1
|
Cui G, Strickland KM, Vazquez Cegla AJ, McCarty NA. Comparing ATPase activity of ATP-binding cassette subfamily C member 4, lamprey CFTR, and human CFTR using an antimony-phosphomolybdate assay. Front Pharmacol 2024; 15:1363456. [PMID: 38440176 PMCID: PMC10910009 DOI: 10.3389/fphar.2024.1363456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction: ATP-binding cassette (ABC) transporters use the hydrolysis of ATP to power the active transport of molecules, but paradoxically the cystic fibrosis transmembrane regulator (CFTR, ABCC7) forms an ion channel. We previously showed that ATP-binding cassette subfamily C member 4 (ABCC4) is the closest mammalian paralog to CFTR, compared to other ABC transporters. In addition, Lamprey CFTR (Lp-CFTR) is the oldest known CFTR ortholog and has unique structural and functional features compared to human CFTR (hCFTR). The availability of these evolutionarily distant orthologs gives us the opportunity to study the changes in ATPase activity that may be related to their disparate functions. Methods: We utilized the baculovirus expression system with Sf9 insect cells and made use of the highly sensitive antimony-phosphomolybdate assay for testing the ATPase activity of human ABCC4 (hABCC4), Lp-CFTR, and hCFTR under similar experimental conditions. This assay measures the production of inorganic phosphate (Pi) in the nanomolar range. Results: Crude plasma membranes were purified, and protein concentration, determined semi-quantitatively, of hABCC4, Lp-CFTR, and hCFTR ranged from 0.01 to 0.36 μg/μL. No significant difference in expression level was found although hABCC4 trended toward the highest level. hABCC4 was activated by ATP with the equilibrium constant (Kd) 0.55 ± 0.28 mM (n = 8). Estimated maximum ATPase rate (Vmax) for hABCC4 was about 0.2 nmol/μg/min when the protein was activated with 1 mM ATP at 37°C (n = 7). Estimated maximum ATPase rate for PKA-phosphorylated Lp-CFTR reached about half of hCFTR levels in the same conditions. Vmax for both Lp-CFTR and hCFTR were significantly increased in high PKA conditions compared to low PKA conditions. Maximum intrinsic ATPase rate of hABCC4 in the absence of substrate was twice that of hCFTR when activated in 1 mM ATP. Conclusion: The findings here suggest that while both ABCC4 and hCFTR bear one consensus and one degenerate ATPase site, the hCFTR exhibited a reduced intrinsic ATPase activity. In addition, ATPase activity in the CFTR lineage increased from Lp-CFTR to hCFTR. Finally, the studies pave the way to purify hABCC4, Lp-CFTR, and hCFTR from Sf9 cells for their structural investigation, including by cryo-EM, and for studies of evolution in the ABC transporter superfamily.
