torque predictions. Furthermore, our approach shows distinct neural strategies across a large repertoire of contractile conditions in different muscles. Our proposed approach may open new avenues for characterizing the relationship between MU firing and twitch properties and their influence on force capacity. This can facilitate the development of targeted rehabilitation strategies tailored to individuals with specific neuromuscular conditions.
Collapse
|
2
|
Beausejour JP, Bohlen P, Harmon KK, Girts RM, Pagan JI, Hahs-Vaughn DL, Herda TJ, Stock MS. A comparison of techniques for verifying the accuracy of precision decomposition-derived relationships between motor unit firing rates and recruitment thresholds from surface EMG signals. Exp Brain Res 2023; 241:2547-2560. [PMID: 37707570 DOI: 10.1007/s00221-023-06694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Approaches for validating motor unit firing times following surface electromyographic (EMG) signal decomposition with the precision decomposition III (PDIII) algorithm have not been agreed upon. Two approaches have been common: (1) "reconstruct-and-test" and (2) spike-triggered averaging (STA). We sought to compare motor unit results following the application of these approaches. Surface EMG signals were recorded from the vastus lateralis of 13 young males performing trapezoidal, isometric knee extensions at 50% and 80% of maximum voluntary contraction (MVC) force. The PDIII algorithm was used to quantify motor unit firing rates. Motor units were excluded using eight combinations of the reconstruct-and-test approach with accuracy thresholds of 0, 90, 91, and 92% with and without STA. The mean firing rate versus recruitment threshold relationship was minimally affected by STA. At 80% MVC, slopes acquired at the 0% accuracy threshold were significantly greater (i.e., less negative) than when 91% (p = .010) and 92% (p = .030) accuracy thresholds were applied. The application of STA has minimal influence on surface EMG signal decomposition results. Stringent reconstruct-and-test accuracy thresholds influence motor unit-derived relationships at high forces, perhaps explained through the increased presence of large motor unit action potentials. Investigators using the PDIII algorithm can expect negligible changes in motor unit-derived linear regression relationships with the application of secondary validation procedures.
Collapse
Affiliation(s)
- Jonathan P Beausejour
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2205, USA
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Paul Bohlen
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2205, USA
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, Syracuse, NY, USA
| | - Ryan M Girts
- Department of Natural and Health Sciences, Pfeiffer University, Misenheimer, NC, USA
| | - Jason I Pagan
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2205, USA
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Debbie L Hahs-Vaughn
- College of Community Innovation and Education, University of Central Florida, Orlando, FL, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, USA
| | - Matt S Stock
- Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816-2205, USA.
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
3
|
Olmos AA, Sterczala AJ, Parra ME, Dimmick HL, Miller JD, Deckert JA, Sontag SA, Gallagher PM, Fry AC, Herda TJ, Trevino MA. Sex-related differences in motor unit behavior are influenced by myosin heavy chain during high- but not moderate-intensity contractions. Acta Physiol (Oxf) 2023; 239:e14024. [PMID: 37551144 DOI: 10.1111/apha.14024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
AIMS Motor unit recruitment and firing rate patterns of the vastus lateralis (VL) have not been compared between sexes during moderate- and high-intensity contraction intensities. Additionally, the influence of fiber composition on potential sex-related differences remains unquantified. METHODS Eleven males and 11 females performed 40% and 70% maximal voluntary contractions (MVCs). Surface electromyographic (EMG) signals recorded from the VL were decomposed. Recruitment thresholds (RTs), MU action potential amplitudes (MUAPAMP ), initial firing rates (IFRs), mean firing rates (MFRs), and normalized EMG amplitude (N-EMGRMS ) at steady torque were analyzed. Y-intercepts and slopes were calculated for MUAPAMP , IFR, and MFR versus RT relationships. Type I myosin heavy chain isoform (MHC) was determined with muscle biopsies. RESULTS There were no sex-related differences in MU characteristics at 40% MVC. At 70% MVC, males exhibited greater slopes (p = 0.002) for the MUAPAMP , whereas females displayed greater slopes (p = 0.001-0.007) for the IFR and MFR versus RT relationships. N-EMGRMS at 70% MVC was greater for females (p < 0.001). Type I %MHC was greater for females (p = 0.006), and was correlated (p = 0.018-0.031) with the slopes for the MUAPAMP , IFR, and MFR versus RT relationships at 70% MVC (r = -0.599-0.585). CONCLUSION Both sexes exhibited an inverse relationship between MU firing rates and recruitment thresholds. However, the sex-related differences in MU recruitment and firing rate patterns and N-EMGRMS at 70% MVC were likely due to greater type I% MHC and smaller twitch forces of the higher threshold MUs for the females. Evidence is provided that muscle fiber composition may explain divergent MU behavior between sexes.
