1
|
Burkart JJ, Johnson NE, Burma JS, Neill MG, Smirl JD. Does exercise modality and posture influence cerebrovascular and cardiovascular systems similarly? Appl Physiol Nutr Metab 2024; 49:1539-1550. [PMID: 39088845 DOI: 10.1139/apnm-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Cerebral hemodynamics have been quantified during exercise via transcranial Doppler ultrasound, as it has high-sensitivity to movement artifacts and displays temporal superiority. Currently, limited research exists regarding how different exercise modalities and postural changes impact the cerebrovasculature across the cardiac cycle. Ten participants (4 females and 6 males) ages 20-29 completed three exercise tests (treadmill, supine, and upright cycling) to volitional fatigue. Physiological data collected included middle cerebral artery velocity (MCAv), blood pressure (BP), heart rate, and respiratory parameters. Normalized data were analyzed for variance and effect sizes were calculated to examine differences between physiological measures across the three exercise modalities. Systolic MCAv was greater during treadmill compared to supine and upright cycling (p < 0.001, (large) effect size), and greater during upright versus supine cycling (p < 0.017, (large)). Diastolic MCAv was lower during treadmill versus cycling exercise only at 60% maximal effort (p < 0.005, (moderate)) and no differences were observed between upright and supine cycling. No main effect was found for mean and diastolic BP (p > 0.05, (negligible)). Systolic BP was lower during treadmill versus supine cycling at 40% and 60% intensity (p < 0.05, (moderate-large)) and greater during supine versus upright at only 60% intensity (p < 0.003, (moderate)). The above differences were not explained by partial pressure of end-tidal carbon dioxide levels (main effect: p = 0.432). The current study demonstrates the cerebrovascular and cardiovascular systems respond heterogeneously to different exercise modalities and aspects of the cardiac cycle. As physiological data were largely similar between tests, differences associated with posture and modality are likely contributors.
Collapse
Affiliation(s)
- Joshua J Burkart
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Matthew G Neill
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Miutz LN, Burma JS, Brassard P, Phillips AA, Emery CA, Smirl JD. Comparison of the Buffalo Concussion Treadmill Test With a Physiologically Informed Cycle Test: Calgary Concussion Cycle Test. Sports Health 2024; 16:837-850. [PMID: 38149331 PMCID: PMC11346228 DOI: 10.1177/19417381231217744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Sport-related concussions are a complex injury requiring multifaceted assessment, including physical exertion. Currently, concussion testing relies primarily on a treadmill-based protocol for assessing exertion-related symptoms in persons after concussion. This study compared a modified cycle protocol (Calgary Concussion Cycle Test [CCCT]) with the clinically adopted standard, the Buffalo Concussion Treadmill Test (BCTT), across multiple physiological parameters. HYPOTHESIS Treadmill and cycle matched workload protocols would produce similar results for cerebral blood velocity, mean arterial pressure (MAP), and end-tidal carbon dioxide partial pressure (PETCO2), but heart rate (HR) and oxygen consumption (VO2) would be higher on the treadmill than the cycle modality. STUDY DESIGN Crossover study design. LEVEL OF EVIDENCE Level 3. METHODS A total of 17 healthy adults (8 men, 9 women; age, 26 ± 3 years; body mass index, 23.8 ± 2.7 kg/m2) completed the BCTT and CCCT protocols, 7 days apart in a randomized order. During both exertional protocols, the physiological parameters measured were middle cerebral artery mean blood velocity (MCAv), MAP, PETCO2, VO2, and HR. Analysis of variance with effect size computations, coefficient of variation, and Bland-Altman plots with 95% limits of agreement were used to compare exercise tests. RESULTS The BCTT and CCCT produced comparable results for both male and female participants with no significant differences for average MCAv, MAP, and PETCO2 (all P > 0.05; all generalized eta squared [η2G] < 0.02 [negligible]; P value range, 0.29-0.99) between stages. When accounting for exercise stage and modality, VO2 (P < 0.01) and HR (P < 0.01) were higher on the treadmill compared with the cycle. Aside from the final few stages, all physiology measures displayed good-to-excellent agreeability/variability. CONCLUSION The CCCT was physiologically similar to the BCTT in terms of MCAv, PETCO2, and MAP; however, HR and VO2 differed between modalities. CLINICAL RELEVANCE Providing a cycle-based modality to exertional testing after injury mayincrease accessibility to determine symptom thresholds in the future.
