1
|
Henningsen K, Martinez I, Costa RJS. Exertional Stress-induced Pathogenic Luminal Content Translocation - Friend or Foe? Int J Sports Med 2024; 45:559-571. [PMID: 38286406 DOI: 10.1055/a-2235-1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The incidence of perturbed gastrointestinal integrity, as well as resulting systemic immune responses and gastrointestinal symptoms, otherwise known as exercised-induced gastrointestinal syndrome (EIGS), is common among individuals who partake in prolonged exercise. EIGS may cause the translocation of pathogenic material, including whole bacteria and bacterial endotoxins, from the lumen into circulation, which may progress into clinical consequences such as sepsis, and potentially subsequent fatality. However, further investigation is warranted to assess the possibility of food allergen and/or digestive enzyme luminal to circulatory translocation in response to exercise, and the clinical consequences. Findings from this narrative literature review demonstrate evidence that whole bacteria and bacterial endotoxins translocation from the gastrointestinal lumen to systemic circulation occurs in response to exercise stress, with a greater propensity of translocation occurring with accompanying heat exposure. It has also been demonstrated that food allergens can translocate from the lumen to systemic circulation in response to exercise stress and initiate anaphylaxis. To date, no research investigating the effect of exercise on the translocation of digestive enzymes from the lumen into systemic circulation exists. It is evident that EIGS and consequential pathogenic translocation presents life-threatening clinical implications, warranting the development and implementation of effective management strategies in at-risk populations.
Collapse
Affiliation(s)
- Kayla Henningsen
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Isabel Martinez
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| | - Ricardo J S Costa
- Nutrition Dietetics & Food, Monash University Faculty of Medicine Nursing and Health Sciences, Notting Hill, Australia
| |
Collapse
|
2
|
Roca Rubio MF, Folkesson M, Kremp C, Evertsson N, Repsilber D, Eriksson U, Ganda Mall J, Kadi F, Brummer RJ, König J. Associations between various markers of intestinal barrier and immune function after a high-intensity exercise challenge. Physiol Rep 2024; 12:e16087. [PMID: 38783385 PMCID: PMC11116166 DOI: 10.14814/phy2.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Strenuous exercise can result in disruption of intestinal barrier function and occurrence of gastrointestinal symptoms. The aim of this exploratory study was to elucidate systemic effects of increased intestinal permeability after high-intensity exercise. Forty-one endurance-trained subjects performed a 60-min treadmill run at 80% VO2max. Small intestinal permeability was measured as urinary excretion ratio of lactulose/rhamnose (L/R). Blood, saliva and feces were analyzed for gut barrier and immune-related biomarkers. The exercise challenge increased several markers of intestinal barrier disruption, immune function and oxidative stress. We found a negative correlation between L/R ratio and uric acid (r = -0.480), as well as a positive correlation between the L/R ratio and fecal chromogranin A in male participants (r = 0.555). No significant correlations were found between any of the markers and gastrointestinal symptoms, however, perceived exertion correlated with the combination of IL-6, IL-10 and salivary cortisol (r = 0.492). The lack of correlation between intestinal permeability and gastrointestinal symptoms could be due to minor symptoms experienced in lab settings compared to real-life competitions. The correlation between L/R ratio and uric acid might imply a barrier-protective effect of uric acid, and inflammatory processes due to strenuous exercise seem to play an important role regarding physical exhaustion.
Collapse
Affiliation(s)
- Maria Fernanda Roca Rubio
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Mattias Folkesson
- Division of Sports Sciences, School of Health Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Carolin Kremp
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Niklas Evertsson
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Dirk Repsilber
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Ulrika Eriksson
- Man‐Technology‐Environment (MTM) Research Centre, School of Science and TechnologyÖrebro UniversityÖrebroSweden
| | - John‐Peter Ganda Mall
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Fawzi Kadi
- Division of Sports Sciences, School of Health Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Robert J. Brummer
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| | - Julia König
- Nutrition‐Gut‐Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and HealthÖrebro UniversityÖrebroSweden
| |
Collapse
|
3
|
McKenna ZJ, Bellovary BN, Ducharme JB, Deyhle MR, Wells AD, Fennel ZJ, Specht JW, Houck JM, Mayschak TJ, Mermier CM. Circulating markers of intestinal barrier injury and inflammation following exertion in hypobaric hypoxia. Eur J Sport Sci 2023; 23:2002-2010. [PMID: 37051668 DOI: 10.1080/17461391.2023.2203107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 μg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1β (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Bryanne N Bellovary
- Kinesiology Departments, State University of New York at Cortland, Cortland, New York
| | - Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Andrew D Wells
- Department of Health & Exercise, Wake Forest University, Winston-Salem, NC, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | | | - Trevor J Mayschak
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
