1
|
Pavel V, Räth U, Schmid S, Krautbauer S, Keller D, Amend P, Müller M, Mester P, Buechler C. Serum Adiponectin Predicts COVID-19 Severity. Biomedicines 2024; 12:1043. [PMID: 38791005 PMCID: PMC11117573 DOI: 10.3390/biomedicines12051043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Adiponectin is primarily known for its protective role in metabolic diseases, and it also possesses immunoregulatory properties. Elevated levels of adiponectin have been observed in various inflammatory diseases. However, studies investigating adiponectin levels in the serum of COVID-19 patients have yielded conflicting results. This study aimed to assess serum adiponectin levels in 26 healthy controls, as well as in 64 patients with moderate and 60 patients with severe COVID-19, to determine a potential association between serum adiponectin and the severity of COVID-19. Serum adiponectin levels in severe COVID-19 patients were significantly lower than in those with moderate disease and healthy controls, who exhibited similar serum adiponectin levels. Among patients with moderate disease, positive correlations were observed between serum adiponectin and C-reactive protein levels. Of note, serum adiponectin levels of severe COVID-19 cases were comparable between patients with and without dialysis or vasopressor therapy. Superinfection with bacteria did not exert a notable influence on serum adiponectin levels in patients with severe disease. Patients who were diagnosed with severe COVID-19 and vancomycin-resistant enterococci bacteremia showed a significant reduction in their serum adiponectin levels. An analysis conducted on the entire cohort, including both moderate and severe COVID-19 patients, showed that individuals who did not survive had lower serum adiponectin levels when compared to those who survived. In summary, this study highlights a decrease in serum adiponectin levels in severe COVID-19 cases, indicating the potential utility of adiponectin as an additional biomarker for monitoring disease severity in COVID-19 or critical illnesses in general.
Collapse
Affiliation(s)
- Vlad Pavel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Ulrich Räth
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Dennis Keller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Pablo Amend
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Patricia Mester
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (V.P.); (U.R.); (S.S.); (D.K.); (P.A.); (M.M.); (P.M.)
| |
Collapse
|
2
|
Ismaiel A, Birkhahn L, Leucuta DC, Al Srouji N, Popa SL, Dumitrascu DL. Are adipokines related to COVID-19 and its severity? A systematic review and meta-analysis. Med Pharm Rep 2024; 97:120-131. [PMID: 38746027 PMCID: PMC11090279 DOI: 10.15386/mpr-2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/01/2023] [Accepted: 06/15/2023] [Indexed: 05/16/2024] Open
Abstract
Introduction The relationship between several adipokines and COVID-19 severity has lately been evaluated, results being inconclusive. Therefore, we aimed to assess the association between adipokines in COVID-19 and its severity. Methods A search was performed in PubMed, Scopus, and Embase using predefined keywords. The Newcastle of Ottawa Scale (NOS) was used for the quality assessment of included studies. The main summary outcome was the mean difference (MD) in adipokine levels. Results A total of 8 studies involving 473 individuals were included. A significant MD in serum adiponectin levels was demonstrated in mild vs. severe COVID-19 patients (-5.734 [95% CI -11.215 - -0.252]), with no significant MD in mild vs. moderate (-7.117 [95% CI -19.546 - 5.313]), or moderate vs. severe COVID-19 (-1.846 [95% CI -4.516 - 0.824]). Moreover, no significant MD was found in adiponectin and leptin levels when comparing COVID-19 patients vs. controls (-12.675 [95% CI -36.159 - 10.808]) and (8.034 [95% CI -10.403 - 26.471]), respectively. Conclusion Adiponectin levels were significantly increased in patients with severe compared to mild COVID-19. However, no significant MD was found in adiponectin levels in mild vs. moderate and moderate vs. severe COVID-19 patients, nor in adiponectin and leptin levels in COVID-19 patients vs. controls.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Louis Birkhahn
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniel-Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Nahlah Al Srouji
- Leon Daniello Clinical Hospital of Pneumology, Cluj-Napoca, Romania
| | - Stefan-Lucian Popa
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan L. Dumitrascu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
4
|
Yang Y, Song Y, Hou D. Obesity and COVID-19 Pandemics: Epidemiology, Mechanisms, and Management. Diabetes Metab Syndr Obes 2023; 16:4147-4156. [PMID: 38145256 PMCID: PMC10749174 DOI: 10.2147/dmso.s441762] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023] Open
Abstract
Obesity is a principle causative factor of various metabolic dysfunctions, chronic inflammation, and multi-organ impairment. The global epidemic of obesity has constituted the greatest threat to global health. Emerging evidence has associated obesity with an increased risk of severe infection and poor outcomes from coronavirus disease 2019 (COVID-19). During current COVID-19 pandemic, the interaction between COVID-19 and obesity has exaggerated the disease burden of obesity more than ever before. Thus, there is an urgent need for consideration of universal measures to reduce the risk of complications and severe illness from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in obesity population. In this review, we first summarized the clinical evidence on the effect of obesity on susceptibility, severity, and prognosis of COVID-19. Then we discussed and the underlying mechanisms, including respiratory pathophysiology of obesity, dysregulated inflammation, upregulated angiotensin-converting enzyme 2 (ACE2) expression, hyperglycemia, and adipokines. Finally, we proposed recommendations on how to reduce the spread and pandemic of SARS-CoV-2 infection by prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yanping Yang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Shanghai Respiratory Research Institute, Shanghai, People’s Republic of China
| | - Dongni Hou
