1
|
Kujawowicz K, Mirończuk-Chodakowska I, Witkowska AM. Sirtuin 1 as a potential biomarker of undernutrition in the elderly: a narrative review. Crit Rev Food Sci Nutr 2024; 64:9532-9553. [PMID: 37229564 DOI: 10.1080/10408398.2023.2214208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Undernutrition and inflammatory processes are predictors of early mortality in the elderly and require a rapid and accurate diagnosis. Currently, there are laboratory markers for assessing nutritional status, but new markers are still being sought. Recent studies suggest that sirtuin 1 (SIRT1) has the potential to be a marker for undernutrition. This article summarizes available studies on the association of SIRT1 and undernutrition in older people. Possible associations between SIRT1 and the aging process, inflammation, and undernutrition in the elderly have been described. The literature suggests that low SIRT1 levels in the blood of older people may not be associated with physiological aging processes, but with an increased risk of severe undernutrition associated with inflammation and systemic metabolic changes.
Collapse
Affiliation(s)
- Karolina Kujawowicz
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Tsukada Y, Nishiyama Y, Kishimoto M, Nago T, Harada H, Niiyama H, Katoh A, Matsuse H, Kai H. Low serum brain-derived neurotrophic factor may predict poor response to cardiac rehabilitation in patients with cardiovascular disease. PLoS One 2024; 19:e0298223. [PMID: 38319936 PMCID: PMC10846715 DOI: 10.1371/journal.pone.0298223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND It has been shown that serum brain-derived neurotrophic factor (BDNF) is associated with skeletal muscle energy metabolism and that BDNF is a predictor of mortality in heart failure patients. However, little is known about the relationship between BDNF and cardiac rehabilitation (CR). Therefore, this study retrospectively investigated the effects of baseline serum BDNF levels on the CR-induced exercise capacity improvement in patients with cardiovascular disease (CVD). METHODS We assigned 99 CVD patients (mean age 71±12 years, male = 60) to Low, Middle, and High groups based on the tertiles of baseline BDNF levels. Cardiopulmonary exercise testing was done using supervised bicycle ergometer twice before and after 3 weeks of CR. Analysis of covariance (ANCOVA) followed by post-hoc analysis using Tukey's HSD test was conducted to assess the multivariate associations between baseline BDNF levels categorized by BDNF tertiles (as independent variable) and %increases in AT and peak VO2 after 3-week CR (as dependent variables) after adjustment for age and gender (as covariates), as a main statistical analysis of the present study. RESULTS The higher the baseline BDNF levels, the better nutritional status evaluated by the CONUT score (p<0.0001). Baseline anaerobic threshold (AT) and peak oxygen uptake (peak VO2) were similar among the three groups. ANCOVA followed by post-hoc analysis revealed that age- and gender-adjusted %increases in peak VO2 after 3-week CR were positively associated with baseline BDNF levels (p = 0.0239) and Low BDNF group showed significantly lower %increase in peak VO2 than High BDNF group (p = 0.0197). Significant association was not found between baseline BDNF and %increase in AT (p = 0.1379). CONCLUSIONS Low baseline BDNF levels were associated with malnutrition in CVD patients. A positive association between baseline BDNF levels and CR-induced increases in peak VO2 was found. It was suggested that CVD patients with low baseline BDNF levels may be poor responders to CR.
