1
|
Mirghani HO. Glucagon-like peptide-1 agonists: Role of the gut in hypoglycemia unawareness, and the rationale in type 1 diabetes. World J Diabetes 2024; 15:2167-2172. [PMID: 39582561 PMCID: PMC11580574 DOI: 10.4239/wjd.v15.i11.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/16/2024] Open
Abstract
Type 1 diabetes is increasing and the majority of patients have poor glycemic control. Although advanced technology and nanoparticle use have greatly enhanced insulin delivery and glucose monitoring, weight gain and hypoglycemia remain major challenges and a constant source of concern for patients with type 1 diabetes. Type 1 diabetes shares some pathophysiology with type 2 diabetes, and an overlap has been reported. The above observation created great interest in glucagon-like peptide-1 receptor agonists (GLP-1) as adjuvants for type 1 diabetes. Previous trials confirmed the positive influence of GLP-1 agonists on β cell function. However, hypoglycemia unawareness and dysregulated glucagon response have been previously reported in patients with recurrent hypoglycemia using GLP-1 agonists. Jin et al found that the source of glucagon dysregulation due to GLP-1 agonists resides in the gut. Plausible explanations could be gut nervous system dysregulation or gut microbiota disruption. This review evaluates the potential of GLP-1 agonists in managing type 1 diabetes, particularly focusing on their impact on glycemic control, weight management, and glucagon dysregulation. We provide a broader insight into the problem of type 1 diabetes mellitus management in the light of recent findings and provide future research directions.
Collapse
Affiliation(s)
- Hyder O Mirghani
- Internal Medicine, University of Tabuk, Tabuk 51941, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Bazile C, Abdel Malik MM, Ackeifi C, Anderson RL, Beck RW, Donath MY, Dutta S, Hedrick JA, Karpen SR, Kay TWH, Marder T, Marinac M, McVean J, Meyer R, Pettus J, Quattrin T, Verstegen RHJ, Vieth JA, Latres E. TNF-α inhibitors for type 1 diabetes: exploring the path to a pivotal clinical trial. Front Immunol 2024; 15:1470677. [PMID: 39411715 PMCID: PMC11473295 DOI: 10.3389/fimmu.2024.1470677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of insulin-producing β-cells in the pancreas. This destruction leads to chronic hyperglycemia, necessitating lifelong insulin therapy to manage blood glucose levels. Typically diagnosed in children and young adults, T1D can, however, occur at any age. Ongoing research aims to uncover the precise mechanisms underlying T1D and to develop potential interventions. These include efforts to modulate the immune system, regenerate β-cells, and create advanced insulin delivery systems. Emerging therapies, such as closed-loop insulin pumps, stem cell-derived β-cell replacement and disease-modifying therapies (DMTs), offer hope for improving the quality of life for individuals with T1D and potentially moving towards a cure. Currently, there are no disease-modifying therapies approved for stage 3 T1D. Preserving β-cell function in stage 3 T1D is associated with better clinical outcomes, including lower HbA1c and decreased risk of hypoglycemia, neuropathy, and retinopathy. Tumor Necrosis Factor alpha (TNF-α) inhibitors have demonstrated efficacy at preserving β-cell function by measurement of C-peptide in two clinical trials in people with stage 3 T1D. However, TNF-α inhibitors have yet to be evaluated in a pivotal trial for T1D. To address the promising clinical findings of TNF-α inhibitors in T1D, Breakthrough T1D convened a panel of key opinion leaders (KOLs) in the field. The workshop aimed to outline an optimal clinical path for moving TNF-α inhibitors to a pivotal clinical trial in T1D. Here, we summarize the evidence for the beneficial use of TNF-α inhibitors in T1D and considerations for strategies collectively identified to advance TNF-α inhibitors beyond phase 2 clinical studies for stage 3 T1D.
