1
|
Candia AA, Lean SC, Zhang CXW, McKeating DR, Cochrane A, Gulacsi E, Herrera EA, Krause BJ, Sferruzzi-Perri AN. Obesogenic Diet in Mice Leads to Inflammation and Oxidative Stress in the Mother in Association with Sex-Specific Changes in Fetal Development, Inflammatory Markers and Placental Transcriptome. Antioxidants (Basel) 2024; 13:411. [PMID: 38671859 PMCID: PMC11047652 DOI: 10.3390/antiox13040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obesity during pregnancy is related to adverse maternal and neonatal outcomes. Factors involved in these outcomes may include increased maternal insulin resistance, inflammation, oxidative stress, and nutrient mishandling. The placenta is the primary determinant of fetal outcomes, and its function can be impacted by maternal obesity. The aim of this study on mice was to determine the effect of obesity on maternal lipid handling, inflammatory and redox state, and placental oxidative stress, inflammatory signaling, and gene expression relative to female and male fetal growth. METHODS Female mice were fed control or obesogenic high-fat/high-sugar diet (HFHS) from 9 weeks prior to, and during, pregnancy. On day 18.5 of pregnancy, maternal plasma, and liver, placenta, and fetal serum were collected to examine the immune and redox states. The placental labyrinth zone (Lz) was dissected for RNA-sequencing analysis of gene expression changes. RESULTS the HFHS diet induced, in the dams, hepatic steatosis, oxidative stress (reduced catalase, elevated protein oxidation) and the activation of pro-inflammatory pathways (p38-MAPK), along with imbalanced circulating cytokine concentrations (increased IL-6 and decreased IL-5 and IL-17A). HFHS fetuses were asymmetrically growth-restricted, showing sex-specific changes in circulating cytokines (GM-CSF, TNF-α, IL-6 and IFN-γ). The morphology of the placenta Lz was modified by an HFHS diet, in association with sex-specific alterations in the expression of genes and proteins implicated in oxidative stress, inflammation, and stress signaling. Placental gene expression changes were comparable to that seen in models of intrauterine inflammation and were related to a transcriptional network involving transcription factors, LYL1 and PLAG1. CONCLUSION This study shows that fetal growth restriction with maternal obesity is related to elevated oxidative stress, inflammatory pathways, and sex-specific placental changes. Our data are important, given the marked consequences and the rising rates of obesity worldwide.
Collapse
Affiliation(s)
- Alejandro A. Candia
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
- Department for the Woman and Newborn Health Promotion, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Samantha C. Lean
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Cindy X. W. Zhang
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Daniel R. McKeating
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Anna Cochrane
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Edina Gulacsi
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| | - Emilio A. Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 7500922, Chile;
| | - Bernardo J. Krause
- Institute of Health Sciences, University of O’Higgins, Rancagua 2841959, Chile;
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.A.C.); (C.X.W.Z.); (D.R.M.); (A.C.); (E.G.)