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Réus GZ, Recco KCC, Machado KMSH, Silva RH, Arent CO, Amboni G, Niero FS, Pedro LC, Borba LA, Bagatini MD, de Oliveira GG, da Silva AP, Mingoti MED, Ignácio ZM, Gava FF, Petronilho F, Quevedo J, Ceretta LB, de Azevedo Cardoso T. COVID-19, Anxiety, and Body Mass Index Increase Leptin Levels: a Cross-sectional Multicentric Study. Mol Neurobiol 2023:10.1007/s12035-023-03788-9. [PMID: 38123701 DOI: 10.1007/s12035-023-03788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Although many efforts have been made to understand the pathophysiological mechanisms of COVID-19, critical gaps remain to be explored. This study aimed to investigate potential alterations in adipokine levels (specifically adiponectin, leptin, and resistin) among individuals with COVID-19. Within this population, we further assessed the association between these markers with both, body mass index (BMI) and psychiatric symptoms. This cross-sectional study included an age- and sex-matched sample of adults with COVID-19 (cases) and without COVID-19 (controls). We evaluated the severity of psychiatric symptoms, BMI, and adipokines. Individuals with COVID-19 presented greater BMI, stress levels, and leptin levels when compared to controls. Leptin levels were greater in individuals with moderate/severe COVID-19 as compared to individuals with COVID-19 who were asymptomatic or having mild symptoms. Leptin levels were positively correlated with BMI, severity of depressive and anxiety symptoms, and stress levels in the total sample. Leptin levels were also positively correlated with BMI, severity of anxiety symptoms, and stress levels in controls. In cases, there was a positive correlation between adiponectin and the severity of depressive symptoms and stress levels and leptin/resistin with BMI. A linear regression model revealed that BMI, severity of anxiety symptoms, and the diagnosis of COVID-19 are independently associated with increased leptin levels. Thus, leptin levels seem to be impacted by the COVID-19 infection, anxiety, and BMI.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| | - Kelen C C Recco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Karynne M S H Machado
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Ritele H Silva
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Graziela Amboni
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Flávia S Niero
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Margarete D Bagatini
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Gabriela G de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Alana Patrícia da Silva
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Maiqueli Eduarda D Mingoti
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Fernanda F Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luciane B Ceretta
- Graduate Program in Public Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | |
Collapse
|
6
|
de Nooijer AH, Pickkers P, Netea MG, Kox M. Inflammatory biomarkers to predict the prognosis of acute bacterial and viral infections. J Crit Care 2023; 78:154360. [PMID: 37343422 DOI: 10.1016/j.jcrc.2023.154360] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Mortality in acute infections is mostly associated with sepsis, defined as 'life-threatening organ dysfunction caused by a dysregulated host response to infection'. It remains challenging to identify the patients with increased mortality risk due to the high heterogeneity in the dysregulated host immune response and disease progression. Biomarkers reflecting different pathways involved in the inflammatory response might improve prediction of mortality risk (prognostic enrichment) among patients with acute infections by reducing heterogeneity of the host response, as well as suggest novel strategies for patient stratification and treatment (predictive enrichment) through precision medicine approaches. The predictive value of inflammatory biomarkers has been extensively investigated in bacterial infections and the recent COVID-19 pandemic caused an increased interest in inflammatory biomarkers in this viral infection. However, limited research investigated whether the prognostic potential of these biomarkers differs between bacterial and viral infections. In this narrative review, we provide an overview of the value of various inflammatory biomarkers for the prediction of mortality in bacterial and viral infections.
Collapse
Affiliation(s)
- Aline H de Nooijer
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Lim JY, Templeton SP. Regulation of lung inflammation by adiponectin. Front Immunol 2023; 14:1244586. [PMID: 37724101 PMCID: PMC10505393 DOI: 10.3389/fimmu.2023.1244586] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023] Open
Abstract
Adiponectin is an insulin sensitizing hormone that also plays a role in the regulation of inflammation. Although adiponectin can exert pro-inflammatory effects, more studies have reported anti-inflammatory effects, even in non-adipose tissues such as the lung. Obesity is considered an inflammatory disease, is a risk factor for lung diseases, and is associated with decreased levels of plasma adiponectin. The results of recent studies have suggested that adiponectin exerts anti-inflammatory activity in chronic obstructive pulmonary disease, asthma and invasive fungal infection. The signaling receptors of adiponectin, AdipoR1 and AdipoR2, are expressed by epithelial cells, endothelial cells, and immune cells in the lung. In this mini-review, we discuss the anti-inflammatory mechanisms of adiponectin in lung cells and tissues.
Collapse
Affiliation(s)
| | - Steven P. Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine-Terre Haute, Terre Haute, IN, United States
| |
Collapse
|
8
|
Nigro E, D’Agnano V, Quarcio G, Mariniello DF, Bianco A, Daniele A, Perrotta F. Exploring the Network between Adipocytokines and Inflammatory Response in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2023; 15:3806. [PMID: 37686837 PMCID: PMC10490077 DOI: 10.3390/nu15173806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Adipose tissue is actually regarded as an endocrine organ, rather than as an organ that merely stores energy. During the COVID-19 pandemic, obesity has undoubtedly emerged as one of the most important risk factors for disease severity and poor outcomes related to SARS-CoV-2 infection. The aberrant production of cytokine-like hormones, called adipokines, may contribute to alterations in metabolism, dysfunction in vascular endothelium and the creation of a state of general chronic inflammation. Moreover, chronic, low-grade inflammation linked to obesity predisposes the host to immunosuppression and excessive cytokine activation. In this respect, understanding the mechanisms that link obesity with the severity of SARS-CoV-2 infection could represent a real game changer in the development of new therapeutic strategies. Our review therefore examines the pathogenic mechanisms of SARS-CoV-2, the implications with visceral adipose tissue and the influences of the adipose tissue and its adipokines on the clinical behavior of COVID-19.