Collapse
Affiliation(s)
- Lauren N. Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio
| | - Joel S. Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, University Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Aaron A. Phillips
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, Biomedical Engineering, and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A. Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Miutz LN, Burma JS, Van Roessel RK, Johnson NE, Phillips AA, Emery CA, Brassard P, Smirl JD. The effect of supine cycling and progressive lower body negative pressure on cerebral blood velocity responses. J Appl Physiol (1985) 2023; 135:316-325. [PMID: 37348016 DOI: 10.1152/japplphysiol.00758.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Moderate-intensity aerobic exercise increases cerebral blood velocity (CBv) primarily due to hyperpnea-induced vasodilation; however, the integrative control of cerebral blood flow (CBF) allows other factors to contribute to the vasodilation. Although lower body negative pressure (LBNP) can reduce CBv, the exact LBNP intensity required to blunt the aforementioned exercise-induced CBv response is unknown. This could hold utility for concussion recovery, allowing individuals to exercise at higher intensities without symptom exacerbation. Thirty-two healthy adults (age: 20-33 yr; 19 females/13 males) completed a stepwise maximal exercise test during a first visit to determine each participant's wattage associated with their exercise-induced maximal CBv increase. During the second visit, following supine rest, participants completed moderate-intensity exercise at their determined threshold, while progressive LBNP was applied at 0, -20, -40, -60, -70, -80, and ∼88 Torr. Bilateral middle cerebral artery blood velocities (MCAvs), mean arterial pressure (MAP), heart rate, respiratory rate, and end-tidal carbon dioxide levels were measured continuously. Two-way analysis of variance with effect sizes compared between sexes and stages. Compared with resting supine baseline, averaged MCAv was elevated during 0 and -20 Torr LBNP (q value > 7.73; P < 0.001); however, no differences were noted between baseline and -40 to -70 Torr (q value < |4.24|; P > 0.262). Differences were present between females and males for absolute MCAv measures (q value > 11.2; P < 0.001), but not when normalized to baseline (q value < 0.03; P > 0.951). Supine cycling-elicited increases in MCAv are able to be blunted during the application of LBNP ranging from -40 to -70 Torr. The blunted CBv response demonstrates the potential benefit of allowing individuals to aerobically train (moderate-intensity supine cycling with LBNP) without exacerbating symptoms during the concussion recovery phase.NEW & NOTEWORTHY The current investigation demonstrated that moderate-intensity supine cycling-induced increases in cerebral blood velocities were balanced by the lower body negative pressure-induced decreases in cerebral blood velocity. Although performed in a healthy population, the results may lend themselves to a potential treatment option for individuals recovering from concussion or experience persistent concussion symptoms.
Collapse
Affiliation(s)
- Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Sport Science, University of Dayton, Dayton, Ohio, United States
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Rowan K Van Roessel
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Phillips
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Physiology and Pharmacology, Clinical Neurosciences, Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
- Biomedical Engineering, and Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, University Laval, Quebec City, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Mulser L, Moreau D. Effect of Acute Cardiovascular Exercise on Cerebral Blood Flow: A Systematic Review. Brain Res 2023; 1809:148355. [PMID: 37003561 DOI: 10.1016/j.brainres.2023.148355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023]
Abstract
A single bout of cardiovascular exercise can have a cascade of physiological effects, including increased blood flow to the brain. This effect has been documented across multiple modalities, yet studies have reported mixed findings. Here, we systematically review evidence for the acute effect of cardiovascular exercise on cerebral blood flow across a range of neuroimaging techniques and exercise characteristics. Based on 52 studies and a combined sample size of 1,174 individuals, our results indicate that the acute effect of cardiovascular exercise on cerebral blood flow generally follows an inverted U-shaped relationship, whereby blood flow increases early on but eventually decreases as exercise continues. However, we also find that this effect is not uniform across studies, instead varying across a number of key variables including exercise characteristics, brain regions, and neuroimaging modalities. As the most comprehensive synthesis on the topic to date, this systematic review sheds light on the determinants of exercise-induced change in cerebral blood flow, a necessary step toward personalized interventions targeting brain health across a range of populations.