Collapse
Affiliation(s)
- Alex A Olmos
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mandy E Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, Texas, USA
| | - Hannah L Dimmick
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Miller
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas, USA
| | - Jake A Deckert
- Department of Human Physiology, Gonzaga University, Spokane, Washington, USA
| | - Stephanie A Sontag
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Philip M Gallagher
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Andrew C Fry
- Jayhawk Athletic Performance Laboratory - Wu Tsai Human Performance Alliance, University of Kansas, Lawrence, Kansas, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Lab, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Salmon OF, Housh TJ, Hill EC, Keller JL, Anders JPV, Johnson GO, Schmidt RJ, Smith CM. Changes in Neuromuscular Response Patterns After 4 Weeks of Leg Press Training During Isokinetic Leg Extensions. J Strength Cond Res 2023; 37:e405-e412. [PMID: 36525527 DOI: 10.1519/jsc.0000000000004418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/19/2022] [Indexed: 08/20/2023]
Abstract
ABSTRACT Salmon, OF, Housh, TJ, Hill, EC, Keller, JL, Anders, JPV, Johnson, GO, Schmidt, RJ, and Smith, CM. Changes in neuromuscular response patterns after 4 weeks of leg press training during isokinetic leg extensions. J Strength Cond Res 37(7): e405-e412, 2023-The purpose of this study was to identify velocity-specific changes in electromyographic root mean square (EMG RMS), EMG frequency (EMG MPF), mechanomyographic RMS (MMG RMS), and MMG MPF during maximal unilateral isokinetic muscle actions performed at 60° and 240°·s -1 velocities within the right and left vastus lateralis (VL) after 4 weeks of dynamic constant external resistance (DCER) bilateral leg press training. Twelve resistance-trained men (age: mean ± SD = 21.4 ± 3.6 years) visited the laboratory 3d·wk -1 to perform resistance training consisting of 3 sets of 10 DCER leg presses. Four, three-way analysis of variance were performed to evaluate changes in neuromuscular responses (EMG RMS, EMG MPF, MMG RMS, and MMG MPF) from the right and left VL during 1 single-leg maximal isokinetic leg extension performed at 60° and 240°·s -1 before and after 4 weeks of DCER leg press training ( p < 0.05). The results indicated a 36% increase in EMG RMS for the right leg, as well as a 23% increase in MMG RMS and 10% decrease in MMG MPF after training, collapsed across velocity and leg. In addition, EMG RMS was 65% greater in the right leg than the left leg following training, whereas EMG MPF was 11% greater for the left leg than the right leg throughout training. Thus, 4 weeks of DCER leg press training provides sufficient stimuli to alter the neuromuscular activation process of the VL but not velocity-specific neuromuscular adaptations in trained males.