Collapse
Affiliation(s)
- Ersilia Nigro
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (E.N.); (A.D.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, 80055 Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80138 Naples, Italy; (V.D.); (G.Q.); (D.F.M.); (A.B.)
| |
Collapse
|
9
|
Barbalho SM, Minniti G, Miola VFB, Haber JFDS, Bueno PCDS, de Argollo Haber LS, Girio RSJ, Detregiachi CRP, Dall'Antonia CT, Rodrigues VD, Nicolau CCT, Catharin VMCS, Araújo AC, Laurindo LF. Organokines in COVID-19: A Systematic Review. Cells 2023; 12:1349. [PMID: 37408184 DOI: 10.3390/cells12101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Jesselina Francisco Dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Centro Interdisciplinar em Diabetes (CENID), School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Luiza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Raul S J Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Camila Tiveron Dall'Antonia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| | - Claudia C T Nicolau
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, SP, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília (FAMEMA), School of Medicine, Avenida Monte Carmelo, 800, Marília 17519-030, SP, Brazil
| |
Collapse
|
10
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
11
|
Munir MZ, Khan AH, Khan TM. Clinical Disease Characteristics and Treatment Trajectories Associated with Mortality among COVID-19 Patients in Punjab, Pakistan. Healthcare (Basel) 2023; 11:healthcare11081192. [PMID: 37108026 PMCID: PMC10138068 DOI: 10.3390/healthcare11081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Data on Pakistani COVID-19 patient mortality predictors is limited. It is essential to comprehend the relationship between disease characteristics, medications used, and mortality for better patient outcomes. METHODS The medical records of confirmed cases in the Lahore and Sargodha districts were examined using a two-stage cluster sampling from March 2021 to March 2022. Demographics, signs and symptoms, laboratory findings, and pharmacological medications as mortality indicators were noted and analyzed. RESULTS A total of 288 deaths occurred out of the 1000 cases. Death rates were higher for males and people over 40. Most of those who were mechanically ventilated perished (OR: 124.2). Dyspnea, fever, and cough were common symptoms, with a significant association amid SpO2 < 95% (OR: 3.2), RR > 20 breaths/min (OR: 2.5), and mortality. Patients with renal (OR: 2.3) or liver failure (OR: 1.5) were at risk. Raised C-reactive protein (OR: 2.9) and D-dimer levels were the indicators of mortality (OR: 1.6). The most prescribed drugs were antibiotics, (77.9%), corticosteroids (54.8%), anticoagulants (34%), tocilizumab (20.3%), and ivermectin (9.2%). CONCLUSIONS Older males having breathing difficulties or signs of organ failure with raised C-reactive protein or D-dimer levels had high mortality. Antivirals, corticosteroids, tocilizumab, and ivermectin had better outcomes; antivirals were associated with lower mortality risk.
Collapse
Affiliation(s)
- Muhammad Zeeshan Munir
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia
| | - Tahir Mehmood Khan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani (Out Fall) Road, Lahore 54000, Pakistan
- School of Pharmacy, Monash University Malaysia Sdn Bhd, Jalan Lagoon Selatan, Banday Sunway, Subang Jaya 45700, Selangor, Malaysia
| |
Collapse
|
12
|
de Nooijer AH, Kooistra EJ, Grondman I, Janssen NAF, Joosten LAB, van de Veerdonk FL, Kox M, Pickkers P, Netea MG. Adipocytokine plasma concentrations reflect influence of inflammation but not body mass index (BMI) on clinical outcomes of COVID-19 patients: A prospective observational study from the Netherlands. Clin Obes 2023; 13:e12568. [PMID: 36426776 DOI: 10.1111/cob.12568] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022]
Abstract
Obesity is recognized as a risk factor for adverse outcome in COVID-19, but the molecular mechanisms underlying this relationship remain unknown. Adipose tissue functions as an endocrine organ by secreting multiple pro-inflammatory and anti-inflammatory factors, known as adipocytokines, which could be involved in COVID-19 severity. We explored the role of adipocytokines in COVID-19 and its association with BMI, clinical outcome, and inflammation. This is an observational study in 195 hospitalized COVID-19 patients. Serial plasma concentrations of the adipocytokines leptin, adiponectin, resistin, and various inflammatory cytokines were assessed. Adipocytokines were compared between patients with normal weight (BMI: 18.5-24.9 kg/m2 ), overweight (BMI: 25.0-29.9 kg/m2 ), and obesity (BMI ≥ 30 kg/m2 ), between patients admitted to the ICU and to non-ICU clinical wards, and between survivors and non-survivors. Patients with overweight and obesity displayed higher leptin concentrations and lower adiponectin concentrations throughout hospital admission (p < .001), whereas resistin concentrations were not different from patients with normal weight (p = .12). Resistin concentrations correlated with inflammatory markers and were persistently higher in ICU patients and non-survivors compared to non-ICU patients and survivors, respectively (both p < .001), whereas no such relationships were found for the other adipocytokines. In conclusion, leptin and adiponectin are associated with BMI, but not with clinical outcomes and inflammation in COVID-19 patients. In contrast, resistin is not associated with BMI, but high concentrations are associated with worse clinical outcomes and more pronounced inflammation. Therefore, it is unlikely that BMI-related adipocytokines or differences in the inflammatory response underlie obesity as a risk factor for severe COVID-19.