Collapse
Affiliation(s)
- Lisa Mulser
- School of Psychology The University of Auckland
| | - David Moreau
- School of Psychology and Centre for Brain Research The University of Auckland.
| |
Collapse
|
5
|
Taylor JL, Barnes JN, Johnson BD. The Utility of High Intensity Interval Training to Improve Cognitive Aging in Heart Disease Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16926. [PMID: 36554807 PMCID: PMC9778921 DOI: 10.3390/ijerph192416926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Adults with cardiovascular disease and heart failure are at higher risk of cognitive decline. Cerebral hypoperfusion appears to be a significant contributor, which can result from vascular dysfunction and impairment of cerebral blood flow regulation. In contrast, higher cardiorespiratory fitness shows protection against brain atrophy, reductions in cerebral blood flow, and cognitive decline. Given that high intensity interval training (HIIT) has been shown to be a potent stimulus for improving cardiorespiratory fitness and peripheral vascular function, its utility for improving cognitive aging is an important area of research. This article will review the physiology related to cerebral blood flow regulation and cognitive decline in adults with cardiovascular disease and heart failure, and how HIIT may provide a more optimal stimulus for improving cognitive aging in this population.
Collapse
Affiliation(s)
- Jenna L. Taylor
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Jill N. Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bruce D. Johnson
- Human Integrative and Environmental Physiology Laboratory, Mayo Clinic, Rochester, MN 55902, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
6
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022. [PMID: 36149520 DOI: 10.1007/s00421-022-05041-y.pmid:36149520;pmcid:pmc9613570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Weaver SRC, Rendeiro C, Lucas RAI, Cable NT, Nightingale TE, McGettrick HM, Lucas SJE. Non-pharmacological interventions for vascular health and the role of the endothelium. Eur J Appl Physiol 2022; 122:2493-2514. [PMID: 36149520 PMCID: PMC9613570 DOI: 10.1007/s00421-022-05041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022]
Abstract
The most common non-pharmacological intervention for both peripheral and cerebral vascular health is regular physical activity (e.g., exercise training), which improves function across a range of exercise intensities and modalities. Numerous non-exercising approaches have also been suggested to improved vascular function, including repeated ischemic preconditioning (IPC); heat therapy such as hot water bathing and sauna; and pneumatic compression. Chronic adaptive responses have been observed across a number of these approaches, yet the precise mechanisms that underlie these effects in humans are not fully understood. Acute increases in blood flow and circulating signalling factors that induce responses in endothelial function are likely to be key moderators driving these adaptations. While the impact on circulating factors and environmental mechanisms for adaptation may vary between approaches, in essence, they all centre around acutely elevating blood flow throughout the circulation and stimulating improved endothelium-dependent vascular function and ultimately vascular health. Here, we review our current understanding of the mechanisms driving endothelial adaptation to repeated exposure to elevated blood flow, and the interplay between this response and changes in circulating factors. In addition, we will consider the limitations in our current knowledge base and how these may be best addressed through the selection of more physiologically relevant experimental models and research. Ultimately, improving our understanding of the unique impact that non-pharmacological interventions have on the vasculature will allow us to develop superior strategies to tackle declining vascular function across the lifespan, prevent avoidable vascular-related disease, and alleviate dependency on drug-based interventions.
Collapse
Affiliation(s)
- Samuel R C Weaver
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - N Timothy Cable
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Amin SB, Hansen AB, Mugele H, Simpson LL, Marume K, Moore JP, Cornwell WK, Lawley JS. High intensity exercise and passive hot water immersion cause similar post intervention changes in peripheral and cerebral shear. J Appl Physiol (1985) 2022; 133:390-402. [PMID: 35708700 DOI: 10.1152/japplphysiol.00780.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Passive hot water immersion (PHWI) provides a peripheral vasculature shear stimulus comparable to low intensity exercise within the active skeletal muscle, whereas moderate and high intensity exercise elicit substantially greater shear rates in the peripheral vasculature, likely conferring greater vascular benefits. Few studies have compared post intervention shear rates in the peripheral and cerebral vasculature following high intensity exercise and PHWI, especially considering that the post intervention recovery period represents a key window in which adaptation occurs. Therefore, we aimed to compare shear rates in the internal carotid artery (ICA), vertebral artery (VA) and common femoral artery (CFA) between high intensity exercise and PHWI for up to 80 minutes post intervention. Fifteen healthy (27 ± 4 years), moderately trained individuals underwent three-time matched interventions in a randomised order which included 30 minutes of whole-body immersion in a 42°C hot bath, 30 minutes of treadmill running and 5x4 minute high intensity intervals (HIIE). There were no differences in ICA (P= 0.4643) and VA (P=0.1940) shear rates between PHWI and exercise (both continuous and HIIE) post intervention. All three interventions elicited comparable increases in CFA shear rate post intervention (P=0.0671), however, CFA shear rate was slightly higher 40 minutes post threshold running (P=0.0464) and, slightly higher, although not statically for HIIE (P=0.0565) compared with PHWI. Our results suggest that time and core temperature matched high intensity exercise and PHWI elicit limited changes in cerebral shear and comparable increases in peripheral vasculature shear rates when measured for up to 80 minutes post intervention.