Collapse
Affiliation(s)
- Cassandra Bazile
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Courtney Ackeifi
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Roy W. Beck
- Jaeb Center for Health Research, Tampa, FL,
United States
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University of Basel, Basel, Switzerland
| | - Sanjoy Dutta
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | - Stephen R. Karpen
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Thomas W. H. Kay
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Marjana Marinac
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | | | | | - Jeremy Pettus
- Division of Endocrinology and Metabolism, Department of Medicine, University of
California San Diego, La Jolla, CA, United States
| | - Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
- Division of Rheumatology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Joshua A. Vieth
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| | - Esther Latres
- Breakthrough T1D (formerly known as JDRF), New York,
NY, United States
| |
Collapse
|
3
|
Kjeldsen SAS, Richter MM, Jensen NJ, Nilsson MSD, Heinz N, Nybing JD, Linden FH, Høgh-Schmidt E, Boesen MP, Andersen TL, Johannesen HH, Trammell SAJ, Grevengoed TJ, Madsbad S, Vilstrup H, Schiødt FV, Møller A, Rashu EB, Nørgaard K, Schmidt S, Gluud LL, Haugaard SB, Holst JJ, Rungby J, Wewer Albrechtsen NJ. Glucagon Resistance in Individuals With Obesity and Hepatic Steatosis Can Be Measured Using the GLUSENTIC Test and Index. Diabetes 2024; 73:1716-1727. [PMID: 38976454 DOI: 10.2337/db23-0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Increased plasma levels of glucagon (hyperglucagonemia) promote diabetes development but are also observed in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). This may reflect hepatic glucagon resistance toward amino acid catabolism. A clinical test for measuring glucagon resistance has not been validated. We evaluated our glucagon sensitivity (GLUSENTIC) test, which consists of 2 study days: a glucagon injection and measurements of plasma amino acids and an infusion of mixed amino acids and subsequent calculation of the GLUSENTIC index (primary outcome measure) from measurements of glucagon and amino acids. To distinguish glucagon-dependent from insulin-dependent actions on amino acid metabolism, we also studied patients with type 1 diabetes (T1D). The δ-decline in total amino acids was 49% lower in MASLD following exogenous glucagon (P = 0.01), and the calculated GLUSENTIC index was 34% lower in MASLD (P < 0.0001) but not T1D (P > 0.99). In contrast, glucagon-induced glucose increments were similar in control participants and participants with MASLD (P = 0.41). The GLUSENTIC test and index may be used to measure glucagon resistance in individuals with obesity and MASLD. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sasha A S Kjeldsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole J Jensen
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Malin S D Nilsson
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Niklas Heinz
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Janus D Nybing
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Frederik H Linden
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Erik Høgh-Schmidt
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikael P Boesen
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Helle H Johannesen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Samuel A J Trammell
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trisha J Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Frank Vinholt Schiødt
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center K, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Andreas Møller
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Elias B Rashu
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kirsten Nørgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Lise L Gluud
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Steen B Haugaard
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Rungby
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Heyns IM, Arora M, Ganugula R, Allamreddy SR, Tiwari S, Shah DK, Basu R, Ravi Kumar MNV. Polyester Nanoparticles with Controlled Topography for Peroral Drug Delivery Using Insulin as a Model Protein. ACS NANO 2024; 18:11863-11875. [PMID: 38622996 PMCID: PMC11145941 DOI: 10.1021/acsnano.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Receptor-mediated polyester drug delivery systems have tremendous potential for improving the clinical performance of existing pharmaceutical drugs. Despite significant progress made in this area, it remains unclear how and to what extent the polyester nanoparticle surface topography would affect the in vitro, ex vivo and in vivo performance of a drug, and if there exists a correlation between in vitro and in vivo, as well as healthy versus pathophysiological states. Herein, we report a systematic investigation of the interactions between ligands and receptors as a function of the linker length, two-carbon (2C) versus four-carbon (4C). The in vitro, ex vivo and in vivo in healthy models validate the hypothesis that 4C has better reach and binding to the receptors. The results indicate that 4C offered better performance over 2C in vivo in improving the oral bioavailability of insulin (INS) by 1.1-fold (3.5-fold compared to unfunctionalized nanoparticles) in a healthy rat model. Similar observations were made in pathophysiological models; however, the effects were less prominent compared to those in healthy models. Throughout, ligand decorated nanoparticles outperformed unfunctionalized nanoparticles. Finally, a semimechanistic pharmacokinetic and pharmacodynamic (PKPD) model was developed using the experimental data sets to quantitatively evaluate the effect of P2Ns-GA on oral bioavailability and efficacy of insulin. The study presents a sophisticated oral delivery system for INS or hydrophilic therapeutic cargo, highlighting the significant impact on bioavailability that minor adjustments to the surface chemistry can have.