Collapse
Affiliation(s)
- Aline H de Nooijer
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma J Kooistra
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Inge Grondman
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nico A F Janssen
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Núcleo de Pesquisa da Faculdade da Polícia Militar (FPM) do Estado de Goiás, Brazil
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, The Netherlands
- Radboud University Medical Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Germany
| |
Collapse
|
13
|
Sonnweber T, Grubwieser P, Pizzini A, Boehm A, Sahanic S, Luger A, Schwabl C, Widmann G, Egger A, Hoermann G, Wöll E, Puchner B, Kaser S, Theurl I, Nairz M, Tymoszuk P, Weiss G, Joannidis M, Löffler-Ragg J, Tancevski I. Pulmonary recovery from COVID-19 in patients with metabolic diseases: a longitudinal prospective cohort study. Sci Rep 2023; 13:2599. [PMID: 36788324 PMCID: PMC9926446 DOI: 10.1038/s41598-023-29654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) is related to the presence of comorbidities including metabolic diseases. We herein present data from the longitudinal prospective CovILD trial, and investigate the recovery from COVID-19 in individuals with dysglycemia and dyslipidemia. A total of 145 COVID-19 patients were prospectively followed and a comprehensive clinical, laboratory and imaging assessment was performed at 60, 100, 180, and 360 days after the onset of COVID-19. The severity of acute COVID-19 and outcome at early post-acute follow-up were significantly related to the presence of dysglycemia and dyslipidemia. Still, at long-term follow-up, metabolic disorders were not associated with an adverse pulmonary outcome, as reflected by a good recovery of structural lung abnormalities in both, patients with and without metabolic diseases. To conclude, dyslipidemia and dysglycemia are associated with a more severe course of acute COVID-19 as well as delayed early recovery but do not impair long-term pulmonary recovery.
Collapse
Affiliation(s)
- Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.
| | - Philipp Grubwieser
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Boehm
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Luger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwabl
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlig Widmann
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Egger
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
- MLL Munich Leukemia Laboratory, Munich, Germany
| | - Ewald Wöll
- Department of Internal Medicine, St. Vinzenz Hospital, Zams, Austria
| | - Bernhard Puchner
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
- The Karl Landsteiner Institute, Reha Zentrum Münster, Münster, Austria
| | - Susanne Kaser
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria.
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Adiponectin, Leptin, and Resistin Are Dysregulated in Patients Infected by SARS-CoV-2. Int J Mol Sci 2023; 24:ijms24021131. [PMID: 36674646 PMCID: PMC9861572 DOI: 10.3390/ijms24021131] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Obesity, through adipose tissue (AT) inflammation and dysregulation, represents a critical factor for COVID-19; here, we investigated whether serum levels of adiponectin, HMW oligomers, leptin, and resistin are modulated and/or correlated with clinical and biochemical parameters of severe COVID-19 patients. This study included 62 severe COVID-19 patients; 62 age and sex-matched healthy subjects were recruited as a control group. Anthropometric and biochemical parameters were obtained and compared. Adiponectin, HMW oligomers, leptin, and resistin were analyzed by ELISA. The adiponectin oligomerization state was visualized by Western blotting. When compared to healthy subjects, total adiponectin levels were statistically lower in severe COVID-19 while, in contrast, the levels of leptin and resistin were statistically higher. Interestingly, HMW adiponectin oligomers negatively correlated with leptin and were positively associated with LUS scores. Resistin showed a positive association with IL-6, IL-2R, and KL-6. Our data strongly support that adipose tissue might play a functional role in COVID-19. Although it needs to be confirmed in larger cohorts, adiponectin HMW oligomers might represent a laboratory resource to predict patient seriousness. Whether adipokines can be integrated as a potential additional tool in the evolving landscape of biomarkers for the COVID-19 disease is still a matter of debate. Other studies are needed to understand the molecular mechanisms behind adipokine's involvement in COVID-19.
Collapse
|
15
|
Kim DK, Weller B, Lin CW, Sheykhkarimli D, Knapp JJ, Dugied G, Zanzoni A, Pons C, Tofaute MJ, Maseko SB, Spirohn K, Laval F, Lambourne L, Kishore N, Rayhan A, Sauer M, Young V, Halder H, la Rosa NMD, Pogoutse O, Strobel A, Schwehn P, Li R, Rothballer ST, Altmann M, Cassonnet P, Coté AG, Vergara LE, Hazelwood I, Liu BB, Nguyen M, Pandiarajan R, Dohai B, Coloma PAR, Poirson J, Giuliana P, Willems L, Taipale M, Jacob Y, Hao T, Hill DE, Brun C, Twizere JC, Krappmann D, Heinig M, Falter C, Aloy P, Demeret C, Vidal M, Calderwood MA, Roth FP, Falter-Braun P. A proteome-scale map of the SARS-CoV-2-human contactome. Nat Biotechnol 2023; 41:140-149. [PMID: 36217029 PMCID: PMC9849141 DOI: 10.1038/s41587-022-01475-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions. We find that host proteins genetically associated with comorbidities of severe illness and long COVID are enriched in SARS-CoV-2 targeted network communities. Evaluating contactome-derived hypotheses, we demonstrate that viral NSP14 activates nuclear factor κB (NF-κB)-dependent transcription, even in the presence of cytokine signaling. Moreover, for several tested host proteins, genetic knock-down substantially reduces viral replication. Additionally, we show for USP25 that this effect is phenocopied by the small-molecule inhibitor AZ1. Our results connect viral proteins to human genetic architecture for COVID-19 severity and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Dae-Kyum Kim
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.240614.50000 0001 2181 8635Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Benjamin Weller
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Chung-Wen Lin
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Dayag Sheykhkarimli
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Jennifer J. Knapp
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Guillaume Dugied
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Andreas Zanzoni
- grid.5399.60000 0001 2176 4817Aix-Marseille Université, Inserm, TAGC, Marseille, France
| | - Carles Pons
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Marie J. Tofaute
- grid.4567.00000 0004 0483 2525Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Sibusiso B. Maseko
- grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Kerstin Spirohn
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Florent Laval
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium ,grid.4861.b0000 0001 0805 7253Laboratory of Molecular and Cellular Epigenetics, GIGA Institute, University of Liège, Liège, Belgium
| | - Luke Lambourne
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Nishka Kishore
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Ashyad Rayhan
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Mayra Sauer
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Veronika Young
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Hridi Halder
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Nora Marín-de la Rosa
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Oxana Pogoutse
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Alexandra Strobel
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patrick Schwehn
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Roujia Li
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Simin T. Rothballer
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Melina Altmann
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patricia Cassonnet
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Atina G. Coté
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Lena Elorduy Vergara
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Isaiah Hazelwood
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Betty B. Liu
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Maria Nguyen
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Ramakrishnan Pandiarajan
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Bushra Dohai
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patricia A. Rodriguez Coloma
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Juline Poirson
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.440050.50000 0004 0408 2525Molecular Architecture of Life Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON Canada
| | - Paolo Giuliana
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA
| | - Luc Willems
- grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium ,grid.4861.b0000 0001 0805 7253Laboratory of Molecular and Cellular Epigenetics, GIGA Institute, University of Liège, Liège, Belgium
| | - Mikko Taipale
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium
| | - Yves Jacob
- grid.428999.70000 0001 2353 6535Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France ,grid.4444.00000 0001 2112 9282UMR3569, Centre National de la Recherche Scientifique, Paris, France ,grid.5842.b0000 0001 2171 2558Université de Paris, Paris, France
| | - Tong Hao
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - David E. Hill
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christine Brun
- grid.5399.60000 0001 2176 4817Aix-Marseille Université, Inserm, TAGC, Marseille, France ,grid.4444.00000 0001 2112 9282CNRS, Marseille, France
| | - Jean-Claude Twizere
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.4861.b0000 0001 0805 7253Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège, Belgium ,grid.4861.b0000 0001 0805 7253TERRA Teaching and Research Centre, University of Liège, Gembloux, Belgium
| | - Daniel Krappmann
- grid.4567.00000 0004 0483 2525Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Matthias Heinig
- grid.4567.00000 0004 0483 2525Institute of Computational Biology (ICB), Computational Health Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany ,grid.6936.a0000000123222966Department of Informatics, Technische Universität München, Munich, Germany
| | - Claudia Falter
- grid.4567.00000 0004 0483 2525Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Patrick Aloy
- grid.7722.00000 0001 1811 6966Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain ,grid.425902.80000 0000 9601 989XInstitució Catalana de Recerca I Estudis Avaçats (ICREA), Barcelona, Spain
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Institut Pasteur, Paris, France. .,UMR3569, Centre National de la Recherche Scientifique, Paris, France. .,Université de Paris, Paris, France.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Michael A. Calderwood
- grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Frederick P. Roth
- grid.17063.330000 0001 2157 2938Donnelly Centre for Cellular and Biomolecular Research (CCBR), University of Toronto, Toronto, Ontario Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada ,grid.250674.20000 0004 0626 6184Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario Canada ,grid.65499.370000 0001 2106 9910Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA USA ,grid.17063.330000 0001 2157 2938Department of Computer Science, University of Toronto, Toronto, Ontario Canada
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapeutics Center (MTTC), Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany. .,Microbe-Host Interactions, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Hindsberger B, Lindegaard B, Rabøl Andersen L, Bastrup Israelsen S, Pedersen L, Bela Szecsi P, Benfield T. Circulating Adiponectin Levels Are Inversely Associated with Mortality and Respiratory Failure in Patients Hospitalized with COVID-19. Int J Endocrinol 2023; 2023:4427873. [PMID: 36960389 PMCID: PMC10030212 DOI: 10.1155/2023/4427873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Chronic low-grade inflammation associated with a dysregulated adipose tissue might contribute to amplifying the inflammatory response in severe COVID-19. The aim of this study was to examine the association between levels of circulating leptin and adiponectin and the severity and mortality of COVID-19. METHODS Serum levels of leptin and adiponectin were determined at admission in 123 individuals with confirmed COVID-19 and their association with 90-day mortality and respiratory failure was analyzed by logistic regression analysis and expressed as odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS The median values of circulating leptin and adiponectin were 7.2 ng/mL (IQR 3.8-13.4) and 9.0 μg/mL (IQR 5.7-14.6), respectively. After adjustment for age, sex, body mass index, hypertension, diabetes, chronic obstructive pulmonary disease, and oxygen saturation at admission, a doubling of circulating adiponectin was associated with a 38% reduction in odds of 90-day mortality (OR 0.62, CI 0.43-0.89) and a 40% reduction in odds of respiratory failure (OR 0.60, CI 0.42-0.86). The association tended to be strongest in individuals below the median age of 72 years. Circulating leptin was not associated with outcomes. CONCLUSIONS Circulating adiponectin at admission was inversely associated with mortality and respiratory failure in SARS-CoV-2 infection. Further studies are needed to elucidate how exactly adipokines, especially adiponectin, are linked to the progression and prognosis of COVID-19.