| |
Collapse
|
2
|
Grilo LF, Martins JD, Diniz MS, Tocantins C, Cavallaro CH, Baldeiras I, Cunha-Oliveira T, Ford S, Nathanielsz PW, Oliveira PJ, Pereira SP. Maternal hepatic adaptations during obese pregnancy encompass lobe-specific mitochondrial alterations and oxidative stress. Clin Sci (Lond) 2023; 137:1347-1372. [PMID: 37565250 DOI: 10.1042/cs20230048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Maternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality. Understanding the role of MO on liver function and pathophysiology could be crucial for better understanding the altered pathways leading to PALD and liver disease, possibly paving the way to prevention and adequate management of disease. We investigated specific hepatic metabolic alterations in mitochondria and oxidative stress during MO at late-gestation. Maternal hepatic tissue was collected at 90% gestation in Control and MO ewes (fed 150% of recommended nutrition starting 60 days before conception). Maternal hepatic redox state, mitochondrial respiratory chain (MRC), and OS markers were investigated. MO decreased MRC complex-II activity and its subunits SDHA and SDHB protein expression, increased complex-I and complex-IV activities despite reduced complex-IV subunit mtCO1 protein expression, and increased ATP synthase ATP5A subunit. Hepatic MO-metabolic remodeling was characterized by decreased adenine nucleotide translocator 1 and 2 (ANT-1/2) and voltage-dependent anion channel (VDAC) protein expression and protein kinase A (PKA) activity (P<0.01), and augmented NAD+/NADH ratio due to reduced NADH levels (P<0.01). MO showed an altered redox state with increased OS, increased lipid peroxidation (P<0.01), decreased GSH/GSSG ratio (P=0.005), increased superoxide dismutase (P=0.03) and decreased catalase (P=0.03) antioxidant enzymatic activities, lower catalase, glutathione peroxidase (GPX)-4 and glutathione reductase protein expression (P<0.05), and increased GPX-1 abundance (P=0.03). MO-related hepatic changes were more evident in the right lobe, corroborated by the integrative data analysis. Hepatic tissue from obese pregnant ewes showed alterations in the redox state, consistent with OS and MRC and metabolism remodeling. These are hallmarks of PALD and hepatic disease, supporting MO as a risk-factor and highlighting OS and mitochondrial dysfunction as mechanisms responsible for liver disease predisposition.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João D Martins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Chiara H Cavallaro
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Inês Baldeiras
- Neurological Clinic, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Stephen Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, U.S.A
| | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Sferruzzi‐Perri AN, Lopez‐Tello J, Salazar‐Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments. Exp Physiol 2023; 108:371-397. [PMID: 36484327 PMCID: PMC10103877 DOI: 10.1113/ep090442] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? How the placenta, which transports nutrients and oxygen to the fetus, may alter its support of fetal growth developmentally and with adverse gestational conditions. What advances does it highlight? Placental formation and function alter with the needs of the fetus for substrates for growth during normal gestation and when there is enhanced competition for substrates in species with multiple gestations or adverse gestational environments, and this is mediated by imprinted genes, signalling pathways, mitochondria and fetal sexomes. ABSTRACT The placenta is vital for mammalian development and a key determinant of life-long health. It is the interface between the mother and fetus and is responsible for transporting the nutrients and oxygen a fetus needs to develop and grow. Alterations in placental formation and function, therefore, have consequences for fetal growth and birthweight, which in turn determine perinatal survival and risk of non-communicable diseases for the offspring in later postnatal life. However, the placenta is not a static organ. As this review summarizes, research from multiple species has demonstrated that placental formation and function alter developmentally to the needs of the fetus for substrates for growth during normal gestation, as well as when there is greater competition for substrates in polytocous species and monotocous species with multiple gestations. The placenta also adapts in response to the gestational environment, integrating information about the ability of the mother to provide nutrients and oxygen with the needs of the fetus in that prevailing environment. In particular, placental structure (e.g. vascularity, surface area, blood flow, diffusion distance) and transport capacity (e.g. nutrient transporter levels and activity) respond to suboptimal gestational environments, namely malnutrition, obesity, hypoxia and maternal ageing. Mechanisms mediating developmentally and environmentally induced homeostatic responses of the placenta that help support normal fetal growth include imprinted genes, signalling pathways, subcellular constituents and fetal sexomes. Identification of these placental strategies may inform the development of therapies for complicated human pregnancies and advance understanding of the pathways underlying poor fetal outcomes and their consequences for health and disease risk.