Collapse
Affiliation(s)
- Yuya Tsukada
- Division of Rehabilitation, Kurume University Medical Center, Kurume, Fukuoka, Japan
- Department of Physical Therapy, Miyazaki Medical Association Hospital, Miyazaki, Japan
| | - Yasuhiro Nishiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Michiya Kishimoto
- Division of Rehabilitation, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Takeshi Nago
- Division of Rehabilitation, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Haruhito Harada
- Department of Cardiology, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Hiroshi Niiyama
- Department of Cardiology, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Atsushi Katoh
- Department of Cardiology, Kurume University Medical Center, Kurume, Fukuoka, Japan
| | - Hiroo Matsuse
- Division of Rehabilitation, Kurume University Hospital, Kurume, Fukuoka, Japan
| | - Hisashi Kai
- Department of Cardiology, Kurume University Medical Center, Kurume, Fukuoka, Japan
| |
Collapse
|
3
|
Zhang L, Lin H, Yang X, Shi J, Sheng X, Wang L, Li T, Quan H, Zhai X, Li W. Effects of dapagliflozin monotherapy and combined aerobic exercise on skeletal muscle mitochondrial quality control and insulin resistance in type 2 diabetes mellitus rats. Biomed Pharmacother 2023; 169:115852. [PMID: 37944441 DOI: 10.1016/j.biopha.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a prevalent, chronic metabolic disease. Sodium-glucose cotransporter-2 (SGLT2) inhibitors and aerobic exercise (AE) have shown promise in mitigating insulin resistance (IR) and T2DM. This study investigated the effects of dapagliflozin (Dapa) monotherapy and combined AE on mitochondrial quality control (MQC) in skeletal muscle and IR in T2DM rats. T2DM rats, induced by a high-fat diet/streptozotocin model, were randomly assigned to the following groups: T2DM+vehicle group (DMV), T2DM rats treated with Dapa (DMDa, 10 mg/kg/d), T2DM rats subjected to combined Dapa treatment and AE (DMDa+AE), and the standard control group (CON). Blood and skeletal muscle samples were collected after 6 weeks of intragastric administration and treadmill exercise. The results showed that DMDa monotherapy could reduce the accumulation of white adipose tissue and skeletal muscle lipid droplets and improve HOMA-IR. While the combined AE led to further reductions in subcutaneous white adipose tissue and fasting glucose levels, it did not confer additional benefits in terms of HOMA-IR. Furthermore, Dapa monotherapy enhanced skeletal muscle mitochondrial biogenesis (PGC-1α, NRF1, TFAM, and COX IV), mitochondrial dynamics (OPA1, DRP1, and MFN2), and mitophagy (PGAM5 and PINK1) related protein levels. Nevertheless, the combination of Dapa with AE treatment did not yield an additive effect. In conclusion, this study highlights the potential of SGLT2 inhibitors, specifically Dapa, in ameliorating IR and maintaining MQC in skeletal muscle in rats with T2DM. However, combined AE did not produce an additive effect, indicating the need for further research.
Collapse
Affiliation(s)
- Liangzhi Zhang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hengjun Lin
- Department of Colorectal anal Surgery, Jinhua People's Hospital, Jinhua, Zhejiang, China
| | - Xudong Yang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jipeng Shi
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China
| | - Lifeng Wang
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Ting Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Helong Quan
- Exercise Capacity Assessment and Promotion Research Center, School of Physical Education, Northeast Normal University, Changchun, Jilin, China.
| | - Xia Zhai
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang, China.
| | - Wei Li
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
4
|
Nakanishi R, Hashimoto N, Takuwa M, Xing J, Uemura M, un Nisa B, Tanaka M, Hirabayashi T, Tanaka M, Fujino H. High Concentrations of Nucleotides Prevent Capillary Regression during Hindlimb Unloading by Inhibiting Oxidative Stress and Enhancing Mitochondrial Metabolism of Soleus Muscles in Rats. Acta Histochem Cytochem 2023; 56:95-104. [PMID: 38318105 PMCID: PMC10838627 DOI: 10.1267/ahc.23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 02/07/2024] Open
Abstract
Prolonged inactivity in skeletal muscles decreases muscle capillary development because of an imbalance between pro- and antiangiogenic signals, mitochondrial metabolism disorders, and increased oxidative stress. Nucleotides have been shown to exert a dose-dependent effect on disuse-induced muscle atrophy. However, the dose-dependent effect on capillary regression in disused muscles remains unclear. Therefore, this study investigated the dose-dependent effect of nucleotides on capillary regression due to disuse. For this purpose, Wistar rats were divided into five groups as follows: control rats fed nucleotide-free diets (CON), hindlimb-unloaded rats fed nucleotide-free diets (HU), and hindlimb-unloaded rats fed 1.0%, 2.5%, and 5.0% nucleotide diets, (HU + 1.0% NT), (HU + 2.5% NT), and (HU + 5.0% NT), respectively. Unloading increased reactive oxygen species (ROS) production and decreased mitochondrial enzyme activity, thereby decreasing the number of muscle capillaries. In contrast, 5.0% nucleotide-containing diet prevented increases in ROS production and reductions in the expression levels of NAMPT, PGC-1α, and CPT-1b proteins. Moreover, 5.0% nucleotide-containing diet prevented mitochondrial enzyme activity (such as citrate synthase and beta-hydroxy acyl-CoA dehydrogenase activity) via NAMPT or following PGC-1α upregulation, thereby preventing capillary regression. Therefore, 5.0% nucleotide-containing diet is likely to prevent capillary regression by decreasing oxidative stress and increasing mitochondrial metabolism.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Kobe International University, 9–1–6, Koyocho-naka, Higashinada-ku, Kobe, Hyogo 658–0032, Japan