Collapse
Affiliation(s)
| | | | | | - Nael A. McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
2
|
Kleuser B, Schumacher F, Gulbins E. New Therapeutic Options in Pulmonal Diseases: Sphingolipids and Modulation of Sphingolipid Metabolism. Handb Exp Pharmacol 2024; 284:289-312. [PMID: 37922034 DOI: 10.1007/164_2023_700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Sphingolipids are crucial molecules in the respiratory airways. As in most other tissues and organs, in the lung sphingolipids play an essential role as structural constituents as they regulate barrier function and fluidity of cell membranes. A lung-specific feature is the occurrence of sphingolipids as minor structural components in the surfactant. However, sphingolipids are also key signaling molecules involved in airway cell signaling and their dynamical formation and metabolism are important for normal lung physiology. Dysregulation of sphingolipid metabolism and signaling is involved in altering lung tissue and initiates inflammatory processes promoting the pathogenesis of pulmonal diseases including cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), and asthma.In the present review, the important role of specific sphingolipid species in pulmonal diseases will be discussed. Only such an understanding opens up the possibility of developing new therapeutic strategies with the aim of correcting the imbalance in sphingolipid metabolism and signaling. Such delivery strategies have already been studied in animal models of these lung diseases, demonstrating that targeting the sphingolipid profile represents new therapeutic opportunities for lung disorders.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Lewallen CF, Chien A, Maminishkis A, Hirday R, Reichert D, Sharma R, Wan Q, Bharti K, Forest CR. A biologically validated mathematical model for decoding epithelial apical, basolateral, and paracellular electrical properties. Am J Physiol Cell Physiol 2023; 325:C1470-C1484. [PMID: 37899750 PMCID: PMC10861025 DOI: 10.1152/ajpcell.00200.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
Abstract
Epithelial tissues form selective barriers to ions, nutrients, waste products, and infectious agents throughout the body. Damage to these barriers is associated with conditions such as celiac disease, cystic fibrosis, diabetes, and age-related macular degeneration. Conventional electrophysiology measurements like transepithelial resistance can quantify epithelial tissue maturity and barrier integrity but are limited in differentiating between apical, basolateral, and paracellular transport pathways. To overcome this limitation, a combination of mathematical modeling, stem cell biology, and cell physiology led to the development of 3 P-EIS, a novel mathematical model and measurement technique. 3 P-EIS employs an intracellular pipette and extracellular electrochemical impedance spectroscopy to accurately measure membrane-specific properties of epithelia, without the constraints of prior models. 3 P-EIS was validated using electronic circuit models of epithelia with known resistances and capacitances, confirming a median error of 19% (interquartile range: 14%-26%) for paracellular and transcellular resistances and capacitances (n = 5). Patient stem cell-derived retinal pigment epithelium tissues were measured using 3 P-EIS, successfully isolating the cellular responses to adenosine triphosphate. 3 P-EIS enhances quality control in epithelial cell therapies and has extensive applicability in drug testing and disease modeling, marking a significant advance in epithelial physiology.NEW & NOTEWORTHY This interdisciplinary paper integrates mathematics, biology, and physiology to measure epithelial tissue's apical, basolateral, and paracellular transport pathways. A key advancement is the inclusion of intracellular voltage recordings using a sharp pipette, enabling precise quantification of relative impedance changes between apical and basolateral membranes. This enhanced electrochemical impedance spectroscopy technique offers insights into epithelial transport dynamics, advancing disease understanding, drug interactions, and cell therapies. Its broad applicability contributes significantly to epithelial physiology research.
Collapse
Affiliation(s)
- Colby F Lewallen
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Athena Chien
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Arvydas Maminishkis
- Translational Research CORE, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Rishabh Hirday
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Dominik Reichert
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Qin Wan
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, Maryland, United States
| | - Craig R Forest