Collapse
Affiliation(s)
- Owen F Salmon
- Robbins College of Health and Human SciencesHuman & Environmental Physiology Laboratory, Department of Health, Human Performance and Recreation Baylor University Waco, Texas
| | - Terry J Housh
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ethan C Hill
- School of Kinesiology & Physical Therapy, Division of Kinesiology, University of Central Florida, Orlando, Florida; and
| | - Joshua L Keller
- Integrated Laboratory of Exercise and Applied Physiology, Department of Health, Kinesiology, and Sport, College of Education and Professional Studies University of South Alabama, Mobile, Alabama
| | - John Paul V Anders
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Glen O Johnson
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Richard J Schmidt
- Department of Nutrition and Health Sciences, Human Performance Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Cory M Smith
- Robbins College of Health and Human SciencesHuman & Environmental Physiology Laboratory, Department of Health, Human Performance and Recreation Baylor University Waco, Texas
| |
Collapse
|
5
|
A noninvasive test for estimating myosin heavy chain of the vastus lateralis in females with mechanomyography. Med Eng Phys 2023; 111:103946. [PMID: 36792240 DOI: 10.1016/j.medengphy.2022.103946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
This study examined relationships between percent myosin heavy chain (%MHC) expression and mechanomyographic amplitude (MMGRMS). Fifteen females (age ± SD=21.3 ± 5.3 yrs) completed isometric trapezoidal contractions at 30% and 70% maximal voluntary contraction (MVC). MMG was recorded from the vastus lateralis (VL). Participants gave a muscle biopsy of the VL post-testing. MMGRMS-torque relationships during the linearly varying segments were log-transformed and linear regressions were applied to calculate b terms (slopes). For the steady torque segment, MMGRMS was averaged. Correlations were performed for type I%MHC with the MMG variables. Multiple regression was utilized to examine prediction equations for type I%MHC. Type I%MHC was significantly correlated with the b terms during the increasing segment of the 70% MVC (p = 0.003; r = -0.718), and MMGRMS during steady torque at 30% (p = 0.008; r = -0.652) and 70% MVC (p = 0.040; r = -0.535). Type I%MHC reduced the linearity of the MMGRMS-torque relationship during the high-intensity linearly increasing segment, and MMGRMS at a low- and high-intensity steady torque. A combination of MMG variables estimated type I%MHC expression with 81.2% accuracy. MMG recorded during a low- and high-intensity isometric trapezoidal contraction may offer a simple, noninvasive test for estimating type I%MHC expression of the VL in sedentary females.
Collapse
|
6
|
Resistance exercise training and the motor unit. Eur J Appl Physiol 2022; 122:2019-2035. [PMID: 35751668 DOI: 10.1007/s00421-022-04983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Resistance exercise training (RET) is a key modality to enhance sports performance, injury prevention and rehabilitation, and improving overall health via increases in muscular strength. Yet, the contribution of neural mechanisms to increases in muscular strength are highly debated. This is particularly true for the involvement of the motor unit, which is the link between neural (activation) and mechanical (muscle fiber twitch forces) mechanisms. A plethora of literature that examines the effects of RET on skeletal muscle speculate the role of motor units, such as increases in firing rates partially explains muscular strength gains. Results, however, are mixed regarding changes in firing rates in studies that utilize single motor unit recordings. The lack of clarity could be related to vast or subtle differences in RET programs, methods to record motor units, muscles tested, types of contractions and intensities used to record motor units, etc. Yet to be discussed, mixed findings could be the result of non-uniform MU behavior that is not typically accounted for in RET research. The purpose of this narration is to discuss the effects of acute resistance exercise training studies on MU behavior and to provide guidance for future research.