| | - Nagisa Hashimoto
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Miho Takuwa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Jihao Xing
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Kansai University of Welfare Sciences, 3–11–1, Asahigaoka, Kashihara, Osaka, 582–0026, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, 3-2-18, Daiku Kita-ku, Okayama, Okayama, 700-0913, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
- Department of Rehabilitation, Osaka Health Science University, 1-9-27, Tenma Kita-ku, Osaka, 530-0043, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo, 654–0142, Japan
| |
Collapse
|
5
|
Nakanishi R, Tanaka M, Nisa BU, Shimizu S, Hirabayashi T, Tanaka M, Maeshige N, Roy RR, Fujino H. Alternating current electromagnetic field exposure lessens intramyocellular lipid accumulation due to high-fat feeding via enhanced lipid metabolism in mice. PLoS One 2023; 18:e0289086. [PMID: 38011220 PMCID: PMC10681264 DOI: 10.1371/journal.pone.0289086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/11/2023] [Indexed: 11/29/2023] Open
Abstract
Long-term high-fat feeding results in intramyocellular lipid accumulation, leading to insulin resistance. Intramyocellular lipid accumulation is related to an energy imbalance between excess fat intake and fatty acid consumption. Alternating current electromagnetic field exposure has been shown to enhance mitochondrial metabolism in the liver and sperm. Therefore, we hypothesized that alternating current electromagnetic field exposure would ameliorate high-fat diet-induced intramyocellular lipid accumulation via activation of fatty acid consumption. C57BL/6J mice were either fed a normal diet (ND), a normal diet and exposed to an alternating current electromagnetic field (ND+EMF), a high-fat diet (HFD), or a high-fat diet and exposed to an alternating current electromagnetic field (HFD+EMF). Electromagnetic field exposure was administered 8 hrs/day for 16 weeks using an alternating current electromagnetic field device (max.180 mT, Hokoen, Utatsu, Japan). Tibialis anterior muscles were collected for measurement of intramyocellular lipids, AMPK phosphorylation, FAT/CD-36, and carnitine palmitoyltransferase (CPT)-1b protein expression levels. Intramyocellular lipid levels were lower in the HFD + EMF than in the HFD group. The levels of AMPK phosphorylation, FAT/CD-36, and CPT-1b protein levels were higher in the HFD + EMF than in the HFD group. These results indicate that alternating current electromagnetic field exposure decreases intramyocellular lipid accumulation via increased fat consumption.
Collapse
Affiliation(s)
- Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Kobe International University, Kobe, Japan
| | - Masayuki Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Physical Therapy, Okayama Healthcare Professional University, Okayama, Japan
| | - Badur un Nisa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Sayaka Shimizu
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Minoru Tanaka
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Roland R. Roy
- Brain Research Institute and Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
6
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
7
|
Cohen-Hagai K, Kashua H, Benchetrit S, Zitman-Gal T. Hemodialysis Serum Stimulates the TXNIP-eNOS-STAT3 Inflammatory Pathway In Vitro. Antioxidants (Basel) 2023; 12:antiox12051109. [PMID: 37237975 DOI: 10.3390/antiox12051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Endothelial dysfunction, vascular inflammation and accelerated atherosclerosis have been investigated extensively in patients with chronic kidney disease (CKD). These conditions, as well as protein-energy malnutrition and oxidative stress, impair kidney function and contribute to increased morbidity and mortality among patients with end-stage kidney disease undergoing hemodialysis (HD). TXNIP, a key regulator of oxidative stress, has been linked to inflammation and suppresses eNOS activity. STAT3 activation adds to endothelial cell dysfunction, macrophage polarization, immunity and inflammation. Therefore, it is critically involved in atherosclerosis. This study evaluated the effect of sera from HD patients on the TXNIP-eNOS-STAT3 pathway using an in vitro model of human umbilical vein endothelial cells (HUVECs). METHODS Thirty HD patients with end-stage kidney disease and ten healthy volunteers were recruited. Serum samples were taken at dialysis initiation. HUVECs were treated with HD or healthy serum (10% v/v) for 24 h. Then, cells were collected for mRNA and protein analysis. RESULTS TXNIP mRNA and protein expression were significantly increased in HUVECs treated with HD serum compared to healthy controls (fold changes: 2.41 ± 1.84 vs. 1.41 ± 0.5 and 2.04 ± 1.16 vs. 0.92 ± 0.29, respectively), as were IL-8 mRNA (fold changes: 2.22 ± 1.09 vs. 0.98 ± 0.64) and STAT3 protein expression (fold changes: 1.31 ± 0.75 vs. 0.57 ± 0.43). The expression of eNOS mRNA and protein (fold changes: 0.64 ± 0.11 vs. 0.95 ± 0.24; 0.56 ± 0.28 vs. 4.35 ± 1.77, respectively) and that of SOCS3 and SIRT1 proteins were decreased. Patients' nutritional status, reflected by their malnutrition-inflammation scores, did not affect these inflammatory markers. CONCLUSIONS This study showed that sera from HD patients stimulated a novel inflammatory pathway, regardless of their nutritional status.