- Department of Emergency Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
Henningsen K, Mika A, Alcock R, Gaskell SK, Parr A, Rauch C, Russo I, Snipe RMJ, Costa RJS. The increase in core body temperature in response to exertional-heat stress can predict exercise-induced gastrointestinal syndrome. Temperature (Austin) 2023; 11:72-91. [PMID: 38577295 PMCID: PMC10989703 DOI: 10.1080/23328940.2023.2213625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 04/06/2024] Open
Abstract
Utilizing metadata from existing exertional and exertional-heat stress studies, the study aimed to determine if the exercise-associated increase in core body temperature can predict the change in exercise-induced gastrointestinal syndrome (EIGS) biomarkers and exercise-associated gastrointestinal symptoms (Ex-GIS). Endurance-trained individuals completed 2 h of running exercise in temperate (21.2-30.0°C) to hot (35.0-37.2°C) ambient conditions (n = 132 trials). Blood samples were collected pre- and post-exercise to determine the change in gastrointestinal integrity biomarkers and systemic inflammatory cytokines. Physiological and thermoregulatory strain variables were assessed every 10-15 min during exercise. The strength of the linear relationship between maximal (M-Tre) and change (Δ Tre) in rectal temperature and EIGS variables was determined via Spearman's rank correlation coefficients. While the strength of prediction was determined via simple and multiple linear regression analyses dependent on screened EIGS and Ex-GIS confounding factors. Significant positive correlations between Tre maximum (M-Tre) and change (Δ Tre) with I-FABP (rs = 0.434, p < 0.001; and rs = 0.305, p < 0.001; respectively), sCD14 (rs = 0.358, p < 0.001; and rs = 0.362, p < 0.001), systemic inflammatory response profile (SIR-Profile) (p < 0.001), and total Ex-GIS (p < 0.05) were observed. M-Tre and Δ Tre significantly predicted (adjusted R2) magnitude of change in I-FABP (R2(2,123)=0.164, p < 0.001; and R2(2,119)=0.058, p = 0.011; respectively), sCD14 (R2(2,81)=0.249, p < 0.001; and R2(2,77)=0.214, p < 0.001), SIR-Profile (p < 0.001), and total Ex-GIS (p < 0.05). Strong to weak correlations were observed between M-Tre and Δ Tre with plasma concentrations of I-FABP, sCD14, SIR-Profile, and Ex-GIS in response to exercise. M-Tre and Δ Tre can predict the magnitude of these EIGS variables and Ex-GIS in response to exercise.
Collapse
Affiliation(s)
- Kayla Henningsen
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Alice Mika
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Rebekah Alcock
- Department of Dietetics and Human Nutrition, La Trobe University, Bundoora, Victoria, Australia
| | - Stephanie K. Gaskell
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Alexandra Parr
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Christopher Rauch
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Isabela Russo
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| | - Rhiannon M. J. Snipe
- Centre for Sport Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Victoria, Australia
| |
Collapse
|
5
|
Young P, Russo I, Gill P, Muir J, Henry R, Davidson Z, Costa RJS. Reliability of pathophysiological markers reflective of exercise-induced gastrointestinal syndrome (EIGS) in response to 2-h high-intensity interval exercise: A comprehensive methodological efficacy exploration. Front Physiol 2023; 14:1063335. [PMID: 36895638 PMCID: PMC9989174 DOI: 10.3389/fphys.2023.1063335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
The study aimed to determine the test-retest reliability of exercise-induced gastrointestinal syndrome (EIGS) biomarkers, and assess the association of pre-exercise short chain fatty acid (SCFA) concentration with these biomarkers in response to prolonged strenuous exercise. Thirty-four participants completed 2 h of high-intensity interval training (HIIT) on two separate occasions with at least 5-days washout. Blood samples were collected pre- and post-exercise, and analysed for biomarkers associated with EIGS [i.e., cortisol, intestinal fatty-acid binding protein (I-FABP), sCD14, lipopolysaccharide binding protein (LBP), leukocyte counts, in-vitro neutrophil function, and systemic inflammatory cytokine profile]. Fecal samples were collected pre-exercise on both occasions. In plasma and fecal samples, bacterial DNA concentration was determined by fluorometer quantification, microbial taxonomy by 16S rRNA amplicon sequencing, and SCFA concentration by gas-chromatography. In response to exercise, 2 h of HIIT modestly perturbed biomarkers indicative of EIGS, including inducing bacteremia (i.e., quantity and diversity). Reliability analysis using comparative tests, Cohen's d, two-tailed correlation, and intraclass correlation coefficient (ICC) of resting biomarkers presented good-to-excellent for IL-1ra (r = 0.710, ICC = 0.92), IL-10 (r = 0.665, ICC = 0.73), cortisol (r = 0.870, ICC = 0.87), and LBP (r = 0.813, ICC = 0.76); moderate for total (r = 0.839, ICC = 0.44) and per cell (r = 0.749, ICC = 0.54) bacterially-stimulated elastase release, IL-1β (r = 0.625, ICC = 0.64), TNF-α (r = 0.523, ICC = 0.56), I-FABP (r = 0.411, ICC = 0.21), and sCD14 (r = 0.409, ICC = 0.38), plus fecal bacterial α-diversity; and poor for leukocyte (r = 0.327, ICC = 0.33) and neutrophil (r = 0.352, ICC = 0.32) counts. In addition, a medium negative correlation was observed between plasma butyrate and I-FABP (r = -0.390). The current data suggest a suite of biomarkers should be used to determine the incidence and severity of EIGS. Moreover, determination of plasma and/or fecal SCFA may provide some insight into the mechanistic aspects of EIGS instigation and magnitude in response to exercise.