Collapse
Affiliation(s)
- Amanda Nancy Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Jorge Lopez‐Tello
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Esteban Salazar‐Petres
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Facultad de CienciasDepartamento de Ciencias Básicas, Universidad Santo TomásValdiviaChile
| |
Collapse
|
4
|
Fernandes RO, Bernardi JR, da Fonseca JD, Gomes da Silva F, Procianoy RS, Silveira RC. The impact of an early intervention home-based program on body composition in preterm-born preschoolers with very low birth weight. Front Nutr 2022; 9:981818. [PMID: 36337669 PMCID: PMC9631204 DOI: 10.3389/fnut.2022.981818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background and aims Early child interventions focused on the family prevented neurodevelopmental and behavioral delays and can provide more knowledge regarding responsive feeding, thus creating learning opportunities to promote better quality nutrition and preventing failure to thrive. The aim is to verify the impact of a continuous program of early home-based intervention on the body composition of preschool infants who were born preterm with very low birth weight (VLBW). Methods This is a longitudinal analysis from a randomized controlled trial, including VLBW preterm children, born in a tertiary hospital in Southern Brazil and followed up at the high-risk institutional ambulatory clinic. Participants were divided into the intervention group (IG): skin-to-skin care with the mother (kangaroo care), breastfeeding policy, and tactile-kinesthetic stimulation by mothers until hospital discharge. Subsequently, they received a program of early intervention with orientation and a total of 10 home visits, independently from the standard evaluation and care that was performed following the 18 months after birth; conventional group (CG): standard care according to the routine of the newborn intensive care unit (NICU), which includes kangaroo care, and attending to their needs in the follow-up program. Body composition estimation was performed using bioelectrical impedance analyses (BIA), and physical activity and feeding practices questionnaires were evaluated at preschool age, as well as anthropometric measurements and biochemical analysis. Results Data of 41 children at 4.6 ± 0.5 years old were evaluated (CG n = 21 and IG n = 20). Body weight, height, body mass index, waist and arm circumferences, and triceps and subscapular skinfold did not differ between groups. The IG presented higher segmented fat-free mass (FFM) when compared to the CG (right arm FFM: 0.74 vs. 0.65 kg, p = 0.040; trunk FFM: 6.86 vs. 6.09 kg, p = 0.04; right leg FFM: 1.91 vs. 1.73 kg, p = 0.063). Interaction analyses showed that segmented FFM and FFM Index were associated with higher iron content in the IG. In the CG, interaction analyses showed that increased visceral fat area was associated with higher insulin resistance index. Conclusion An early intervention protocol from NICU to a home-based program performed by the mothers of VLBW preterm children of low-income families presents a small effect on FFM.
Collapse
Affiliation(s)
- Rafael Oliveira Fernandes
- Graduate Program in Child and Adolescent Health (PPGSCA), Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- *Correspondence: Rafael Oliveira Fernandes,
| | - Juliana Rombaldi Bernardi
- Graduate Program in Child and Adolescent Health (PPGSCA), Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Graduate Program in Food, Nutrition and Health, Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Juliana Rombaldi Bernardi,
| | - Júlia Delgado da Fonseca
- Graduate Program in Food, Nutrition and Health, Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Franciéle Gomes da Silva
- Graduate Program in Child and Adolescent Health (PPGSCA), Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Renato Soibelmann Procianoy
- Graduate Program in Child and Adolescent Health (PPGSCA), Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rita C. Silveira
- Graduate Program in Child and Adolescent Health (PPGSCA), Medical School of Universidade Federal do Rio Grande do Sul (UFRGS), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
5
|
Pereira-Carvalho D, Salazar-Petres E, Lopez-Tello J, Sferruzzi-Perri AN. Maternal and Fetal PI3K-p110α Deficiency Induces Sex-Specific Changes in Conceptus Growth and Placental Mitochondrial Bioenergetic Reserve in Mice. Vet Sci 2022; 9:vetsci9090501. [PMID: 36136716 PMCID: PMC9506205 DOI: 10.3390/vetsci9090501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fetal growth is reliant on placental formation and function, which, in turn, requires the energy produced by the mitochondria. Prior work has shown that both mother and fetus operate via the phosphoinositol 3-kinase (PI3K)-p110α signalling pathway to modify placental development, function, and fetal growth outcomes. This study in mice used genetic inactivation of PI3K-p110α (α/+) in mothers and fetuses and high resolution respirometry to investigate the influence of maternal and fetal PI3K-p110α deficiency on fetal and placental growth, in relation to placental mitochondrial bioenergetics, for each fetal sex. The effect of PI3K-p110α deficiency on maternal body composition was also determined to understand more about the maternal-driven changes in feto-placental development. These data show that male fetuses were more sensitive than females to fetal PI3K-p110α deficiency, as they had greater reductions in fetal and placental weight, when compared to their WT littermates. Placental weight was also altered in males only of α/+ dams. In addition, α/+ male, but not female, fetuses showed an increase in mitochondrial reserve capacity, when compared to their WT littermates in α/+ dams. Finally, α/+ dams exhibited reduced adipose depot masses, compared to wild-type dams. These findings, thus, demonstrate that maternal nutrient reserves and ability to apportion nutrients to the fetus are reduced in α/+ dams. Moreover, maternal and fetal PI3K-p110α deficiency impacts conceptus growth and placental mitochondrial bioenergetic function, in a manner dependent on fetal sex.