Collapse
|
7
|
Trevino MA, Dimmick HL, Parra ME, Sterczala AJ, Miller JD, Deckert JA, Gallagher PM, Fry AC, Weir JP, Herda TJ. Effects of continuous cycling training on motor unit firing rates, input excitation, and myosin heavy chain of the vastus lateralis in sedentary females. Exp Brain Res 2022; 240:825-839. [DOI: 10.1007/s00221-021-06278-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
|
8
|
Parra ME, Miller JD, Sterczala AJ, Kelly MR, Herda TJ. The reliability of the slopes and y-intercepts of the motor unit firing times and action potential waveforms versus recruitment threshold relationships derived from surface electromyography signal decomposition. Eur J Appl Physiol 2021; 121:3389-3398. [PMID: 34477930 DOI: 10.1007/s00421-021-04790-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Changes in motor unit (MU) activity pre- to post-interventions is of high interest. However, there is minimal information regarding day-to-day changes or the reliability of measuring MU activity. This study examined the reliability of relationships calculated via the MU action potential (AP) trains derived from surface electromyography signal decomposition. A comparison between reliability statistics was made between MUAP trains verified with only the reconstruct-and-test versus verification including reconstruct-and-test with spike trigger average (STA) procedures. METHODS Twenty-one individuals performed isometric muscle actions at 50% of maximal voluntary contraction of the first dorsal interosseous on two separate visits. MUs included for reliability analyses initially met the > 90% accuracy from the reconstruct-and-test. STA was applied as an additional exclusionary procedure. Linear regressions were applied to the firing rate and AP amplitude versus recruitment threshold relationships with and without MUs that met the STA criteria. Reliability statistics were also performed on relationships that met a strict range of recruitment thresholds. Reliability was established with intraclass correlation coefficients (ICC) along with other traditional parameters. RESULTS The firing rate versus recruitment threshold relationships were reliable (ICC > 0.56) and improved (ICC > 0.84) when recruitment ranges were controlled. The slopes of the MUAP amplitude versus recruitment threshold relationships were reliable (ICC > 0.78) while the y-intercepts were reliable (ICC > 0.81) once corrections were made to combat negative scores. CONCLUSIONS Electromyographic signal decomposition without the secondary STA verification procedures can be used to detect intervention-related changes in neural drive with confidence when recorded MU recruitment thresholds are similar across days.
Collapse
Affiliation(s)
- Mandy E Parra
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Jonathan D Miller
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Room 101BE, Lawrence, KS, 66045, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburg, Pittsburgh, PA, USA
| | - Melani R Kelly
- Human Performance Research Laboratory, Department of Exercise Science and Pre-Health Professions, Creighton University, Omaha, NE, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, 1301 Sunnyside Avenue, Room 101BE, Lawrence, KS, 66045, USA.
| |
Collapse
|
9
|
Reece TM, Herda TJ. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions. J Neurophysiol 2021; 125:2094-2106. [PMID: 33909509 DOI: 10.1152/jn.00034.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary purpose of the present study is to determine if an organized control scheme exists for the antagonist muscle during steady isometric torque. A secondary focus is to better understand how firing rates of the antagonist muscle change from a moderate- to higher-contraction intensity. Fourteen subjects performed two submaximal isometric trapezoid muscle actions of the forearm flexors that included a linearly increasing, steady force at both 40% and 70% maximum voluntary contraction, and linearly decreasing segments. Surface electromyographic signals of the biceps and triceps brachii were collected and decomposed into constituent motor unit action potential trains. Motor unit firing rate versus recruitment threshold, motor unit action potential amplitude versus recruitment threshold, and motor unit firing rate versus action potential amplitude relationships of the biceps brachii (agonist) and triceps brachii (antagonist) muscles were analyzed. Moderate- to-strong relationships (|r| ≥ 0.69) were present for the agonist and antagonist muscles for each relationship with no differences between muscles (P = 0.716, 0.428, 0.182). The y-intercepts of the motor unit firing rate versus recruitment threshold relationship of the antagonist did not increase from 40% to 70% maximal voluntary contractions (P = 0.96), unlike for the agonist (P = 0.009). The antagonist muscle exhibits a similar motor unit control scheme to the agonist. Unlike the agonist, however, the firing rates of the antagonist did not increase with increasing intensity. Future research should investigate how antagonist firing rates adapt to resistance training and changes in antagonist firing rates in the absence of peripheral feedback.NEW & NOTEWORTHY This is the first study to explore a potential motor unit control scheme and quantify changes in firing rates with increasing intensity of an antagonist muscle during isometric contractions. We demonstrate that the antagonist muscle possesses an organized motor unit firing rate and recruitment scheme similar to the agonist muscle during isometric forearm flexion, but unlike the agonist muscle, there was no significant increase in firing rates from a moderate- to higher-intensity isometric contraction.