Collapse
Affiliation(s)
- Ingrid Marie Heyns
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
- Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
- Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
- Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - Swetha Reddy Allamreddy
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
- Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States
| | - Shrusti Tiwari
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY 14214, United States
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY 14214, United States
| | - Rita Basu
- Division of Endocrinology, Diabetes, and Metabolism, School of Medicine, Marnix E. Heersink School of Medicine, The University of Alabama, Birmingham, AL 35294, United States
| | - M. N. V. Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
- Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States
- Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
- Chemical and Biological Engineering, University of Alabama, SEC 3448, Tuscaloosa, AL 35487, United States
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
5
|
Teigen IA, Åm MK, Riaz M, Christiansen SC, Carlsen SM. Effects of Low-Dose Glucagon on Subcutaneous Insulin Absorption in Pigs. CURRENT THERAPEUTIC RESEARCH 2024; 100:100736. [PMID: 38511103 PMCID: PMC10951451 DOI: 10.1016/j.curtheres.2024.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Background Slow insulin absorption prevents the development of a fully automated artificial pancreas with subcutaneous insulin delivery. Objective We have hypothesized that glucagon could be used as a vasodilator to accelerate insulin absorption in a bihormonal subcutaneous artificial pancreas. The present proof-of-concept study is the first study to investigate the pharmacokinetics of insulin after subcutaneous administration of a low dose of glucagon at the site of subcutaneous insulin injection. Methods Twelve anesthetized pigs were randomized to receive a subcutaneous injection of 10 IU insulin aspart with either 100 µg glucagon or the equivalent volume of placebo (0.9% saline solution) injected at the same site. Arterial samples were collected for 180 minutes to determine insulin, glucagon, and glucose concentrations. Results Glucagon did not influence the insulin concentration Tmax in plasma. The plasma insulin AUC0-∞ was significantly larger after glucagon administration (P < 0.01). The glucagon group had significantly higher glucose concentrations in the first 30 minutes after insulin administration (P < 0.05). Conclusions This proof-of-concept study indicates that glucagon may increase the total absorption of a single dose of subcutaneously injected insulin. This is a novel observation. However, we did not observe any reduction in insulin concentration Tmax, as we had hypothesized. Further, glucagon induced a significant, undesirable increase in early blood glucose concentrations.
Collapse
Affiliation(s)
- Ingrid Anna Teigen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marte Kierulf Åm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Misbah Riaz
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sverre Christian Christiansen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sven Magnus Carlsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Asadi F, Gunawardana SC, Dolle RE, Piston DW. An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes. JCI Insight 2024; 9:e172626. [PMID: 38258903 PMCID: PMC10906223 DOI: 10.1172/jci.insight.172626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.
Collapse
Affiliation(s)
| | | | - Roland E. Dolle
- Center for Drug Discovery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Delgado JAC, Tian YM, Marcon M, König B, Paixão MW. Side-Selective Solid-Phase Metallaphotoredox N(in)-Arylation of Peptides. J Am Chem Soc 2023; 145:26452-26462. [PMID: 37976043 DOI: 10.1021/jacs.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Postsynthetic diversification of peptides through selective modification of endogenous amino acid side chains has enabled significant advances in peptide drug discovery while expanding the biological and medical chemistry space. However, current tools have been focused on the modification of reactive polar and ionizable side chains, whereas the decoration of aromatic systems (e.g., the N(in) of the tryptophan) has been a long-standing challenge. Here, we introduce metallaphotocatalysis in solid-phase peptide synthesis for the on-resin orthogonal N-arylation of relevant tryptophan-containing peptides. The protocol allows the chemoselective introduction of a new C(sp2)-N bond at the N(in) of tryptophan in biologically active protected peptide sequences in the presence of native redox-sensitive side chains. The fusion of metallaphotocatalysis with solid-phase peptide synthesis opens new perspectives in diversifying native amino acid side chains.
Collapse
Affiliation(s)
- José A C Delgado
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Ya-Ming Tian
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michela Marcon
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Márcio W Paixão
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos─UFSCar, Rodovia Washington Luís, km 235, SP-310, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
8
|
Barati M, Ghahremani A, Namdar Ahmadabad H. Intermittent fasting: A promising dietary intervention for autoimmune diseases. Autoimmun Rev 2023; 22:103408. [PMID: 37572827 DOI: 10.1016/j.autrev.2023.103408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Intermittent fasting, which includes periods of fasting and nutrition, has been considered a dietary approach for weight loss and metabolic health improvement. However, its potential benefits in autoimmune diseases have not been widely studied. This study aims to review the existing studies on the role and effects of intermittent fasting on autoimmune diseases. A comprehensive search was conducted on electronic databases such as PubMed, Scopus, Embase, and Web of Science, and relevant studies were included based on inclusion criteria. Studies show that intermittent fasting may have beneficial effects on various autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus, by reducing inflammatory markers, modulating the immune system, altering and improving gut microbiota, and enhancing cellular repair mechanisms through autophagy. However, evidence regarding the effects of intermittent fasting on other autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, thyroid diseases, and psoriasis is limited and inconclusive. Nevertheless, further research is needed to determine optimal intermittent fasting guidelines and its long-term effects on autoimmune diseases. Overall, this literature review proves intermittent fasting may be a promising dietary intervention for managing autoimmune diseases.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirali Ghahremani
- Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hasan Namdar Ahmadabad
- Department of Pathobiology and Medical Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran; Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
9
|
Gaspari S, Labouèbe G, Picard A, Berney X, Rodriguez Sanchez‐Archidona A, Thorens B. Tmem117 in AVP neurons regulates the counterregulatory response to hypoglycemia. EMBO Rep 2023; 24:e57344. [PMID: 37314252 PMCID: PMC10398655 DOI: 10.15252/embr.202357344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
The counterregulatory response to hypoglycemia (CRR), which ensures a sufficient glucose supply to the brain, is an essential survival function. It is orchestrated by incompletely characterized glucose-sensing neurons, which trigger a coordinated autonomous and hormonal response that restores normoglycemia. Here, we investigate the role of hypothalamic Tmem117, identified in a genetic screen as a regulator of CRR. We show that Tmem117 is expressed in vasopressin magnocellular neurons of the hypothalamus. Tmem117 inactivation in these neurons increases hypoglycemia-induced vasopressin secretion leading to higher glucagon secretion in male mice, and this effect is estrus cycle phase dependent in female mice. Ex vivo electrophysiological analysis, in situ hybridization, and in vivo calcium imaging reveal that Tmem117 inactivation does not affect the glucose-sensing properties of vasopressin neurons but increases ER stress, ROS production, and intracellular calcium levels accompanied by increased vasopressin production and secretion. Thus, Tmem117 in vasopressin neurons is a physiological regulator of glucagon secretion, which highlights the role of these neurons in the coordinated response to hypoglycemia.