Collapse
Affiliation(s)
- Sachin B Amin
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | | | - Hendrik Mugele
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Lydia L Simpson
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Kyohei Marume
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| | - Jonathan P Moore
- School of Sport, Health and Exercise Science, Bangor University, Bangor, United Kingdom
| | - William K Cornwell
- Department of Medicine - Cardiology, University of Colorado Anschutz Medical Campus, Aurora CO, United States.,Clinical and Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora CO, United States
| | - Justin S Lawley
- University Innsbruck, Department Sport Science, Innsbruck, Austria
| |
Collapse
|
9
|
Kennedy CM, Burma JS, Newel KT, Brassard P, Smirl JD. Time course recovery of cerebral blood velocity metrics post aerobic exercise: A systematic review. J Appl Physiol (1985) 2022; 133:471-489. [PMID: 35708702 DOI: 10.1152/japplphysiol.00630.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Currently, the standard approach for restricting exercise prior to cerebrovascular data collection varies widely between 6-24 hours. This universally employed practice is a conservative approach to safeguard physiological alterations that could potentially confound one's study design. Therefore, the purpose of this systematic review was to amalgamate the literature that examines the extent and duration cerebrovascular function is impacted following aerobic exercise measured via transcranial Doppler ultrasound. Further, an exploratory aim was to scrutinize and discuss common biases/limitations in the previous studies to help guide future investigations. Search strategies were developed and imported into PubMed, SPORTDiscus, and Medline databases. A total of 595 records were screened and 35 articles met the inclusion criteria in this review, which included assessments of basic cerebrovascular metrics (n=35), dynamic cerebral autoregulation (dCA; n=9), neurovascular coupling (NVC; n=2); and/or cerebrovascular reactivity (CVR-CO2; n=1) following acute bouts of aerobic exercise. Across all studies, it was found NVC was impacted for 1-hour, basic cerebrovascular parameters and CVR-CO2 parameters 2-hours, and dCA metrics 6-hours post-exercise. Therefore, future studies can provide participants with these evidence-based time restrictions, regarding the minimum time to abstain from exercise prior to data collection. However, it should be noted, other physiological mechanisms could still be altered (e.g., metabolic, hormonal, and/or autonomic influences), despite cerebrovascular function returning to baseline levels. Thus, future investigations should seek to control for as many physiological influences when employing cerebrovascular assessments, immediately following these time restraints. The main limitations/biases were lack of female participants, cardiorespiratory fitness, and consideration for vessel diameter.