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Dobi D, Loberto N, Bassi R, Pistocchi A, Lunghi G, Tamanini A, Aureli M. Cross-talk between CFTR and sphingolipids in cystic fibrosis. FEBS Open Bio 2023; 13:1601-1614. [PMID: 37315117 PMCID: PMC10476574 DOI: 10.1002/2211-5463.13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited, life-limiting disorder in Caucasian populations. It is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which lead to an impairment of protein expression and/or function. CFTR is a chloride/bicarbonate channel expressed at the apical surface of epithelial cells of different organs. Nowadays, more than 2100 CFTR genetic variants have been described, but not all of them cause CF. However, around 80-85% of the patients worldwide are characterized by the presence, at least in one allele, of the mutation F508del. CFTR mutations cause aberrant hydration and secretion of mucus in hollow organs. In the lungs, this condition favors bacterial colonization, allowing the development of chronic infections that lead to the onset of the CF lung disease, which is the main cause of death in patients. In recent years, evidence has reported that CFTR loss of function is responsible for alterations in a particular class of bioactive lipids, called sphingolipids (SL). SL are ubiquitously present in eukaryotic cells and are mainly asymmetrically located within the external leaflet of the plasma membrane, where they organize specific platforms capable of segregating a selected number of proteins. CFTR is associated with these platforms that are fundamental for its functioning. Considering the importance of SL in CFTR homeostasis, we attempt here to provide a critical overview of the literature to determine the role of these lipids in channel stability and activity, and whether their modulation in CF could be a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| | - Anna Tamanini
- Section of Clinical Biochemistry, Department of Neurosciences, Biomedicine and MovementUniversity of VeronaItaly
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational MedicineUniversity of MilanItaly
| |
Collapse
|
5
|
Qiu ZE, Xu JB, Chen L, Huang ZX, Lei TL, Huang ZY, Hou XC, Yang HL, Lin QH, Zhu YX, Zhao L, Zhou WL, Zhang YL. Allicin Facilitates Airway Surface Liquid Hydration by Activation of CFTR. Front Pharmacol 2022; 13:890284. [PMID: 35784719 PMCID: PMC9241074 DOI: 10.3389/fphar.2022.890284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl− secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl− secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl− and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| |
Collapse
|
6
|
Iazzi M, Astori A, St-Germain J, Raught B, Gupta GD. Proximity Profiling of the CFTR Interaction Landscape in Response to Orkambi. Int J Mol Sci 2022; 23:2442. [PMID: 35269585 PMCID: PMC8910062 DOI: 10.3390/ijms23052442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR.
Collapse
Affiliation(s)
- Melissa Iazzi
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - Audrey Astori
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Jonathan St-Germain
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Brian Raught
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A1, Canada; (A.A.); (J.S.-G.); (B.R.)
| | - Gagan D. Gupta
- Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada;
| |
Collapse
|
7
|
Cottrill KA, Giacalone VD, Margaroli C, Bridges RJ, Koval M, Tirouvanziam R, McCarty NA. Mechanistic analysis and significance of sphingomyelinase-mediated decreases in transepithelial CFTR currents in nHBEs. Physiol Rep 2021; 9:e15023. [PMID: 34514718 PMCID: PMC8436056 DOI: 10.14814/phy2.15023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). In the lungs, this manifests as immune cell infiltration and bacterial infections, leading to tissue destruction. Previous work has determined that acute bacterial sphingomyelinase (SMase) decreases CFTR function in bronchial epithelial cells from individuals without CF (nHBEs) and with CF (cfHBEs, homozygous ΔF508-CFTR mutation). This study focuses on exploring the mechanisms underlying this effect. SMase increased the abundance of dihydroceramides, a result mimicked by blockade of ceramidase enzyme using ceranib-1, which also decreased CFTR function. The SMase-mediated inhibitory mechanism did not involve the reduction of cellular CFTR abundance or removal of CFTR from the apical surface, nor did it involve the activation of 5' adenosine monophosphate-activated protein kinase. In order to determine the pathological relevance of these sphingolipid imbalances, we evaluated the sphingolipid profiles of cfHBEs and cfHNEs (nasal) as compared to non-CF controls. Sphingomyelins, ceramides, and dihydroceramides were largely increased in CF cells. Correction of ΔF508-CFTR trafficking with VX445 + VX661 decreased some sphingomyelins and all ceramides, but exacerbated increases in dihydroceramides. Additional treatment with the CFTR potentiator VX770 did not affect these changes, suggesting rescue of misfolded CFTR was sufficient. We furthermore determined that cfHBEs express more acid-SMase protein than nHBEs. Lastly, we determined that airway-like neutrophils, which are increased in the CF lung, secrete acid-SMase. Identifying the mechanism of SMase-mediated inhibition of CFTR will be important, given the imbalance of sphingolipids in CF cells and the secretion of acid-SMase from cell types relevant to CF.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Vincent D. Giacalone
- Immunology and Molecular Pathogenesis PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Camilla Margaroli
- Department of MedicineDivision of PulmonaryAllergy & Critical Care MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Program in Protease/Matrix BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth ChicagoIllinoisUSA
| | - Michael Koval
- Department of MedicineDivision of Pulmonary, Allergy, Critical Care and Sleep Medicine and Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Rabindra Tirouvanziam
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|