Collapse
Affiliation(s)
- Tanner M Reece
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
10
|
Jenkins NDM, Rogers EM, Banks NF, Muddle TWD, Colquhoun RJ. Increases in motor unit action potential amplitudes are related to muscle hypertrophy following eight weeks of high-intensity exercise training in females. Eur J Sport Sci 2020; 21:1403-1413. [DOI: 10.1080/17461391.2020.1836262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nathaniel D. M. Jenkins
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Emily. M. Rogers
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Nile F. Banks
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Tyler W. D. Muddle
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Ryan J. Colquhoun
- Department of Health, Kinesiology and Sport, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
11
|
Parra ME, Miller JD, Sterczala AJ, Trevino MA, Dimmick HL, Herda TJ. Differences in the firing rate versus recruitment threshold relationships of the vastus lateralis in children ages 7-10 years and adults. Hum Mov Sci 2020; 72:102650. [PMID: 32721368 DOI: 10.1016/j.humov.2020.102650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Motor unit (MU) firing rates of the vastus lateralis in children and adults were examined. Seven healthy adult males (mean ± SD, age = 21 ± 2.6 yrs) and six healthy male children (mean ± SD age = 8.8 ± 1.7) volunteered. Surface electromyography (EMG) signals were recorded from 20% and 60% maximal voluntary contractions (MVC). Surface EMG signals were decomposed into firing events of individual MUs and slopes and y-intercepts were calculated for the mean firing rate (MFR, pps) at steady torque vs. recruitment thresholds (RT) relationships for each subject. Muscle cross-sectional area (mCSA) was measured, via ultrasonography, with specific torque calculated (MVC/mCSA). Adults possessed greater mCSA (p = .002; children = 11.5 ± 2.1 cm2; adults = 31.80 ± 12.15 cm2) and greater specific torque (p = .018; children = 4.63 ± 1.4 Nm/cm2; adults = 7.1 ± 1.8 Nm/cm2) compared to children. The y-intercepts were significantly (p < .001) greater during the 60% (28.91 ± 4.56 pps) than the 20% MVC (23.5 ± 4.9 pps) collapsed across groups while the children had significantly (p = .036) lower y-intercepts (23.9 ± 5.4 pps) than the adults (28.2 ± 4.8 pps) when collapsed across intensities. Slopes of the MFR vs RT relationships were greater for the 60% (-0.342 ± 0.127 pps/%MVC) contraction than the 20% (-0.50 ± 0.159 pps/%MVC) MVC when collapsed across groups. Adults had greater firing rates regardless of recruitment threshold than children. This may be due to lower recruitment potential and overall excitation to the motoneuron pool of children as indicated with differences in specific torque and/or differences in antagonist co-activation.
Collapse
Affiliation(s)
- Mandy E Parra
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Jonathan D Miller
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Trevino
- Applied Neuromuscular Physiology Laboratory Department of Health and Human Performance, Oklahoma State University, Stillwater, OK 74078, USA
| | - Hannah L Dimmick
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
12
|
Herda TJ, Parra ME, Miller JD, Sterczala AJ, Kelly MR. Measuring the accuracies of motor unit firing times and action potential waveforms derived from surface electromyographic decomposition. J Electromyogr Kinesiol 2020; 52:102421. [PMID: 32353708 DOI: 10.1016/j.jelekin.2020.102421] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022] Open
Abstract
This study included spike trigger averaging (STA) procedures to examine the acceptability of the Precision Decomposition (PD) III derived motor unit action potential (MUAP) trains that met the >90% accuracy criteria from the reconstruct-and-test. MUs met the >90% accuracy criteria from the reconstruct-and-test with STA procedures then applied. Y-intercepts and slopes were calculated for the firing rate- and MUAP amplitude-recruitment threshold relationships. Gaussian noise (1% of the SD of the mean interspike interval) was added to the firing times with the changes in MUAPs quantified. A total of 455 MUs were decomposed with 155 MUs removed as a result of the reconstruct-and-test. Five additional MUs were excluded via the STA criteria. The MUAP waveforms deteriorated with the inclusion of Gaussian noise. There were differences in the derived action potentials amplitudes of higher-threshold MUs between the PD III algorithm and the STA procedure. There was excellent agreement among the slopes and y-intercepts between the relationships that included or excluded MUs that did not meet the STA criteria. There was good agreement between the MUAP amplitude-recruitment threshold relationships derived from the PD III and STA procedure. The addition of the STA procedures did not alter the MU-derived relationships.