Collapse
Affiliation(s)
- Pascale Young
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Isabella Russo
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Paul Gill
- Department of Gastroenterology, Monash University, Melbourne, VIC, Australia
| | - Jane Muir
- Department of Gastroenterology, Monash University, Melbourne, VIC, Australia
| | - Rebekah Henry
- Department of Civil Engineering, Monash University, Clayton, VIC, Australia
| | - Zoe Davidson
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| | - Ricardo J S Costa
- Department of Nutrition Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
6
|
McKenna Z, Houck J, Ducharme J, Li Z, Berkemeier Q, Fennel Z, Wells A, Mermier C, Deyhle M, Laitano O, Amorim F. The effect of prolonged interval and continuous exercise in the heat on circulatory markers of intestinal barrier integrity. Eur J Appl Physiol 2022; 122:2651-2659. [DOI: 10.1007/s00421-022-05049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
|
7
|
The effect of rugby training on indirect markers of gut permeability and gut damage in academy level rugby players. Eur J Appl Physiol 2022; 122:2545-2554. [PMID: 36053363 PMCID: PMC9613545 DOI: 10.1007/s00421-022-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/17/2022] [Indexed: 11/28/2022]
Abstract
Purpose To assess indirect markers of intestinal endothelial cell damage and permeability in academy rugby players in response to rugby training at the beginning and end of preseason. Methods Blood and urinary measures (intestinal fatty acid binding protein and lactulose:rhamnose) as measures of gastrointestinal cell damage and permeability were taken at rest and after a standardised collision-based rugby training session in 19 elite male academy rugby players (age: 20 ± 1 years, backs: 89.3 ± 8.4 kg; forwards: 111.8 ± 7.6 kg) at the start of preseason. A subsample (n = 5) repeated the protocol after six weeks of preseason training. Gastrointestinal symptoms (GIS; range of thirteen standard symptoms), aerobic capacity (30–15 intermittent fitness test), and strength (1 repetition maximum) were also measured. Results Following the rugby training session at the start of preseason, there was an increase (median; interquartile range) in intestinal fatty acid binding protein (2140; 1260–2730 to 3245; 1985–5143 pg/ml, p = 0.003) and lactulose:rhamnose (0.31; 0.26–0.34 to 0.97; 0.82–1.07, p < 0.001). After six weeks of preseason training players physical qualities improved, and the same trends in blood and urinary measures were observed within the subsample. Overall, the frequency and severity of GIS were low and not correlated to markers of endothelial damage. Conclusions Rugby training resulted in increased intestinal endothelial cell damage and permeability compared to rest. A similar magnitude of effect was observed after six weeks of pre-season training. This was not related to the experience of GIS.
Collapse
|
8
|
Assessment of Exercise-Associated Gastrointestinal Perturbations in Research and Practical Settings: Methodological Concerns and Recommendations for Best Practice. Int J Sport Nutr Exerc Metab 2022; 32:387-418. [PMID: 35963615 DOI: 10.1123/ijsnem.2022-0048] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Strenuous exercise is synonymous with disturbing gastrointestinal integrity and function, subsequently prompting systemic immune responses and exercise-associated gastrointestinal symptoms, a condition established as "exercise-induced gastrointestinal syndrome." When exercise stress and aligned exacerbation factors (i.e., extrinsic and intrinsic) are of substantial magnitude, these exercise-associated gastrointestinal perturbations can cause performance decrements and health implications of clinical significance. This potentially explains the exponential growth in exploratory, mechanistic, and interventional research in exercise gastroenterology to understand, accurately measure and interpret, and prevent or attenuate the performance debilitating and health consequences of exercise-induced gastrointestinal syndrome. Considering the recent advancement in exercise gastroenterology research, it has been highlighted that published literature in the area is consistently affected by substantial experimental limitations that may affect the accuracy of translating study outcomes into practical application/s and/or design of future research. This perspective methodological review attempts to highlight these concerns and provides guidance to improve the validity, reliability, and robustness of the next generation of exercise gastroenterology research. These methodological concerns include participant screening and description, exertional and exertional heat stress load, dietary control, hydration status, food and fluid provisions, circadian variation, biological sex differences, comprehensive assessment of established markers of exercise-induced gastrointestinal syndrome, validity of gastrointestinal symptoms assessment tool, and data reporting and presentation. Standardized experimental procedures are needed for the accurate interpretation of research findings, avoiding misinterpreted (e.g., pathological relevance of response magnitude) and overstated conclusions (e.g., clinical and practical relevance of intervention research outcomes), which will support more accurate translation into safe practice guidelines.
Collapse
|
9
|
Chantler S, Griffiths A, Matu J, Davison G, Holliday A, Jones B. A systematic review: Role of dietary supplements on markers of exercise-associated gut damage and permeability. PLoS One 2022; 17:e0266379. [PMID: 35417467 PMCID: PMC9007357 DOI: 10.1371/journal.pone.0266379] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition strategies and supplements may have a role to play in diminishing exercise associated gastrointestinal cell damage and permeability. The aim of this systematic review was to determine the influence of dietary supplements on markers of exercise-induced gut endothelial cell damage and/or permeability. Five databases were searched through to February 2021. Studies were selected that evaluated indirect markers of gut endothelial cell damage and permeability in response to exercise with and without a specified supplement, including with and without water. Acute and chronic supplementation protocols were included. Twenty-seven studies were included. The studies investigated a wide range of supplements including bovine colostrum, glutamine, probiotics, supplemental carbohydrate and protein, nitrate or nitrate precursors and water across a variety of endurance exercise protocols. The majority of studies using bovine colostrum and glutamine demonstrated a reduction in selected markers of gut cell damage and permeability compared to placebo conditions. Carbohydrate intake before and during exercise and maintaining euhydration may partially mitigate gut damage and permeability but coincide with other performance nutrition strategies. Single strain probiotic strains showed some positive findings, but the results are likely strain, dosage and duration specific. Bovine colostrum, glutamine, carbohydrate supplementation and maintaining euhydration may reduce exercise-associated endothelial damage and improve gut permeability. In spite of a large heterogeneity across the selected studies, appropriate inclusion of different nutrition strategies could mitigate the initial phases of gastrointestinal cell disturbances in athletes associated with exercise. However, research is needed to clarify if this will contribute to improved athlete gastrointestinal and performance outcomes.