Collapse
|
6
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
7
|
Lopez-Tello J, Salazar-Petres E, Webb L, Fowden AL, Sferruzzi-Perri AN. Ablation of PI3K-p110alpha Impairs Maternal Metabolic Adaptations to Pregnancy. Front Cell Dev Biol 2022; 10:928210. [PMID: 35846351 PMCID: PMC9283861 DOI: 10.3389/fcell.2022.928210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 01/03/2023] Open
Abstract
Pregnancy requires adaptations in maternal metabolism to support fetal growth. The phosphoinositol-3-kinase (PI3K) signalling pathway controls multiple biological processes and defects in this pathway are linked to metabolic disorders including insulin resistance and glucose intolerance in non-pregnant animals. However, relatively little is known about the contribution of PI3K signalling to the maternal metabolic adaptations during pregnancy. Using mice with partial inactivation of the PI3K isoform, p110α (due to a heterozygous dominant negative mutation; Pik3ca-D933A), the effects of impaired PI3K-p110α signalling on glucose and insulin handling were examined in the pregnant and non-pregnant states and related to the morphological, molecular, and mitochondrial changes in key metabolic organs. The results show that non-pregnant mice lacking PI3K-p110α are glucose intolerant but exhibit compensatory increases in pancreatic glucose-stimulated insulin release and adipose tissue mitochondrial respiratory capacity and fatty acid oxidation. However, in pregnancy, mutant mice failed to show the normal increment in glucose intolerance and pancreatic β-cell mass observed in wild-type pregnant dams and exhibited further enhanced adipose tissue mitochondrial respiratory capacity. These maladaptations in pregnant mutant mice were associated with fetal growth restriction. Hence, PI3K-p110α is a key regulator of metabolic adaptations that support fetal growth during normal pregnancy.