Collapse
Affiliation(s)
- Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, USA.
| | - Mandy E Parra
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, USA
| | - Jonathan D Miller
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, USA
| | - Adam J Sterczala
- Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, University of Pittsburg, Pittsburgh, PA, USA
| | - Melani R Kelly
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, USA
| |
Collapse
|
13
|
Sterczala AJ, Miller JD, Dimmick HL, Wray ME, Trevino MA, Herda TJ. Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. Eur J Appl Physiol 2019; 120:281-294. [DOI: 10.1007/s00421-019-04273-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
|
14
|
The effect of rate of torque development on motor unit recruitment and firing rates during isometric voluntary trapezoidal contractions. Exp Brain Res 2019; 237:2653-2664. [DOI: 10.1007/s00221-019-05612-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022]
|
15
|
Trevino MA, Sterczala AJ, Miller JD, Wray ME, Dimmick HL, Ciccone AB, Weir JP, Gallagher PM, Fry AC, Herda TJ. Sex-related differences in muscle size explained by amplitudes of higher-threshold motor unit action potentials and muscle fibre typing. Acta Physiol (Oxf) 2019; 225:e13151. [PMID: 29908102 DOI: 10.1111/apha.13151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
AIM To investigate the relationships between motor unit action potential amplitudes (MUAPAMP ), muscle cross-sectional area (mCSA) and composition (mEI), per cent myosin heavy chain (%MHC) areas and sex in the vastus lateralis (VL). METHODS Ten males and 10 females performed a submaximal isometric trapezoid muscle action that included a linearly increasing, steady torque at 40% maximal voluntary contraction, and linearly decreasing segments. Surface electromyographic decomposition techniques were utilized to determine MUAPAMPS in relation to recruitment thresholds (RT). Ultrasound images were taken to quantify muscle mCSA and mEI. Muscle biopsies were collected to calculate %MHC areas. Y-intercepts and slopes were calculated for the MUAPAMP vs RT relationships for each subject. Independent-samples t tests and ANOVA models examined sex-related differences in mCSA, mEI, slopes and y-intercepts for the MUAPAMP vs RT relationships and %MHC areas. Correlations were performed among type IIA and total type II %MHC area, mCSA and the slopes and y-intercepts for the MUAPAMP vs RT relationships. RESULTS Males exhibited greater slopes for the MUAPAMP vs RT relationships (P = .003), mCSA (P < .001) and type IIA %MHC (P = .011), whereas females had greater type I %MHC area (P = .010) and mEI (P = .024). The mCSA, type IIA and total II %MHC area variables were correlated (P < .001-.015, r = .596-.836) with the slopes from the MUAPAMP vs RT relationships. CONCLUSION Sex-related differences in mCSA and MUAPAMPS of the higher-threshold MUs were likely the result of larger muscle fibres expressing type II characteristics for males.