Collapse
Affiliation(s)
- Keren Cohen-Hagai
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadil Kashua
- Department of Pediatric, Meir Medical Center, Kfar Saba 44281, Israel
| | - Sydney Benchetrit
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Zitman-Gal
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba 44281, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
8
|
Kushwaha AD, Varshney R, Saraswat D. Effect of hypobaric hypoxia on the fiber type transition of skeletal muscle: a synergistic therapy of exercise preconditioning with a nanocurcumin formulation. J Physiol Biochem 2023:10.1007/s13105-023-00965-1. [PMID: 37147493 DOI: 10.1007/s13105-023-00965-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Hypobaric hypoxia (HH) leads to various adverse effects on skeletal muscles, including atrophy and reduced oxidative work capacity. However, the effects of HH on muscle fatigue resistance and myofiber remodeling are largely unexplored. Therefore, the present study aimed to explore the impact of HH on slow-oxidative fibers and to evaluate the ameliorative potential of exercise preconditioning and nanocurcumin formulation on muscle anti-fatigue ability. C2C12 cells (murine myoblasts) were used to assess the effect of hypoxia (0.5%, 24 h) with and without the nanocurcumin formulation (NCF) on myofiber phenotypic conversion. To further validate this hypothesis, male Sprague Dawley rats were exposed to a simulated HH (7620 m) for 7 days, along with NCF administration and/or exercise training. Both in vitro and in vivo studies revealed a significant reduction in slow-oxidative fibers (p < 0.01, 61% vs. normoxia control) under hypoxia. There was also a marked decrease in exhaustion time (p < 0.01, 65% vs. normoxia) in hypoxia control rats, indicating a reduced work capacity. Exercise preconditioning along with NCF supplementation significantly increased the slow-oxidative fiber proportion and exhaustion time while maintaining mitochondrial homeostasis. These findings suggest that HH leads to an increased transition of slow-oxidative fibers to fast glycolytic fibers and increased muscular fatigue. Administration of NCF in combination with exercise preconditioning restored this myofiber remodeling and improved muscle anti-fatigue ability.
Collapse
Affiliation(s)
- Asha D Kushwaha
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Rajeev Varshney
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054
| | - Deepika Saraswat
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences, Defense Research and Development Organization, Delhi, India, 110054.
| |
Collapse
|
9
|
Dillon HT, Foulkes S, Horne-Okano YA, Kliman D, Dunstan DW, Daly RM, Fraser SF, Avery S, Kingwell BA, La Gerche A, Howden EJ. Rapid cardiovascular aging following allogeneic hematopoietic cell transplantation for hematological malignancy. Front Cardiovasc Med 2022; 9:926064. [PMID: 36588564 PMCID: PMC9797839 DOI: 10.3389/fcvm.2022.926064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Allogeneic hematopoietic cell transplantation (allo-HCT) offers a potential cure for high-risk hematological malignancy; however, long-term survivors experience increased cardiovascular morbidity and mortality. It is unclear how allo-HCT impacts cardiovascular function in the short-term. Thus, this 3-month prospective study sought to evaluate the short-term cardiovascular impact of allo-HCT in hematological cancer patients, compared to an age-matched non-cancer control group. Methods Before and ~3-months following allo-HCT, 17 hematological cancer patients (45 ± 18 years) underwent cardiopulmonary exercise testing to quantify peak oxygen uptake (VO2peak)-a measure of integrative cardiovascular function. Then, to determine the degree to which changes in VO2peak are mediated by cardiac vs. non-cardiac factors, participants underwent exercise cardiac MRI (cardiac reserve), resting echocardiography (left-ventricular ejection fraction [LVEF], global longitudinal strain [GLS]), dual-energy x-ray absorptiometry (lean [LM] and fat mass [FM]), blood pressure (BP) assessment, hemoglobin sampling, and arteriovenous oxygen difference (a-vO2diff) estimation via the Fick equation. Twelve controls (43 ± 13 years) underwent identical testing at equivalent baseline and 3-month time intervals. Results Significant group-by-time interactions were observed for absolute VO2peak (p = 0.006), bodyweight-indexed VO2peak (p = 0.015), LM (p = 0.001) and cardiac reserve (p = 0.019), which were driven by 26, 24, 6, and 26% reductions in the allo-HCT group (all p ≤ 0.001), respectively, as no significant changes were observed in the age-matched control group. No significant group-by-time interactions were observed for LVEF, GLS, FM, hemoglobin, BP or a-vO2diff, though a-vO2diff declined 12% in allo-HCT (p = 0.028). Conclusion In summary, allo-HCT severely impairs VO2peak, reflecting central and peripheral dysfunction. These results indicate allo-HCT rapidly accelerates cardiovascular aging and reinforces the need for early preventive cardiovascular intervention in this high-risk group.