Collapse
Affiliation(s)
| | | | | | | | - Amanda N. Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Napso T, Lean SC, Lu M, Mort EJ, Desforges M, Moghimi A, Bartels B, El‐Bacha T, Fowden AL, Camm EJ, Sferruzzi‐Perri AN. Diet-induced maternal obesity impacts feto-placental growth and induces sex-specific alterations in placental morphology, mitochondrial bioenergetics, dynamics, lipid metabolism and oxidative stress in mice. Acta Physiol (Oxf) 2022; 234:e13795. [PMID: 35114078 PMCID: PMC9286839 DOI: 10.1111/apha.13795] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023]
Abstract
AIM The current study investigated the impact of maternal obesity on placental phenotype in relation to fetal growth and sex. METHODS Female C57BL6/J mice were fed either a diet high in fat and sugar or a standard chow diet, for 6 weeks prior to, and during, pregnancy. At day 19 of gestation, placental morphology and mitochondrial respiration and dynamics were assessed using high-resolution respirometry, stereology, and molecular analyses. RESULTS Diet-induced maternal obesity increased the rate of small for gestational age fetuses in both sexes, and increased blood glucose concentrations in offspring. Placental weight, surface area, and maternal blood spaces were decreased in both sexes, with reductions in placental trophoblast volume, oxygen diffusing capacity, and an increased barrier to transfer in males only. Despite these morphological changes, placental mitochondrial respiration was unaffected by maternal obesity, although the influence of fetal sex on placental respiratory capacity varied between dietary groups. Moreover, in males, but not females, maternal obesity increased mitochondrial complexes (II and ATP synthase) and fission protein DRP1 abundance. It also reduced phosphorylated AMPK and capacity for lipid synthesis, while increasing indices of oxidative stress, specifically in males. In females only, placental mitochondrial biogenesis and capacity for lipid synthesis, were both enhanced. The abundance of uncoupling protein-2 was decreased by maternal obesity in both fetal sexes. CONCLUSION Maternal obesity exerts sex-dependent changes in placental phenotype in association with alterations in fetal growth and substrate supply. These findings may inform the design of personalized lifestyle interventions or therapies for obese pregnant women.
Collapse
Affiliation(s)
- Tina Napso
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Samantha C. Lean
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Minhui Lu
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Mort
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Michelle Desforges
- Division of Developmental Biology and Medicine Maternal & Fetal Health Research Centre University of Manchester Manchester UK
| | - Ali Moghimi
- The Children’s Hospital at Westmead Westmead New South Wales Australia
- Department of Paediatrics Monash University Monash Victoria Australia
| | - Beverly Bartels
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Tatiana El‐Bacha
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Abigail L. Fowden
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Emily J. Camm
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| | - Amanda N. Sferruzzi‐Perri
- Department of Physiology Development and Neuroscience Centre for Trophoblast Research University of Cambridge Cambridge UK
| |
Collapse
|
9
|
Gut microbiota mediates the alleviative effect of polar lipids-enriched milk fat globule membrane on obesity-induced glucose metabolism disorders in peripheral tissues in rat dams. Int J Obes (Lond) 2022; 46:793-801. [PMID: 35091670 DOI: 10.1038/s41366-021-01029-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Obesity during pregnancy and lactation not only increases the incidence of metabolic disorders and gestational diabetes in mothers, but also programs adiposity and related metabolic diseases in offspring. The aim of this study was to investigate the effects of milk polar lipids on gut microbiota and glucose metabolism in high-fat diet (HFD)-fed rat dams. METHODS Sprague Dawley (SD) female rats were fed a HFD for 8 weeks to induce obesity, followed by HFD with or without oral administration of polar lipids-enriched milk fat globule membrane (MFGM-PL) at 400 mg/kg BW during pregnancy and lactation. At the end of lactation, fresh fecal samples of dams were collected, the gut microbiota was assessed, and the insulin-signaling protein expression in peripheral tissues (adipose tissue, liver and skeletal muscle) were measured. RESULTS MFGM-PL supplementation attenuated body weight gain, ameliorated serum lipid profiles and improved insulin sensitivity in obese dams at the end of lactation. 16 S rDNA sequencing revealed that MFGM-PL increased the community richness and diversity of gut microbiota. The composition of gut microbiota was also changed after MFGM-PL supplementation as shown by an increase in the ratio of Bacteroidetes/Firmicutes and the relative abundance of Akkermansia, as well as a decrease in the relative abundance of Ruminococcaceae. The functional prediction of microbial communities by PICRUSt analysis showed that there were 7 KEGG pathways related to carbohydrate metabolism changed after MFGM-PL supplementation to HFD dams, including glycolysis/gluconeogenesis and insulin signaling pathway. Furthermore, MFGM-PL improved insulin signaling in the peripheral tissues including liver, adipose tissue and skeletal muscle. CONCLUSIONS MFGM-PL supplementation during pregnancy and lactation improves the glucose metabolism disorders in HFD-induced obese dams, which may be linked to the regulation of gut microbiota induced by MFGM-PL.