Collapse
Affiliation(s)
- Sarah Chantler
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Yorkshire Carnegie Rugby Union Club, Leeds, United Kingdom
| | - Alex Griffiths
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Jamie Matu
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | - Adrian Holliday
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Science and Technology, University of New England, Armidale, NSW, Australia
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, the University of Cape Town and the Sports Science Institute of South Africa, Cape Town, South Africa
- Leeds Rhinos Rugby League Club, Leeds, United Kingdom
- England Performance Unit, Rugby Football League, Leeds, United Kingdom
| |
Collapse
|
10
|
McKenna ZJ, Fennel ZJ, Berkemeier QN, Nava RC, Amorim FT, Deyhle MR, Mermier CM. Exercise in hypobaric hypoxia increases markers of intestinal injury and symptoms of gastrointestinal distress. Exp Physiol 2022; 107:326-336. [PMID: 35224797 DOI: 10.1113/ep090266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDING What is the central question of this study? What is the effect of hypobaric hypoxia on markers of exercise-induced intestinal injury and symptoms of GI distress? What is the main finding and its importance? Exercise performed at 4300 m of simulated altitude increased I-FABP, CLDN-3, and LBP which together suggest that exercise-induced intestinal injury may be aggravated by concurrent hypoxic exposure. Increases in I-FABP, LBP, CLDN-3 were correlated to exercise-induced GI symptoms, providing some evidence of a link between intestinal barrier injury and symptoms of GI distress. ABSTRACT We sought to determine the effect of exercise in hypobaric hypoxia on markers of intestinal injury and gastrointestinal (GI) symptoms. Using a randomized and counterbalanced design, 9 males completed two experimental trials: one at local altitude of 1585 m (NORM) and one at 4300 m of simulated hypobaric hypoxia (HYP). Participants performed 60-minutes of cycling at a workload that elicited 65% of their NORM VO2 max. GI symptoms were assessed before and every 15-minutes during exercise. Pre- and post-exercise blood samples were assessed for intestinal fatty acid binding protein (I-FABP), claudin-3 (CLDN-3), and lipopolysaccharide binding protein (LBP). All participants reported at least one GI symptom in HYP compared to just 1 participant in NORM. I-FABP significantly increased from pre- to post-exercise in HYP (708±191 to 1215±518 pg mL-1 ; p = 0.011, d = 1.10) but not NORM (759±224 to 828±288 pg mL-1 ; p>0.99, d = 0.27). CLDN-3 significantly increased from pre- to post-exercise in HYP (13.8±0.9 to 15.3±1.2 ng mL-1 ; p = 0.003, d = 1.19) but not NORM (13.7±1.8 to 14.2±1.6 ng mL-1 ; p = .435, d = 0.45). LBP significantly increased from pre- to post-exercise in HYP (10.8±1.2 to 13.9±2.8 μg mL-1 ; p = 0.006, d = 1.12) but not NORM (11.3±1.1 to 11.7±0.9 μg mL-1 ; p>0.99, d = 0.32). I-FABP (d = 0.85), CLDN-3 (d = 0.95), and LBP (d = 0.69) were all significantly higher post-exercise in HYP compared to NORM (p≤0.05). Overall GI discomfort was significantly correlated to ΔI-FABP (r = 0.71), ΔCLDN-3 (r = 0.70), and ΔLBP (r = 0.86). These data indicate that cycling exercise performed in hypobaric hypoxia can cause intestinal injury, which might cause some commonly reported GI symptoms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Roberto C Nava
- Harvard Medical School, Boston, MA, USA.,Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Fabiano T Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| | - Christine M Mermier
- Department of Health, Exercise and Sports Sciences, University of New Mexico Albuquerque, NM, USA
| |
Collapse
|
11
|
McKenna ZJ, Gorini Pereira F, Gillum TL, Amorim FT, Deyhle MR, Mermier CM. High altitude exposures and intestinal barrier dysfunction. Am J Physiol Regul Integr Comp Physiol 2022; 322:R192-R203. [PMID: 35043679 DOI: 10.1152/ajpregu.00270.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrointestinal complaints are often reported during ascents to high altitude (> 2500 m), though their etiology is not known. One potential explanation is injury to the intestinal barrier which has been implicated in the pathophysiology of several diseases. High altitude exposures can reduce splanchnic perfusion and blood oxygen levels causing hypoxic and oxidative stress. These stressors might injure the intestinal barrier leading to consequences such as bacterial translocation and local/systemic inflammatory responses. The purpose of this mini review is to 1) discuss the impact of high-altitude exposures on intestinal barrier dysfunction, and 2) present medications and dietary supplements which may have relevant impacts on the intestinal barrier during high-altitude exposures. There is a small but growing body of evidence which shows that acute exposures to high altitudes can damage the intestinal barrier. Initial data also suggests that prolonged hypoxic exposures can compromise the intestinal barrier through alterations in immunological function, microbiota, or mucosal layers. Exertion may worsen high-altitude related intestinal injury via additional reductions in splanchnic circulation and greater hypoxemia. Collectively these responses can result in increased intestinal permeability and bacterial translocation causing local and systemic inflammation. More research is needed to determine the impact of various medications and dietary supplements on the intestinal barrier during high-altitude exposures.