Collapse
Affiliation(s)
- Courtney M Kennedy
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Université Laval, Québec, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| |
Collapse
|
10
|
Whitaker AA, Aaron SE, Kaufman CS, Kurtz BK, Bai SX, Vidoni ED, Montgomery RN, Billinger SA. Cerebrovascular response to an acute bout of low-volume high-intensity interval exercise and recovery in young healthy adults. J Appl Physiol (1985) 2022; 132:236-246. [PMID: 34882027 PMCID: PMC8759972 DOI: 10.1152/japplphysiol.00484.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/10/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023] Open
Abstract
High-intensity interval exercise (HIIT) is performed widely. However, there is a gap in knowledge regarding the acute cerebrovascular response to low-volume HIIT. Our objective was to characterize the middle cerebral artery blood velocity (MCAv) response during an acute bout of low-volume HIIT in young healthy adults. We hypothesized that MCAv would decrease below the baseline (BL), 1) during HIIT, 2) immediately following HIIT, and 3) 30 min after HIIT. As a secondary objective, we investigated sex differences in the MCAv response during HIIT. Twenty-four young healthy adults completed HIIT [12 males, age = 25 (SD = 2)]. HIIT included 10 min of 1-min high intensity (∼70% estimated maximal Watts) and active recovery (10% estimated maximal Watts) intervals on a recumbent stepper. MCAv, mean arterial pressure (MAP), heart rate (HR), and end-tidal carbon dioxide ([Formula: see text]) were recorded at BL, during HIIT, immediately following HIIT, and 30 min after HIIT. Contrary to our hypothesis, MCAv remained above BL during HIIT. MCAv peaked at minute 3 then decreased concomitantly with [Formula: see text]. MCAv was lower than BL immediately following HIIT (P < 0.001). Thirty minutes after HIIT, MCAv returned to BL (P = 0.47). Compared with men, women had a higher MCAv at BL (P = 0.001), during HIIT (P = 0.009), immediately following HIIT (P = 0.004), and 30 min after HIIT (P = 0.001). MCAv did not decrease below BL during low-volume HIIT. However, MCAv decreased below BL immediately following HIIT and returned to resting values 30 min after HIIT. MCAv also differed between sexes.NEW & NOTEWORTHY We are the first, to our knowledge, to characterize the cerebrovascular and hemodynamic response to low-volume high-intensity interval exercise (HIIT, 1-min intervals) in young healthy adults. Middle cerebral artery blood velocity (MCAv) decreased during the HIIT bout and rebounded during active recovery. Women demonstrated a significantly higher resting MCAv than men and the difference remained during HIIT. Here, we report a novel protocol and characterized the MCAv response during an acute bout of low-volume HIIT.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Stacey E Aaron
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Carolyn S Kaufman
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Brady K Kurtz
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
| | - Stephen X Bai
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
| | - Eric D Vidoni
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Sandra A Billinger
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
11
|
Muskat JC, Rayz VL, Goergen CJ, Babbs CF. Hemodynamic modeling of the circle of Willis reveals unanticipated functions during cardiovascular stress. J Appl Physiol (1985) 2021; 131:1020-1034. [PMID: 34264126 DOI: 10.1152/japplphysiol.00198.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The circle of Willis (CW) allows blood to be redistributed throughout the brain during local ischemia; however, it is unlikely that the anatomic persistence of the CW across mammalian species is driven by natural selection of individuals with resistance to cerebrovascular disease typically occurring in elderly humans. To determine the effects of communicating arteries (CoAs) in the CW on cerebral pulse wave propagation and blood flow velocity, we simulated young, active adult humans undergoing different states of cardiovascular stress (i.e., fear and aerobic exercise) using discrete transmission line segments with stress-adjusted cardiac output, peripheral resistance, and arterial compliance. Phase delays between vertebrobasilar and carotid pulses allowed bidirectional shunting through CoAs: both posteroanterior shunting before the peak of the pulse waveform and anteroposterior shunting after internal carotid pressure exceeded posterior cerebral pressure. Relative to an absent CW without intact CoAs, the complete CW blunted anterior pulse waveforms, although limited to 3% and 6% reductions in peak pressure and pulse pressure, respectively. Systolic rate of change in pressure (i.e., ∂P/∂t) was reduced 15%-24% in the anterior vasculature and increased 23%-41% in the posterior vasculature. Bidirectional shunting through posterior CoAs was amplified during cardiovascular stress and increased peak velocity by 25%, diastolic-to-systolic velocity range by 44%, and blood velocity acceleration by 134% in the vertebrobasilar arteries. This effect may facilitate stress-related increases in blood flow to the cerebellum (improving motor coordination) and reticular-activating system (enhancing attention and focus) via a nitric oxide-dependent mechanism, thereby improving survival in fight-or-flight situations.NEW & NOTEWORTHY Hemodynamic modeling reveals potential evolutionary benefits of the intact circle of Willis (CW) during fear and aerobic exercise. The CW equalizes pulse waveforms due to bidirectional shunting of blood flow through communicating arteries, which boosts vertebrobasilar blood flow velocity and acceleration. These phenomena may enhance perfusion of the brainstem and cerebellum via nitric oxide-mediated vasodilation, improving performance of the reticular-activating system and motor coordination in survival situations.