Collapse
|
10
|
Shrestha A, Prowak M, Berlandi-Short VM, Garay J, Ramalingam L. Maternal Obesity: A Focus on Maternal Interventions to Improve Health of Offspring. Front Cardiovasc Med 2021; 8:696812. [PMID: 34368253 PMCID: PMC8333710 DOI: 10.3389/fcvm.2021.696812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity has many implications for offspring health that persist throughout their lifespan that include obesity and cardiovascular complications. Several different factors contribute to obesity and they encompass interplay between genetics and environment. In the prenatal period, untreated obesity establishes a foundation for a myriad of symptoms and negative delivery experiences, including gestational hypertensive disorders, gestational diabetes, macrosomia, and labor complications. However, data across human and animal studies show promise that nutritional interventions and physical activity may rescue much of the adverse effects of obesity on offspring metabolic health. Further, these maternal interventions improve the health of the offspring by reducing weight gain, cardiovascular disorders, and improving glucose tolerance. Mechanisms from animal studies have also been proposed to elucidate the signaling pathways that regulate inflammation, lipid metabolism, and oxidative capacity of the tissue, ultimately providing potential specific courses of treatment. This review aims to pinpoint the risks of maternal obesity and provide plausible intervention strategies. We delve into recent research involving both animal and human studies with maternal interventions. With the increasing concerning of obesity rates witnessed in the United States, it is imperative to acknowledge the long-term effects posed on future generations and specifically modify maternal nutrition and care to mitigate these adverse outcomes.
Collapse
Affiliation(s)
- Akriti Shrestha
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | - Madison Prowak
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | | | - Jessica Garay
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| | - Latha Ramalingam
- Department of Nutrition and Food Studies, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
11
|
Ferrari N, Joisten C. Impact of physical activity on course and outcome of pregnancy from pre- to postnatal. Eur J Clin Nutr 2021; 75:1698-1709. [PMID: 33828239 PMCID: PMC8636258 DOI: 10.1038/s41430-021-00904-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
A healthy lifestyle that includes physical activity has numerous positive effects on the mother and child during and after pregnancy. In this context physical activity plays a central role due to its influence on body composition. While visceral fatty tissue has a pro-inflammatory effect via so-called adipokines, myokines seem to have a more anti-inflammatory effect and thus prevent numerous diseases such as gestational hypertension or gestational diabetes. However, many women show a decreased level of physical activity during pregnancy when compared to pre-gestation levels. The reasons underlying this change are manifold and include concern about the effects of physical exertion on the unborn child. Gynaecologists and midwives are also often uncertain about what specific advice to give regarding physical activity. The present review describes, besides the underlying mechanisms, current physical activity recommendations and corresponding evidence with a focus on weight development in terms of obesity, gestational diabetes and foetal outcome.
Collapse
Affiliation(s)
- Nina Ferrari
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Cologne, Germany. .,Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany.