Collapse
Affiliation(s)
- Zachary J McKenna
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Felipe Gorini Pereira
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN, United States
| | - Trevor L Gillum
- Department of Kinesiology, California Baptist University, Riverside, CA, United States
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Michael R Deyhle
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Christine M Mermier
- Department of Health, Exercise, and Sport Sciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
12
|
Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Delves SK, Millyard A, Westwood CS, Layden JD. No protective benefits of low dose acute L-glutamine supplementation on small intestinal permeability, epithelial injury and bacterial translocation biomarkers in response to subclinical exertional-heat stress: A randomized cross-over trial. Temperature (Austin) 2022; 9:196-210. [PMID: 36106146 PMCID: PMC9467553 DOI: 10.1080/23328940.2021.2015227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Exertional heat stress disrupts gastrointestinal permeability and, through subsequent bacterial translocation, can result in potentially fatal exertional heat stroke. Glutamine supplementation is a potential countermeasure although previously validated doses are not universally well tolerated. Ten males completed two 80-minute subclinical exertional heat stress tests (EHSTs) following either glutamine (0.3 g kg FFM-1) or placebo supplementation. Small intestinal permeability was assessed using the lactulose/rhamnose dual sugar absorption test and small intestinal epithelial injury using Intestinal Fatty-Acid Binding Protein (I-FABP). Bacterial translocation was assessed using the total 16S bacterial DNA and Bacteroides/total 16S DNA ratio. The glutamine bolus was well tolerated, with no participants reporting symptoms of gastrointestinal intolerance. Small intestinal permeability was not influenced by glutamine supplementation (p = 0.06) although a medium effect size favoring the placebo trial was observed (d = 0.73). Both small intestinal epithelial injury (p < 0.01) and Bacteroides/total 16S DNA (p = 0.04) increased following exertional heat stress, but were uninfluenced by glutamine supplementation. Low-dose acute oral glutamine supplementation does not protect gastrointestinal injury, permeability, or bacterial translocation in response to subclinical exertional heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, UK,CONTACT Henry B. Ogden
| | - Joanne L. Fallowfield
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, UK
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, UK
| | - Simon C. Fleming
- Department of Clinical Chemistry, Royal Cornwall NHS Trust, Truro, UK
| | - Simon K. Delves
- Environmental Medicine and Science Division, Institute of Naval Medicine, Alverstoke, UK
| | - Alison Millyard
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, UK
| | | | - Joseph D. Layden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, UK
| |
Collapse
|
13
|
Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Delves SK, Millyard A, Westwood CS, Layden JD. Acute L-Glutamine Supplementation does not improve Gastrointestinal Permeability, Injury or Microbial Translocation in Response to Exhaustive High Intensity Exertional-Heat Stress. Eur J Sport Sci 2021; 22:1865-1876. [PMID: 34726114 DOI: 10.1080/17461391.2021.2001575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PurposeExertional-heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), can result in potentially fatal exertional-heat stroke. Acute glutamine (GLN) supplementation is a potential nutritional countermeasure, although the practical value of current supplementation regimens is questionable. Method: Ten males completed two high-intensity exertional-heat stress tests (EHST) involving running in the heat (40°C and 40% relative humidity) at lactate threshold to volitional exhaustion. Participants ingested GLN (0.3 g·kg·FFM-1) or a non-calorific placebo (PLA) one hour prior to the EHST. Venous blood was drawn pre-, post- and one-hour post-EHST. GI permeability was assessed using a serum dual-sugar absorption test (DSAT) and small intestinal epithelial injury using plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using the Bacteroides/total 16S DNA ratio. Results: Volitional exhaustion occurred after 22:19 ± 2:22 (minutes: seconds) in both conditions, during which whole-body physiological responses and GI symptoms were not different (p ˃ 0.05). GI permeability (serum DSAT) was greater following GLN (0.043 ± 0.020) than PLA (0.034 ± 0.019) (p = 0.02; d = 0.47), but small intestine epithelial injury (I-FABP) increased comparably (p = 0.22; η2p = 0.16) following the EHST in both trials (GLN Δ = 1.25 ± 0.63 ng·ml-1; PLA Δ= 0.92 ± 0.44 ng·ml-1). GI MT (Bacteroides/total 16S DNA ratio) was unchanged in either condition following the EHST (p = 0.43). Conclusion: Acute low-dose (0.3 g·kg-1 fat free mass) GLN supplementation ingested one hour before high-intesity exertional-heat stress worsened GI permeability, but did not influence either small intestinal epithilial injury or microbial translocation.Highlights: The pathophysiology of exertional-heat stroke is widely hypothesised to be at least in part attributable to a systemic inflammatory response caused by the leak of gastrointestinal microbes into the circulating blood.Acute high-dose (0.9 g·kg·FFM-1) L-glutamine supplementation is widely promoted as a practical strategy to protect gastrointestinal barrier integrity during exertional-heat stress. However, previously validated doses are often poorly tolerated and cannot be recommended for widespread implementation.This study examined the efficacy of low-dose (0.30 g·kg·FFM-1; ∼20 grams) acute L-glutamine supplementation on small intestinal injury, permeability, and microbial translocation in response a high-intensity exertional-heat stress test to exhaustion (20 - 30 minutes). This type of exercise accounts for the majority of exertional-heat stroke cases in the military.Despite being universally well-tolerated across all participants, acute low-dose L-glutamine supplementation worsened gastrointestinal permeability, without influencing either small intestinal injury or microbial translocation. These findings do not support the application of low-dose L-glutamine supplementation to help prevent exertional-heat stroke.