Collapse
Affiliation(s)
- M. A. Trevino
- Biodynamics and Human Performance Center Department of Health Sciences Georgia Southern University Savannah GA USA
| | - A. J. Sterczala
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - J. D. Miller
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - M. E. Wray
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - H. L. Dimmick
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - A. B. Ciccone
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - J. P. Weir
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - P. M. Gallagher
- Applied Physiology Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - A. C. Fry
- Applied Physiology Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| | - T. J. Herda
- Neuromechanics Laboratory Department of Health, Sport and Exercise Sciences University of Kansas Lawrence KS USA
| |
Collapse
|
16
|
Colquhoun RJ, Tomko PM, Magrini MA, Muddle TWD, Jenkins NDM. The influence of input excitation on the inter- and intra-day reliability of the motor unit firing rate versus recruitment threshold relationship. J Neurophysiol 2018; 120:3131-3139. [PMID: 30355024 DOI: 10.1152/jn.00490.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Decomposition of the surface electromyographic (sEMG) signal is commonly used to examine motor unit (MU) firing behavior. However, the intra- and inter-day reliability of these measurements has yet to be quantified or reported. This investigation 1) examined the effect of input excitation on the mean firing rate (MFR) vs. recruitment threshold (RT) relationship and 2) determined the inter- and intra-day reliability of the MFR vs. RT relationship at 30%, 50%, and 70% of maximum voluntary isometric strength (MVIC). Twenty-eight healthy males (23 ± 3 yr) completed two experimental visits, during which they performed MVIC testing and isometric ramp contractions at 30%, 50%, and 70% MVIC. sEMG signals were recorded from the vastus lateralis during the ramp contractions and decomposed to establish the MFR vs. RT relationship for the detected MUs. Intra- and inter-day reliability was then established for the slopes and y-intercepts of the MFR vs. RT relationship at each contraction intensity. All participants displayed significant MFR vs. RT relationships ( r range: -0.662 to -0.999; P ≤ 0.001-0.006). Intra- and inter-day intraclass correlation coefficients (ICCs) ranged from 0.766-0.824 and 0.867-0.919 for the slopes and from 0.780-0.915 and 0.804-0.927 for the y-intercepts, respectively. Furthermore, the slope coefficient was significantly greater at 70% than at 30% MVIC, and the y-intercepts increased with increasing contraction intensities. Changes in input excitation to the MU pool alter the magnitude, but not the reliability, of the slopes and y-intercepts of the MFR vs. RT relationship. NEW & NOTEWORTHY The firing behavior of the motor unit (MU) pool is often characterized using the mean firing rate vs. recruitment threshold relationship of the active MUs. Although this relationship has been widely used, this is the first study to report the effects of input excitation (contraction intensity) on the intra- and inter-day reliability of this relationship. The criteria used for MU analysis and the model utilized in this study allow for generalization to outside investigators and laboratories.
Collapse
Affiliation(s)
- Ryan J Colquhoun
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University , Stillwater, Oklahoma
| | - Patrick M Tomko
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University , Stillwater, Oklahoma
| | - Mitchel A Magrini
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University , Stillwater, Oklahoma
| | - Tyler W D Muddle
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University , Stillwater, Oklahoma
| | - Nathaniel D M Jenkins
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University , Stillwater, Oklahoma
| |
Collapse
|
17
|
Jenkins NDM, Colquhoun RJ, Tomko PM, Gradnigo T, Magrini MA, Muddle TWD, Fleming S, Ferrell M, El-Sohemy A. Genetic variant in the β 2 -adrenergic receptor (Arg16Gly) influences fat-free mass, muscle strength and motor unit behaviour in young men. Exp Physiol 2018; 103:1645-1655. [PMID: 30267546 DOI: 10.1113/ep087145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does a common genetic variant in the β2 -adrenergic receptor (β2 -AR) have effects on skeletal muscle function in young, healthy men? What is the main finding and its importance? This study provides preliminary evidence that β2 -AR Arg16Gly genotype has a significant effect on fat-free mass, muscle strength and motor unit behaviour in recreationally trained men. These data might have important clinical and exercise-related implications. For example, β2 -AR (rs1042713) genotype might influence the responsiveness of skeletal muscle to clinical or exercise-based interventions or β-AR agonist treatment. ABSTRACT This study explored whether the β2 -adrenergic receptor (β2 -AR) single nucleotide polymorphism at amino acid 16 (Arg16Gly) has functional effects on skeletal muscle mass, torque production and motor unit behaviour in young, healthy men. Twenty-eight recreationally active men (mean ± SD 23.1 ± 1.3 years of age) were genotyped for Arg16Gly polymorphisms of β2 -AR as arginine homozygous (ArgArg; n = 5), glycine homozygous (GlyGly; n = 11) or arginine-glycine heterozygous (ArgGly; n = 12). The participants then completed body composition testing, assessments of leg extensor size and echo intensity, and evoked and voluntary isometric leg-extension muscle actions. During the evoked muscle actions, peak twitch torque, peak rate of torque development and peak relaxation rate were assessed. During the voluntary muscle actions, maximal voluntary isometric (MVIC) strength was assessed, and surface EMG signals were obtained during submaximal isometric muscle actions and later decomposed to examine motor unit firing behaviour. Fat-free mass and MVIC strength were greater (P = 0.004, d = 1.74 and P = 0.026, d = 1.10, respectively) in those expressing the GlyGly versus ArgArg allele. The slope of the mean firing rate versus recruitment threshold relationship was more negative in the GlyGly than the ArgArg allele carriers (P = 0.012, d = 1.68) at 50% MVIC, but was less negative in GlyGly and ArgGly versus ArgArg allele carriers (P = 0.013 and 0.016, respectively; d = 1.34 and 1.20, respectively) at 70% MVIC. These data provide preliminary evidence that β2 -AR Arg16Gly genotype has a significant effect on fat-free mass, muscle strength and motor unit behaviour in humans.