Collapse
Affiliation(s)
- Bettina Hindsberger
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Birgitte Lindegaard
- Department of Infectious Diseases, Copenhagen University Hospital–North Zealand, 3400 Hilleroed, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Liv Rabøl Andersen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Simone Bastrup Israelsen
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
| | - Lise Pedersen
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Pal Bela Szecsi
- Department of Clinical Biochemistry, Holbaek Hospital, 4300 Holbaek, Denmark
| | - Thomas Benfield
- Center of Clinical Research and Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Copenhagen University Hospital-Amager and Hvidovre, 2650 Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
17
|
Yoshimoto M, Sakuma Y, Ogino J, Iwai R, Watanabe S, Inoue T, Takahashi H, Suzuki Y, Kinoshita D, Takemura K, Takahashi H, Shimura H, Babazono T, Yoshida S, Hashimoto N. Sex differences in predictive factors for onset of type 2 diabetes in Japanese individuals: A 15-year follow-up study. J Diabetes Investig 2022; 14:37-47. [PMID: 36200977 PMCID: PMC9807159 DOI: 10.1111/jdi.13918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
AIMS/INTRODUCTION The increase in the number of patients with type 2 diabetes mellitus is an important concern worldwide. The goal of this study was to investigate factors involved in the onset of type 2 diabetes mellitus, and sex differences in long-term follow up of people with normal glucose tolerance. MATERIALS AND METHODS Of 1,309 individuals who underwent screening at our facility in 2004, 748 individuals without diabetes were enrolled. Correlations of metabolic markers including serum adiponectin (APN) with onset of type 2 diabetes mellitus were examined over 15 years in these individuals. RESULTS The Kaplan-Meier curve for onset of type 2 diabetes mellitus for 15 years in the decreased APN group was examined. Hazard ratios for the APN concentration for onset of diabetes were 1.78 (95% confidence interval [CI] 1.20-2.63, P = 0.004) in all participants, 1.48 (95% CI 0.96-2.29, P = 0.078) for men and 3.01 (95% CI 1.37-6.59, P = 0.006) for women. During the follow-up period of 15 years, body mass index, estimated glomerular filtration rate, fatty liver, C-reactive protein and alanine aminotransferase in men were significant in univariate analysis, but only estimated glomerular filtration rate and fatty liver were significantly related to onset of type 2 diabetes mellitus in multivariate analysis. In women, body mass index, systolic blood pressure, triglyceride, fatty liver and APN were significant in univariate analysis, and APN was the only significant risk factor in multivariate analysis (P < 0.05). CONCLUSIONS There are differences between men and women with regard to targets for intervention to prevent the onset of type 2 diabetes mellitus. Individuals requiring intensive intervention should be selected with this finding to maximize the use of limited social and economic resources.
Collapse
Affiliation(s)
- Mei Yoshimoto
- Department of Diabetes, Endocrine and Metabolic Diseases, Yachiyo Medical CenterTokyo Women's Medical UniversityYachiyo, ChibaJapan
| | - Yukie Sakuma
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Jun Ogino
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Rie Iwai
- Department of Clinical LaboratoryAsahi General HospitalAsahi, ChibaJapan
| | - Saburo Watanabe
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Takeshi Inoue
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Haruo Takahashi
- Clinical Research Support CenterAsahi General HospitalAsahi, ChibaJapan
| | - Yoshifumi Suzuki
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Daisuke Kinoshita
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Koji Takemura
- Department of Diabetes and Metabolic DiseasesAsahi General HospitalAsahi, ChibaJapan
| | - Hidenori Takahashi
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan
| | - Haruhisa Shimura
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan,Department of Internal MedicineAsahi General HospitalAsahi, ChibaJapan
| | - Tetsuya Babazono
- Department of Medicine, Diabetes Center, School of MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Shouji Yoshida
- Department of Internal MedicineAsahi General HospitalAsahi, ChibaJapan
| | - Naotake Hashimoto
- Preventive Medicine Research CenterAsahi General HospitalAsahi, ChibaJapan
| |
Collapse
|
18
|
Chemerin as a Potential Marker of Resolution of Inflammation in COVID-19 Infection. Biomedicines 2022; 10:biomedicines10102462. [PMID: 36289725 PMCID: PMC9599036 DOI: 10.3390/biomedicines10102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Chemerin is one of the specialized pro-resolving mediators that participate in the early phase of inflammation and contribute to the initiation of the pro-resolving response. There is a paucity of data regarding the time course of chemerin during acute infections. We aimed to evaluate the sequence of inflammatory responses in the acute COVID-19 phase throughout onset and resolution of inflammation. We evaluated changes in selected biomarkers in COVID-19 survivors on the 7-day and 28-day follow up. Chemerin was lower in patients with baseline moderate/severe disease at day 7 compared with asymptomatic patients and individuals with mild illness (7265 [5526−9448] vs. 8730 [6888−11,058] pg/mL; p = 0.03). Only in patients with moderate/severe disease, but not in those with mild symptoms, were chemerin concentrations decreased one week after infection onset compared with baseline (7265 [5526−9448] vs. 8866 [6383−10,690] pg/mL; p < 0.05) with a subsequent increase on the 28-day follow up (9313 [7353−11,033] pg/mL; p < 0.05). Resolution of inflammation in the group of moderate/severe SARS-CoV2 infection was associated with increasing serum concentrations of chemerin, contrary to pro-inflammatory cytokines and adipokines (pentraxin 3, TNFα, resistin, leptin). A similar pattern of angiopoietin-2 dynamics may suggest signs of enhanced vascularization as a consequence of acute SARS-CoV2 infection.
Collapse
|
19
|
Abstract
A hallmark of the COVID-19 pandemic has been the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that both increased transmission and improved immune evasion. Each variant possesses mutations throughout its genome, but little is known about their effect on pathogenesis. Specifically, we are interested in the accessory genes of SARS-CoV-2, which have been shown to affect viral pathogenesis through interference with the host innate immune response. In this work, we identify accessory genes that are responsible for pathogenesis in vivo and investigate the effect of variant nonspike genes on replication and disease in mice. This work identifies accessory genes as key drivers of pathogenesis and highlights the effect of nonspike genes on replication and pathogenesis. The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.
Collapse
|
20
|
Pavel-Tanasa M, Constantinescu D, Cianga CM, Anisie E, Mereuta AI, Tuchilus CG, Cianga P. Adipokines, and not vitamin D, associate with antibody immune responses following dual BNT162b2 vaccination within individuals younger than 60 years. Front Immunol 2022; 13:1000006. [PMID: 36119038 PMCID: PMC9481237 DOI: 10.3389/fimmu.2022.1000006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to a global health outbreak known as the COVID-19 pandemic which has been lasting since March 2020. Vaccine became accessible to people only at the beginning of 2021 which greatly helped reducing the mortality rate and severity of COVID-19 infection afterwards. The efficacy of vaccines was not fully known and studies documenting the immune responses following vaccination are continuing to emerge. Recent evidence indicate that natural infection prior vaccination may improve the antibody and cellular immune responses, while little is known about the factors influencing those processes. Here we investigated the antibody responses following BNT162b2 vaccination in relation to previous-infection status and age, and searched for possible biomarkers associated with the observed changes in immune responses. We found that the previous-infection status caused at least 8-times increase in the antibody titres, effect that was weaker in people over 60 years old and unaltered by the vitamin D serum levels. Furthermore, we identified adiponectin to positively associate with antibody responses and negatively correlate with pro-inflammatory molecules (MCP-1, factor D, CRP, PAI-1), especially in previously-infected individuals.