| | - Christine Joisten
- Cologne Centre for Prevention in Childhood and Youth/ Heart Centre Cologne, University Hospital of Cologne, Cologne, Germany.,Department for physical activity in public health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| |
Collapse
|
12
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
13
|
Allman BR, Spray BJ, Mercer KE, Andres A, Børsheim E. Markers of branched-chain amino acid catabolism are not affected by exercise training in pregnant women with obesity. J Appl Physiol (1985) 2021; 130:651-659. [PMID: 33444120 DOI: 10.1152/japplphysiol.00673.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the role of branched-chain amino acids (BCAAs) in physiological processes such as nutrient signaling and protein synthesis, there is ongoing debate about the link between circulating BCAAs and insulin resistance (IR) in various populations. In healthy women, IR mildly increases during pregnancy, whereas both BCAAs and markers of BCAA catabolism decrease, indicating that fetal growth is being prioritized. Exercise reduces IR in nonpregnant adults, but less is known about the effect of exercise during pregnancy in women with obesity on IR and BCAA breakdown. The aim of this study was to determine the effect of a moderate-intensity exercise intervention during pregnancy on maternal circulating BCAAs and markers of BCAA catabolism [short-chain acylcarnitines (ACs)], and their associations with IR. Healthy obese [n = 80, means ± SD; body mass index (BMI): 36.9 ± 5.7 kg/m2] pregnant women were randomized into an exercise (n = 40, aerobic/resistance 3×/wk, ∼13th gestation week until birth) or a nonexercise control (n = 40) group. Blood was collected at 12.2 ± 0.5 and 36.0 ± 0.4 gestation weeks and analyzed for BCAA-derived acylcarnitine concentrations as markers of BCAA breakdown toward oxidative pathways, and glucose and insulin concentrations [updated homeostatic model assessment of IR (HOMA2-IR)]. After adjusting for HOMA2-IR, there were no interaction effects of group by time. In addition, there was a main positive effect of time on HOMA2-IR (12 wk: 2.3 ± 0.2, 36 wk: 3.0 ± 0.2, P = 0.003). A moderate-intensity exercise intervention during pregnancy in women with obesity was not associated with changes in BCAA-derived ACs versus standard of care. The decrease in BCAA-derived ACs throughout gestation could not be explained by IR.NEW & NOTEWORTHY This research showed an increase in insulin resistance (IR) and decrease in branched-chain amino acid catabolism throughout gestation in women with obesity, and addition of a moderate exercise intervention (known to attenuate IR in nonpregnant populations) did not alter these shifts. Findings provide support for metabolic safety of exercise during pregnancy.
Collapse
Affiliation(s)
- Brittany R Allman
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Beverly J Spray
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, Arkansas.,Arkansas Children's Research Institute, Little Rock, Arkansas.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
14
|
Chae SA, Son JS, Zhu MJ, De Avila JM, Du AM. Treadmill Running of Mouse as a Model for Studying Influence of Maternal Exercise on Offspring. Bio Protoc 2020; 10:e3838. [PMID: 33659487 DOI: 10.21769/bioprotoc.3838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies robustly show the beneficial effects of maternal exercise in reducing maternal birth complications and improving neonatal outcomes, though underlying mechanisms remain poorly understood. To facilitate mechanistic exploration, a protocol for maternal exercise of mice is established, with the regimen following the exercise guidelines for pregnant women. Compared to volunteer wheel running, treadmill running allows precise control of exercise intensity and duration, dramatically reducing variations among individual mouse within treatments and facilitating translation into maternal exercise in humans. Based on the maximal oxygen consumption rate (VO2max) before pregnancy, the treadmill exercise protocol is separated into three stages: early stage (E1.5 to E7.5 at 40% VO2max), mid stage (E8.5 to E14.5 at 65% VO2max), and late stage of pregnancy (E15.5 to birth at 50% VO2max), which demonstrated persistent beneficial effects on maternal health and fetal development. This protocol can be useful for standardizing maternal treadmill exercise using mice as an experimental model.