Collapse
Affiliation(s)
- J C Muskat
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - V L Rayz
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - C J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - C F Babbs
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
12
|
Perry BG, Lucas SJE. The Acute Cardiorespiratory and Cerebrovascular Response to Resistance Exercise. SPORTS MEDICINE-OPEN 2021; 7:36. [PMID: 34046740 PMCID: PMC8160070 DOI: 10.1186/s40798-021-00314-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022]
Abstract
Resistance exercise (RE) is a popular modality for the general population and athletes alike, due to the numerous benefits of regular participation. The acute response to dynamic RE is characterised by temporary and bidirectional physiological extremes, not typically seen in continuous aerobic exercise (e.g. cycling) and headlined by phasic perturbations in blood pressure that challenge cerebral blood flow (CBF) regulation. Cerebral autoregulation has been heavily scrutinised over the last decade with new data challenging the effectiveness of this intrinsic flow regulating mechanism, particularly to abrupt changes in blood pressure over the course of seconds (i.e. dynamic cerebral autoregulation), like those observed during RE. Acutely, RE can challenge CBF regulation, resulting in adverse responses (e.g. syncope). Compared with aerobic exercise, RE is relatively understudied, particularly high-intensity dynamic RE with a concurrent Valsalva manoeuvre (VM). However, the VM alone challenges CBF regulation and generates additional complexity when trying to dissociate the mechanisms underpinning the circulatory response to RE. Given the disparate circulatory response between aerobic and RE, primarily the blood pressure profiles, regulation of CBF is ostensibly different. In this review, we summarise current literature and highlight the acute physiological responses to RE, with a focus on the cerebral circulation.
Collapse
Affiliation(s)
- Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
13
|
Sakamoto R, Katayose M, Yamada Y, Neki T, Kamoda T, Tamai K, Yamazaki K, Iwamoto E. High-but not moderate-intensity exercise acutely attenuates hypercapnia-induced vasodilation of the internal carotid artery in young men. Eur J Appl Physiol 2021; 121:2471-2485. [PMID: 34028613 DOI: 10.1007/s00421-021-04721-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Exercise-induced increases in shear rate (SR) across different exercise intensities may differentially affect hypercapnia-induced vasodilation of the internal carotid artery (ICA), a potential index of cerebrovascular function. We aimed to elucidate the effects of exercise intensity on ICA SR during exercise and post-exercise hypercapnia-induced vasodilation of the ICA in young men. METHODS Twelve healthy men completed 30 min of cycling at moderate [MIE; 65 ± 5% of age-predicted maximal heart rate (HRmax)] and high (HIE; 85 ± 5% HRmax) intensities. Hypercapnia-induced vasodilation was induced by 3 min of hypercapnia (target end-tidal partial pressure of CO2 + 10 mmHg) and was assessed at pre-exercise, 5 min and 60 min after exercise. Doppler ultrasound was used to measure ICA diameter and blood velocity during exercise and hypercapnia tests. RESULTS SR was not altered during either exercise (interaction and main effects of time; both P > 0.05). ICA conductance decreased during HIE from resting values (5.1 ± 1.3 to 3.2 ± 1.0 mL·min-1·mmHg-1; P < 0.01) but not during MIE (5.0 ± 1.3 to 4.0 ± 0.8 mL·min-1·mmHg-1; P = 0.11). Consequently, hypercapnia-induced vasodilation declined immediately after HIE (6.9 ± 1.7% to 4.0 ± 1.4%; P < 0.01), but not after MIE (7.2 ± 2.1% to 7.3 ± 1.8%; P > 0.05). Sixty minutes after exercise, hypercapnia-induced vasodilation returned to baseline values in both trials (MIE 8.0 ± 3.1%; HIE 6.4 ± 2.9%; both P > 0.05). CONCLUSION The present study showed blunted hypercapnia-induced vasodilation of the ICA immediately after high-intensity exercise, but not a moderate-intensity exercise in young men. Given that the acute response is partly linked to the adaptive response in the peripheral endothelial function, the effects of aerobic training on cerebrovascular health may vary depending on exercise intensity.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masaki Katayose
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Yutaka Yamada
- Department of Physical Therapy, Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Tatsuki Kamoda
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Katsuyuki Tamai
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Kotomi Yamazaki
- School of Health Science, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Science, Sapporo Medical University, Sapporo, Japan.
| |
Collapse
|