Collapse
Affiliation(s)
- Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
- *Correspondence: Mariana Pavel-Tanasa,
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
| | - Corina Maria Cianga
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
| | - Ecaterina Anisie
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
| | - Ana Irina Mereuta
- Medical Analysis Laboratory, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
| | - Cristina Gabriela Tuchilus
- Medical Analysis Laboratory, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
- Department of Preventive Medicine and Interdisciplinarity (Microbiology), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Petru Cianga
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital Iasi, Iasi, Romania
| |
Collapse
|
21
|
Al-Kuraishy HM, Al-Gareeb AI, Gabriela Bungau S, Radu AF, El-Saber Batiha G. The potential molecular implications of adiponectin in the evolution of SARS-CoV-2: Inbuilt tendency. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2022; 34:102347. [PMID: 36211634 PMCID: PMC9524222 DOI: 10.1016/j.jksus.2022.102347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 12/16/2022]
Abstract
Adiponectin (APN) is an adipokine concerned in the regulation of glucose metabolism, insulin sensitivity and fatty acid oxidation. APN plays a critical role in viral infections by regulating the immune response through its anti-inflammatory/pro-inflammatory axis. Reduction of APN may augment the severity of viral infections because APN inhibits immune cells’ response via suppression of inflammatory signaling pathways and stimulation of adenosine monophosphate protein kinase (AMPK). Moreover, APN inhibits the stimulation of nuclear factor kappa B (NF-κB) and regulates the release of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α) and interleukins (IL-18, IL-6). In COVID-19, abnormalities of the fatty tissue due to oxidative stress (OS) and hyperinflammation may inhibit the production and release of APN. APN has lung-protective effect and can prevent SARS-CoV-2-induced acute lung injury (ALI) through the amelioration of endoplasmic reticulum (ER) stress, endothelial dysfunction (ED) and stimulation of peroxisome proliferator-activated receptor-alpha (PPAR-α). It has been established that there is a potential correlation between inflammatory signal transduction pathways and APN that contributes to the development of SARS-CoV-2 infections. Deregulation of these molecular pathways affects the expression of APN and vice versa. In addition, the reduction of APN effect in SARS-CoV-2 infection could be a potential cause of the exacerbation of pro-inflammatory effects which are associated with the disease severity. In this context, exploratory, developmental, and extensive prospective studies are necessary.
Collapse
|
22
|
Basolo A, Poma AM, Bonuccelli D, Proietti A, Macerola E, Ugolini C, Torregrossa L, Giannini R, Vignali P, Basolo F, Santini F, Toniolo A. Adipose tissue in COVID-19: detection of SARS-CoV-2 in adipocytes and activation of the interferon-alpha response. J Endocrinol Invest 2022; 45:1021-1029. [PMID: 35169984 PMCID: PMC8852916 DOI: 10.1007/s40618-022-01742-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Obesity is a recognized risk factor for the progression to severe forms of COVID-19, yet the mechanisms of the association are unclear. METHODS Subcutaneous abdominal adipose tissue specimens of subjects deceased from COVID-19 (n = 23) were compared to those of controls dying abruptly from causes other than infectious (accidental trauma, sudden cardiac death). Alterations of lung parenchyma consistent with moderate to severe disease were detected in all COVID-19 cases, not in controls. Investigations included: histopathologic features, detection of virus antigens and genome, characterization of infiltrating leukocytes, transcription levels of immune-related genes. RESULTS By RT-PCR, the SARS-CoV-2 genome was detected in the adipose tissue of 13/23 (56%) cases of the COVID-19 cohort. The virus nucleocapsid antigen was detected in the cytoplasm of 1-5% adipocytes in 12/12 COVID-19 cases that were virus-positive by PCR in the adipose tissue (one case could not be assessed due insufficient tissue). The adipose tissue of COVID-19 cases showed leukocyte infiltrates and upregulation of the interferon-alpha pathway. After adjusting for age and sex, the activation score of IFN-alpha was directly related with transcription levels of the ACE2 gene, a key entry factor of SARS-CoV-2. CONCLUSIONS In lethal COVID-19 cases, the SARS-CoV-2 nucleocapsid antigen has been detected in a sizeable proportion of adipocytes, showing that the virus may directly infect the parenchymal cells of subcutaneous fat. Infection appears to activate the IFN alpha pathway and to attract infiltrating leukocytes. Due to the huge numbers of adipocytes in adults, the adipose tissue represents a significant reservoir for SARS-CoV-2 and an important source of inflammatory mediators.