Collapse
Affiliation(s)
- Hayley T. Dillon
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Stephen Foulkes
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Yuki A. Horne-Okano
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David Kliman
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, VIC, Australia
| | - David W. Dunstan
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Robin M. Daly
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Steve F. Fraser
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Bronwyn A. Kingwell
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,CSL Ltd, Melbourne, VIC, Australia
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Erin J. Howden
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,*Correspondence: Erin J. Howden
| |
Collapse
|
10
|
Barbé C, Salles J, Chambon C, Giraudet C, Sanchez P, Patrac V, Denis P, Boirie Y, Walrand S, Gueugneau M. Characterization of the Skeletal Muscle Proteome in Undernourished Old Rats. Int J Mol Sci 2022; 23:ijms23094762. [PMID: 35563153 PMCID: PMC9101871 DOI: 10.3390/ijms23094762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.
Collapse
Affiliation(s)
- Caroline Barbé
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Jérôme Salles
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Christophe Chambon
- Animal Products Quality Unit (QuaPA), INRAE, 63122 Clermont-Ferrand, France;
- Metabolomic and Proteomic Exploration Facility, Clermont Auvergne University, INRAE, 63122 Clermont-Ferrand, France
| | - Christophe Giraudet
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Phelipe Sanchez
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Véronique Patrac
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Philippe Denis
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Yves Boirie
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Department of Clinical Nutrition, Clermont-Ferrand University Hospital Center, 63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Department of Clinical Nutrition, Clermont-Ferrand University Hospital Center, 63000 Clermont-Ferrand, France
| | - Marine Gueugneau
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Correspondence: ; Tel.: +33-4-73-60-82-65
| |
Collapse
|
11
|
Li Q, Wu J, Huang J, Hu R, You H, Liu L, Wang D, Wei L. Paeoniflorin Ameliorates Skeletal Muscle Atrophy in Chronic Kidney Disease via AMPK/SIRT1/PGC-1α-Mediated Oxidative Stress and Mitochondrial Dysfunction. Front Pharmacol 2022; 13:859723. [PMID: 35370668 PMCID: PMC8964350 DOI: 10.3389/fphar.2022.859723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle atrophy is a common and serious complication of chronic kidney disease (CKD). Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of muscle atrophy. The aim of this study was to explore the effects and mechanisms of paeoniflorin on CKD skeletal muscle atrophy. We demonstrated that paeoniflorin significantly improved renal function, calcium/phosphorus disorders, nutrition index and skeletal muscle atrophy in the 5/6 nephrectomized model rats. Paeoniflorin ameliorated the expression of proteins associated with muscle atrophy and muscle differentiation, including muscle atrophy F-box (MAFbx/atrogin-1), muscle RING finger 1 (MuRF1), MyoD and myogenin (MyoG). In addition, paeoniflorin modulated redox homeostasis by increasing antioxidant activity and suppressing excessive accumulation of reactive oxygen species (ROS). Paeoniflorin alleviated mitochondrial dysfunction by increasing the activities of electron transport chain complexes and mitochondrial membrane potential. Furthermore, paeoniflorin also regulates mitochondrial dynamics. Importantly, paeoniflorin upregulated the expression of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and phosphorylation of AMP-activated protein kinase (AMPK). Similar results were observed in C2C12 myoblasts treated with TNF-α and paeoniflorin. Notably, these beneficial effects of paeoniflorin on muscle atrophy were abolished by inhibiting AMPK and SIRT1 and knocking down PGC-1α. Taken together, this study showed for the first time that paeoniflorin has great therapeutic potential for CKD skeletal muscle atrophy through AMPK/SIRT1/PGC-1α-mediated oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qiang Li
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawen Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Rong Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haiyan You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lingyu Liu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lianbo Wei
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|