Collapse
Affiliation(s)
- Henry B Ogden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | | | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom
| | | | | | - Alison Millyard
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Caroline S Westwood
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Joseph D Layden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| |
Collapse
|
14
|
Ferreira GR, Santos-Oliveira JR, Silva-Freitas ML, Honda M, Costa DL, Da-Cruz AM, Costa CHN. Biomarkers of disease severity in patients with visceral leishmaniasis co-infected with HIV. Cytokine 2021; 149:155747. [PMID: 34715475 DOI: 10.1016/j.cyto.2021.155747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022]
Abstract
Visceral leishmaniasis (VL) is caused by the protozoan Leishmania spp, transmitted by sand fly bites. VL is one of the deadliest tropical infection diseases, yet the coinfection with HIV virus drastically increases relapses, treatment failure and mortality. The concomitant action of these two pathogens leads to high cellular activation independently of the progression to AIDS. In addition, microbial translocation and bacterial infections are thought to contribute worsening the clinical picture. Identifying biomarkers associated with disease severity is of interest for clinical management of patients with VL-HIV/AIDS. Thus, we analyzed in the sera several markers including interleukins (IL-1β, IL-6, IL-8, and IL-17), interferon-γ (IFN- γ), tumor necrosis factor (TNF), lipopolysaccharide (LPS), soluble CD14 (sCD14), macrophage migration inhibitory factor (MIF) and intestinal fatty acid-binding protein (IFABP). These markers were compared with disease severity in 24 patients with VL/HIV presenting different clinical outcomes. Disease severity was defined by the probability of death calculated using a score set system derived by the Kala-Cal® software. Probability of death ranged from 3.7% to 97.9%, with median of 28.8%. Five patients died (20%). At the univariate analysis, disease severity was correlated with TNF, IFN-γ and sCD14. LPS was positively correlated with sCD14 specifically in patients with low CD4+ count (CD4+ T-cell <200 cells/mL). Most importantly, the multivariate analysis including LPS, CD4+count and sCD14 showed that sCD14 was the only independent predictor for disease severity and death. Altogether, our results indicated that sCD14 is a powerful marker of pathogenicity and death for patients with VL-HIV/AIDS.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, Canada; Leishmaniasis Research Laboratory at Natan Portella Tropical Diseases Institute, Teresina, Brazil.
| | | | | | | | - Dorcas Lamounier Costa
- Leishmaniasis Research Laboratory at Natan Portella Tropical Diseases Institute, Teresina, Brazil; Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina, Brazil; Universidade Federal do Piauí, Teresina, Brazil
| | | | - Carlos Henrique Nery Costa
- Leishmaniasis Research Laboratory at Natan Portella Tropical Diseases Institute, Teresina, Brazil; Centro de Inteligência em Agravos Tropicais Emergentes e Negligenciados, Teresina, Brazil; Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
15
|
Roca Rubio MF, Eriksson U, Brummer RJ, König J. Short intense psychological stress induced by skydiving does not impair intestinal barrier function. PLoS One 2021; 16:e0254280. [PMID: 34237102 PMCID: PMC8266057 DOI: 10.1371/journal.pone.0254280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Background and aim Psychological stress has been shown to increase intestinal permeability and is associated with the development of gastrointestinal disorders. This study aimed to investigate skydiving as an alternative model to analyse the effect of acute psychological stress on intestinal barrier function. Materials and methods Twenty healthy subjects participated in a tandem skydive followed by a negative control visit, of which 19 (9 females and 10 males, 25.9 ± 3.7 years) were included in the study. Intestinal permeability was assessed by a multi-sugar urinary recovery test. Sucrose recovery and lactulose/rhamnose ratio in 0-5h urine indicated gastroduodenal and small intestinal permeability, respectively, and sucralose/erythritol ratio in 5-24h urine indicated colonic permeability. Blood samples were taken to assess markers associated with barrier function. This study has been registered at ClinicalTrials.gov (NCT03644979) on August 23, 2018. Results Skydiving resulted in a significant increase in salivary cortisol levels directly after skydiving compared to the control visit. Cortisol levels were still increased two hours after landing, while cortisol levels before skydiving were not significantly different from the baseline at the control visit. Skydiving did not induce a significant increase in gastroduodenal, small intestinal or colonic permeability. There was also no significant increase in plasma intestinal and liver fatty acid-binding proteins, suggesting no damage to the enterocytes. Discussion These results show that the acute intense psychological stress induced by skydiving does not affect intestinal permeability in healthy subjects. Future models aiming to investigate the effect of stress on human intestinal barrier function should consider a more sustained exposure to the psychological stressor.