Collapse
Affiliation(s)
- Song Ah Chae
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Jun Seok Son
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Jeanene M De Avila
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - And Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
15
|
Sferruzzi-Perri AN, Lopez-Tello J, Napso T, Yong HEJ. Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: Lessons from animal models. Placenta 2020; 98:43-51. [PMID: 33039031 DOI: 10.1016/j.placenta.2020.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a remarkable physiological state, during which the metabolic system of the mother adapts to ensure that nutrients are made available for transfer to the fetus for growth and development. Adaptations of maternal metabolism during pregnancy are influenced by the metabolic and nutritional status of the mother and the production of endocrine factors by the placenta that exert metabolic effects. Insufficient or inappropriate adaptations in maternal metabolism during pregnancy may lead to pregnancy complications with important short- and long-term effects for both the health of the child and mother. This is very evident in gestational diabetes, which is marked by greater glucose intolerance and insulin resistance above that expected of a normal pregnancy. Gestational diabetes is associated with increased fetal weight and/or increased adiposity, higher instrumented delivery rates and greater risks for both mother and child of developing type 2 diabetes in the long-term. However, despite the negative health impacts of such metabolic imbalances during pregnancy, the precise mechanisms responsible for orchestrating these changes remain largely unknown. The present review describes the dynamic pregnancy-specific changes that occur in the metabolic system of the mother during pregnancy. It also discusses findings using surgical, pharmacological, genetic and dietary methods in experimental animals that highlight the role of pathways in maternal tissues that lead to metabolic dysfunction, with a particular focus on gestational diabetes. Finally, it summarises the work largely employing gene targeting and hormone administration in rodents that have illuminated the involvement of placental endocrine function in driving maternal metabolic adaptations. While current animal models may not fully replicate what is observed in humans, these have been instrumental in showing that there is a dynamic interplay between changes in maternal metabolic physiology and the placental production of endocrine factors that govern the availability of nutrients to the growing fetus. However, more work is required to specifically identify the placenta-driven changes in maternal metabolic physiology that ensure the appropriate level of insulin production and action during pregnancy. In doing so, these studies may pave the way to understanding the development of pregnancy complications like gestational diabetes, as well as further our understanding of type-2 diabetes and the control of metabolic physiology more broadly.
Collapse
Affiliation(s)
- Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK.
| | - Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Tina Napso
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Hannah E J Yong
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, CB2 3EG, UK
| |
Collapse
|
16
|
Musial B, Fernandez‐Twinn DS, Duque‐Guimaraes D, Carr SK, Fowden AL, Ozanne SE, Sferruzzi‐Perri AN. Exercise alters the molecular pathways of insulin signaling and lipid handling in maternal tissues of obese pregnant mice. Physiol Rep 2019; 7:e14202. [PMID: 31466137 PMCID: PMC6715452 DOI: 10.14814/phy2.14202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/02/2023] Open
Abstract
Obesity during gestation adversely affects maternal and infant health both during pregnancy and for long afterwards. However, recent work suggests that a period of maternal exercise during pregnancy can improve metabolic health of the obese mother and her offspring. This study aimed to identify the physiological and molecular impact of exercise on the obese mother during pregnancy that may lead to improved metabolic outcomes. To achieve this, a 20-min treadmill exercise intervention was performed 5 days a week in diet-induced obese female mice from 1 week before and up to day 17 of pregnancy. Biometric, biochemical and molecular analyses of maternal tissues and/or plasma were performed on day 19 of pregnancy. We found exercise prevented some of the adverse changes in insulin signaling and lipid metabolic pathways seen in the liver, skeletal muscle and white adipose tissue of sedentary-obese pregnant dams (p110β, p110α, AKT, SREBP). Exercise also induced changes in the insulin and lipid signaling pathways in obese dams that were different from those observed in control and sedentary-obese dams. The changes induced by obesity and exercise were tissue-specific and related to alterations in tissue lipid, protein and glycogen content and plasma insulin, leptin and triglyceride concentrations. We conclude that the beneficial effects of exercise on metabolic outcomes in obese mothers may be related to specific molecular signatures in metabolically active maternal tissues during pregnancy. These findings highlight potential metabolic targets for therapeutic intervention and the importance of lifestyle in reducing the burden of the current obesity epidemic on healthcare systems.
Collapse
Affiliation(s)
- Barbara Musial
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Denise S. Fernandez‐Twinn
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Daniella Duque‐Guimaraes
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Sarah K. Carr
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Abigail L. Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| | - Susan E. Ozanne
- MRC Metabolic Disease UnitUniversity of Cambridge Metabolic Research Laboratories, Wellcome Trust‐MRC Institute of Metabolic Science, Addenbrooke’s HospitalCambridgeUnited Kingdom
| | - Amanda N. Sferruzzi‐Perri
- Centre for Trophoblast Research, Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|