Collapse
Affiliation(s)
- A. Basolo
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - A. M. Poma
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - D. Bonuccelli
- Department of Forensic Medicine, Azienda USL Toscana Nordovest, Lucca, Italy
| | - A. Proietti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - E. Macerola
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - C. Ugolini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - L. Torregrossa
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - R. Giannini
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - P. Vignali
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - F. Basolo
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University Hospital of Pisa, Pisa, Italy
| | - F. Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, 56124 Pisa, Italy
| | - A. Toniolo
- Global Virus Network, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
23
|
Novel prognostic determinants of COVID-19-related mortality: A pilot study on severely-ill patients in Russia. PLoS One 2022; 17:e0264072. [PMID: 35213582 PMCID: PMC8880431 DOI: 10.1371/journal.pone.0264072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic has posed a severe healthcare challenge calling for an integrated approach in determining the clues for early non-invasive diagnostics of the potentially severe cases and efficient patient stratification. Here we analyze the clinical, laboratory and CT scan characteristics associated with high risk of COVID-19-related death outcome in the cohort of severely-ill patients in Russia. The data obtained reveal that elevated dead lymphocyte counts, decreased early apoptotic lymphocytes, decreased CD14+/HLA-Dr+ monocytes, increased expression of JNK in PBMCs, elevated IL-17 and decreased PAI-1 serum levels are associated with a high risk of COVID-19-related mortality thus suggesting them to be new prognostic factors. This set of determinants could be used as early predictors of potentially severe course of COVID-19 for trials of prevention or timely treatment.
Collapse
|
24
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
25
|
Shklyaev SS, Melnichenko GA, Volevodz NN, Falaleeva NA, Ivanov SA, Kaprin AD, Mokrysheva NG. Adiponectin: a pleiotropic hormone with multifaceted roles. PROBLEMY ENDOKRINOLOGII 2021; 67:98-112. [PMID: 35018766 PMCID: PMC9753852 DOI: 10.14341/probl12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 05/28/2023]
Abstract
Adipose tissue mostly composed of different types of fat is one of the largest endocrine organs in the body playing multiple intricate roles including but not limited to energy storage, metabolic homeostasis, generation of heat, participation in immune functions and secretion of a number of biologically active factors known as adipokines. The most abundant of them is adiponectin. This adipocite-derived hormone exerts pleiotropic actions and exhibits insulin-sensitizing, antidiabetic, anti-obesogenic, anti-inflammatory, antiatherogenic, cardio- and neuroprotective properties. Contrariwise to its protective effects against various pathological events in different cell types, adiponectin may have links to several systemic diseases and malignances. Reduction in adiponectin levels has an implication in COVID-19-associated respiratory failure, which is attributed mainly to a phenomenon called 'adiponectin paradox'. Ample evidence about multiple functions of adiponectin in the body was obtained from animal, mostly rodent studies. Our succinct review is entirely about multifaceted roles of adiponectin and mechanisms of its action in different physiological and pathological states.
Collapse
Affiliation(s)
- S. S. Shklyaev
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation;
A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - G. A. Melnichenko
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. N. Volevodz
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federatio
| | - N. A. Falaleeva
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - S. A. Ivanov
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - A. D. Kaprin
- A. Tsyb Medical Radiological Research Center — Branch of the National Medical Research Radiological Center of the Ministry of Health of the Russian Federation
| | - N. G. Mokrysheva
- National Research Center for Endocrinology of the Ministry of Health of the Russian Federation
| |
Collapse
|
26
|
Nakano T, Chiang KC, Chen CC, Chen PJ, Lai CY, Hsu LW, Ohmori N, Goto T, Chen CL, Goto S. Sunlight Exposure and Phototherapy: Perspectives for Healthy Aging in an Era of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010950. [PMID: 34682694 PMCID: PMC8535353 DOI: 10.3390/ijerph182010950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Most humans depend on sunlight exposure to satisfy their requirements for vitamin D3. However, the destruction of the ozone layer in the past few decades has increased the risk of skin aging and wrinkling caused by excessive exposure to ultraviolet (UV) radiation, which may also promote the risk of skin cancer development. The promotion of public health recommendations to avoid sunlight exposure would reduce the risk of skin cancer, but it would also enhance the risk of vitamin D3 insufficiency/deficiency, which may cause disease development and progression. In addition, the ongoing global COVID-19 pandemic may further reduce sunlight exposure due to stay-at-home policies, resulting in difficulty in active and healthy aging. In this review article, we performed a literature search in PubMed and provided an overview of basic and clinical data regarding the impact of sunlight exposure and vitamin D3 on public health. We also discuss the potential mechanisms and clinical value of phototherapy with a full-spectrum light (notably blue, red, and near-infrared light) as an alternative to sunlight exposure, which may contribute to combating COVID-19 and promoting active and healthy aging in current aged/superaged societies.
Collapse
Affiliation(s)
- Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.C.); (P.-J.C.); (L.-W.H.)
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
- Correspondence: (T.N.); (S.G.); Tel.: +886-7-731-7123 (T.N.); +81-975-53-2165 (S.G.)
| | - Kuei-Chen Chiang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.C.); (P.-J.C.); (L.-W.H.)
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
| | - Chien-Chih Chen
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Chen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.C.); (P.-J.C.); (L.-W.H.)
| | - Chia-Yun Lai
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
| | - Li-Wen Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (K.-C.C.); (P.-J.C.); (L.-W.H.)
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
| | - Naoya Ohmori
- Faculty of Nursing, Josai International University, Togane 283-8555, Japan; (N.O.); (T.G.)
- Kazusa Institute for Drug Discovery, Josai International University, Togane 283-8555, Japan
| | - Takeshi Goto
- Faculty of Nursing, Josai International University, Togane 283-8555, Japan; (N.O.); (T.G.)
- Kazusa Institute for Drug Discovery, Josai International University, Togane 283-8555, Japan
| | - Chao-Long Chen
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
| | - Shigeru Goto
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (C.-C.C.); (C.-Y.L.); (C.-L.C.)
- Faculty of Nursing, Josai International University, Togane 283-8555, Japan; (N.O.); (T.G.)
- Nobeoka Medical Check Center, Fukuoka Institution of Occupational Health, Nobeoka 882-0872, Japan
- Correspondence: (T.N.); (S.G.); Tel.: +886-7-731-7123 (T.N.); +81-975-53-2165 (S.G.)
| |
Collapse
|