Collapse
Affiliation(s)
- Maria Fernanda Roca Rubio
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
- * E-mail:
| | - Ulrika Eriksson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Medicine and Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
16
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|
17
|
Edwards KH, Ahuja KD, Watson G, Dowling C, Musgrave H, Reyes J, Cherry J, Kitic CM. The influence of exercise intensity and exercise mode on gastrointestinal damage. Appl Physiol Nutr Metab 2021; 46:1105-1110. [PMID: 33725465 DOI: 10.1139/apnm-2020-0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strenuous exercise increases gastrointestinal damage, but the dose-response relationship is yet to be elucidated. It is also commonly believed that running causes greater gastrointestinal damage than cycling. Two randomised, crossover studies aimed to 1) quantify gastrointestinal damage with increasing exercise intensity, and 2) determine if running was associated with greater gastrointestinal damage than cycling. Following a maximal oxygen uptake (V̇O2max) test, participants completed 3 cycling trials at different intensities (60 min at 40%, 60% and 80% V̇O2max; n = 10 (5 female, 5 male)) (INTENSITY), or 1 running and 1 cycling trial (45 min at 70% V̇O2max; n = 11 (3 female, 8 male)) (MODE). Venous blood samples were collected pre- and post-exercise to measure gastrointestinal damage via intestinal fatty acid binding protein (I-FABP). In INTENSITY, I-FABP magnitude of change was greater at 80% V̇O2max than 40% V̇O2max (p < 0.01). In MODE, I-FABP magnitude of change was greater with cycling (mean (SD)) (84.7 (133.2)% d = 1.07) compared with running (19.3 (33.1)%, d = 0.65) with a moderate effect (d = 0.68, p = 0.024). Rating of perceived exertion (RPE) and heart rate (HR) were higher during cycling (RPE p < 0.0001; HR p < 0.0001) but rectal temperature was not different between modes (p = 0.94). While gastrointestinal damage increases with increasing exercise intensity, running was not associated with greater gastrointestinal damage than cycling. Novelty: A fraction of the anaerobic threshold, rather than a fraction of V̇O2max, may be more predictive of intensity that results in exercise induced gastrointestinal damage. The mode of exercise may not be as important as intensity for inducing gastrointestinal damage. Improving anaerobic threshold may reduce susceptibility to gastrointestinal damage when exercising at high intensities.
Collapse
Affiliation(s)
- Kate H Edwards
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Kiran D Ahuja
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Greig Watson
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Courtney Dowling
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Harrison Musgrave
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Jessica Reyes
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - James Cherry
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Cecilia M Kitic
- Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia.,Sports Performance Optimisation Research Team, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
18
|
Ogden HB, Fallowfield JL, Child RB, Davison G, Fleming SC, Edinburgh RM, Delves SK, Millyard A, Westwood CS, Layden JD. Reliability of gastrointestinal barrier integrity and microbial translocation biomarkers at rest and following exertional heat stress. Physiol Rep 2021; 8:e14374. [PMID: 32170836 PMCID: PMC7070100 DOI: 10.14814/phy2.14374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Exertional heat stress adversely distrupts (GI) barrier integrity and, through subsequent microbial translocation (MT), negativly impacts health. Despite widespread application, the temporal reliability of popular GI barrier integity and MT biomarkers is poorly characterised. METHOD Fourteen males completed two 80-min exertional heat stress tests (EHST) separated by 7-14 days. Venous blood was drawn pre, immediately- and 1-hr post both EHSTs. GI barrier integrity was assessed using the serum Dual-Sugar Absorption Test (DSAT), Intestinal Fatty-Acid-Binding Protein (I-FABP) and Claudin-3 (CLDN-3). MT was assessed using plasma Lipopolysaccharide Binding Protein (LBP), total 16S bacterial DNA and Bacteroides DNA. RESULTS No GI barrier integrity or MT biomarker, except absolute Bacteroides DNA, displayed systematic trial order bias (p ≥ .05). I-FABP (trial 1 = Δ 0.834 ± 0.445 ng ml-1 ; trial 2 = Δ 0.776 ± 0.489 ng ml-1 ) and CLDN-3 (trial 1 = Δ 0.317 ± 0.586 ng ml-1 ; trial 2 = Δ 0.371 ± 0.508 ng ml-1 ) were increased post-EHST (p ≤ .01). All MT biomarkers were unchanged post-EHST. Coefficient of variation and typical error of measurement post-EHST were: 11.5% and 0.004 (ratio) for the DSAT 90-min postprobe ingestion; 12.2% and 0.004 (ratio) at 150-min postprobe ingestion; 12.1% and 0.376 ng ml-1 for I-FABP; 4.9% and 0.342 ng ml-1 for CLDN-3; 9.2% and 0.420 µg ml-1 for LBP; 9.5% and 0.15 pg µl-1 for total 16S DNA; and 54.7% and 0.032 for Bacteroides/total 16S DNA ratio. CONCLUSION Each GI barrier integrity and MT translocation biomarker, except Bacteroides/total 16S ratio, had acceptable reliability at rest and postexertional heat stress.