Collapse
Affiliation(s)
- Nathaniel D M Jenkins
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA.,Laboratory for Applied Nutrition and Exercise Science, Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ryan J Colquhoun
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Patrick M Tomko
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Trey Gradnigo
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Mitchel A Magrini
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Tyler W D Muddle
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Sydnie Fleming
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Ferrell
- Applied, Neuromuscular Physiology Laboratory, School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, OK, USA
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Colquhoun RJ, Magrini MA, Haun CT, Muddle TWD, Tomko PM, Luera MJ, Mackey CS, Vann CG, Martin JS, Young KC, DeFreitas JM, Roberts MD, Jenkins NDM. Muscle phenotype is related to motor unit behavior of the vastus lateralis during maximal isometric contractions. Physiol Rep 2018. [PMID: 29527830 PMCID: PMC5845862 DOI: 10.14814/phy2.13636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous investigations have reported a relationship between skeletal muscle phenotype and motor unit (MU) firing parameters during submaximal contractions. The purpose of the current investigation, however, was to examine the relationships between motor unit firing behavior during a maximal voluntary contraction, Myosin Heavy Chain (MHC) isoform content, and various molecular neuromuscular targets of the vastus lateralis (VL) muscle in resistance-trained men. Ten resistance-trained males completed a trapezoidal ramp contraction up to 100% of their maximal voluntary isometric strength (MVIC). Surface electromyography was recorded from the VL using a multichannel electrode array and decomposed to examine the firing characteristics of individual MUs. A skeletal muscle biopsy of the VL was also collected from each subject. Regression analyses were performed to identify relationships between type II fiber area and the slopes and/or intercepts of the mean firing rate (FRMEAN ) versus recruitment threshold (RT), max firing rate (FRMAX ) versus RT, and RT versus MU action potential amplitude (MUAPPP ) relationships. There were significant inverse relationships between type II fiber area and the y-intercept of the FR versus RT relationship (P < 0.05). Additionally, strong relationships (r > 0.5) were found between type II fiber area and FRMEAN versus RT slope and RT versus MUAPPP slope and intercept. These data further support the hypothesis that skeletal muscle phenotype is related to MU behavior during isometric contraction. However, our data, in concert with previous investigations, may suggest that these relationships are influenced by the intensity of the contraction.
Collapse
Affiliation(s)
- Ryan J Colquhoun
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Mitchel A Magrini
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Cody T Haun
- Molecular and Applied Sciences Laboratory, Auburn University, Auburn, Alabama
| | - Tyler W D Muddle
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Patrick M Tomko
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Micheal J Luera
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Cameron S Mackey
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Christopher G Vann
- Molecular and Applied Sciences Laboratory, Auburn University, Auburn, Alabama
| | - Jeffrey S Martin
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama
| | - Kaelin C Young
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine - Auburn Campus, Auburn, Alabama
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| | - Michael D Roberts
- Molecular and Applied Sciences Laboratory, Auburn University, Auburn, Alabama
| | - Nathaniel D M Jenkins
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|