Collapse
Affiliation(s)
- Henry B Ogden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | | | - Robert B Child
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Glen Davison
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, United Kingdom
| | | | | | | | - Alison Millyard
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Caroline S Westwood
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| | - Joseph D Layden
- School of Sport, Health and Wellbeing, Plymouth MARJON University, Plymouth, United Kingdom
| |
Collapse
|
19
|
Sainani KL, Borg DN, Caldwell AR, Butson ML, Tenan MS, Vickers AJ, Vigotsky AD, Warmenhoven J, Nguyen R, Lohse KR, Knight EJ, Bargary N. Call to increase statistical collaboration in sports science, sport and exercise medicine and sports physiotherapy. Br J Sports Med 2020; 55:118-122. [PMID: 32816788 PMCID: PMC7788220 DOI: 10.1136/bjsports-2020-102607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Kristin L Sainani
- Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - David N Borg
- Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| | - Aaron R Caldwell
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts, USA
| | - Michael L Butson
- Deptartment of Health & Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Matthew S Tenan
- Optimum Performance Analytics Associates LLC, Apex, North Carolina, USA
| | - Andrew J Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrew D Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, Illinois, USA
| | - John Warmenhoven
- Exercise & Sport Science, Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia.,Australian Institute of Sport, Canberra, Australian Capital Territory, Australia
| | - Robert Nguyen
- Department of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Keith R Lohse
- Health, Kinesiology, and Recreation; Department of Physical Therapy and Athletic Training, University of Utah Health, Salt Lake City, Utah, USA
| | - Emma J Knight
- School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Norma Bargary
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| |
Collapse
|
20
|
Influence of aerobic fitness on gastrointestinal barrier integrity and microbial translocation following a fixed-intensity military exertional heat stress test. Eur J Appl Physiol 2020; 120:2325-2337. [PMID: 32794058 DOI: 10.1007/s00421-020-04455-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Exertional-heat stress adversely disrupts gastrointestinal (GI) barrier integrity, whereby subsequent microbial translocation (MT) can result in potentially serious health consequences. To date, the influence of aerobic fitness on GI barrier integrity and MT following exertional-heat stress is poorly characterised. METHOD Ten untrained (UT; VO2max = 45 ± 3 ml·kg-1·min-1) and ten highly trained (HT; VO2max = 64 ± 4 ml·kg-1·min-1) males completed an ecologically valid (military) 80-min fixed-intensity exertional-heat stress test (EHST). Venous blood was drawn immediately pre- and post-EHST. GI barrier integrity was assessed using the serum dual-sugar absorption test (DSAT) and plasma Intestinal Fatty-Acid Binding Protein (I-FABP). MT was assessed using plasma Bacteroides/total 16S DNA. RESULTS UT experienced greater thermoregulatory, cardiovascular and perceptual strain (p < 0.05) than HT during the EHST. Serum DSAT responses were similar between the two groups (p = 0.59), although Δ I-FABP was greater (p = 0.04) in the UT (1.14 ± 1.36 ng·ml-1) versus HT (0.20 ± 0.29 ng·ml-1) group. Bacteroides/Total 16S DNA ratio was unchanged (Δ; -0.04 ± 0.18) following the EHST in the HT group, but increased (Δ; 0.19 ± 0.25) in the UT group (p = 0.05). Weekly aerobic training hours had a weak, negative correlation with Δ I-FABP and Bacteroides/total 16S DNA responses. CONCLUSION When exercising at the same absolute workload, UT individuals are more susceptible to small intestinal epithelial injury and MT than HT individuals. These responses appear partially attributable to greater thermoregulatory, cardiovascular, and perceptual strain.
Collapse
|
21
|
Ogden HB, Child RB, Fallowfield JL, Delves SK, Westwood CS, Layden JD. The Gastrointestinal Exertional Heat Stroke Paradigm: Pathophysiology, Assessment, Severity, Aetiology and Nutritional Countermeasures. Nutrients 2020; 12:E537. [PMID: 32093001 PMCID: PMC7071449 DOI: 10.3390/nu12020537] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022] Open
Abstract
Exertional heat stroke (EHS) is a life-threatening medical condition involving thermoregulatory failure and is the most severe condition along a continuum of heat-related illnesses. Current EHS policy guidance principally advocates a thermoregulatory management approach, despite growing recognition that gastrointestinal (GI) microbial translocation contributes to disease pathophysiology. Contemporary research has focused to understand the relevance of GI barrier integrity and strategies to maintain it during periods of exertional-heat stress. GI barrier integrity can be assessed non-invasively using a variety of in vivo techniques, including active inert mixed-weight molecular probe recovery tests and passive biomarkers indicative of GI structural integrity loss or microbial translocation. Strenuous exercise is strongly characterised to disrupt GI barrier integrity, and aspects of this response correlate with the corresponding magnitude of thermal strain. The aetiology of GI barrier integrity loss following exertional-heat stress is poorly understood, though may directly relate to localised hyperthermia, splanchnic hypoperfusion-mediated ischemic injury, and neuroendocrine-immune alterations. Nutritional countermeasures to maintain GI barrier integrity following exertional-heat stress provide a promising approach to mitigate EHS. The focus of this review is to evaluate: (1) the GI paradigm of exertional heat stroke; (2) techniques to assess GI barrier integrity; (3) typical GI barrier integrity responses to exertional-heat stress; (4) the aetiology of GI barrier integrity loss following exertional-heat stress; and (5) nutritional countermeasures to maintain GI barrier integrity in response to exertional-heat stress.
Collapse
Affiliation(s)
- Henry B. Ogden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Robert B. Child
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2QU, UK;
| | | | - Simon K. Delves
- Institute of Naval Medicine, Alverstoke PO12 2DW, UK; (J.L.F.); (S.K.D.)
| | - Caroline S. Westwood
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| | - Joseph D. Layden
- Faculty of Sport, Health and Wellbeing, Plymouth MARJON University, Derriford Rd, Plymouth PL6 8BH, UK; (C.S.W.); (J.D.L.)
| |
Collapse
|