Collapse
Affiliation(s)
- Sevasti Gaspari
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Gwenaël Labouèbe
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Alexandre Picard
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | - Xavier Berney
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| | | | - Bernard Thorens
- Center for Integrative GenomicsUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
10
|
Hamilton A, Eliasson L, Knudsen JG. Amino acids and the changing face of the α-cell. Peptides 2023:171039. [PMID: 37295651 DOI: 10.1016/j.peptides.2023.171039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Glucagon has long been defined by its glucogenic action and as a result α-cells have been characterised based largely on their interaction with glucose. Recent findings have challenged this preconception, bringing to the fore the significant role glucagon plays in amino acid breakdown and underlining the importance of amino acids in glucagon secretion. The challenge that remains is defining the mechanism that underlie these effects - understanding which amino acids are most important, how they act on the α-cell and how their actions integrate with other fuels such as glucose and fatty acids. This review will describe the current relationship between amino acids and glucagon and how we can use this knowledge to redefine the α-cell.
Collapse
Affiliation(s)
- Alexander Hamilton
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark; Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Lena Eliasson
- Department of Clinical Sciences in Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
She R, Al-Sari NH, Mattila IM, Sejling AS, Pedersen J, Legido-Quigley C, Pedersen-Bjergaard U. Decreased branched-chain amino acids and elevated fatty acids during antecedent hypoglycemia in type 1 diabetes. BMJ Open Diabetes Res Care 2023; 11:e003327. [PMID: 37369531 PMCID: PMC10410980 DOI: 10.1136/bmjdrc-2023-003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION Hypoglycemia is a major limiting factor in achieving recommended glycemic targets for people with type 1 diabetes. Exposure to recurrent hypoglycemia results in blunted hormonal counter-regulatory and symptomatic responses to hypoglycemia. Limited data on metabolic adaptation to recurrent hypoglycemia are available. This study examined the acute metabolic responses to hypoglycemia and the effect of antecedent hypoglycemia on these responses in type 1 diabetes. RESEARCH DESIGN AND METHODS Twenty-one outpatients with type 1 diabetes with normal or impaired awareness of hypoglycemia participated in a study assessing the response to hypoglycemia on 2 consecutive days by a hyperinsulinemic glucose clamp. Participants underwent a period of normoglycemia and a period of hypoglycemia during the hyperinsulinemic glucose clamp. Plasma samples were taken during normoglycemia and at the beginning and the end of the hypoglycemic period. Metabolomic analysis of the plasma samples was conducted using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. RESULTS In total, 68 metabolites were studied. On day 1, concentrations of the branched-chain amino acids, leucine (p=3.8×10-3) and isoleucine (p=2.2×10-3), decreased during hypoglycemia. On day 2, during hypoglycemia, five amino acids (including leucine and isoleucine) significantly decreased, and two fatty acids (tetradecanoic and oleic acids) significantly increased (p<0.05). Although more metabolites responded to hypoglycemia on day 2, the responses of the single metabolites were not statistically significant between the 2 days. CONCLUSIONS In individuals with type 1 diabetes, one episode of hypoglycemia decreases leucine and isoleucine concentrations. Antecedent hypoglycemia results in the decrement of five amino acids and increases the concentrations of two fatty acids, suggesting an alteration between the two hypoglycemic episodes, which could indicate a possible adaptation. However, more studies are needed to gain a comprehensive understanding of the consequences of these alterations. TRIAL REGISTRATION NUMBER NCT01337362.
Collapse
Affiliation(s)
- Rui She
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Capital Region of Denmark, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Capital Region of Denmark, Denmark
| | - Naba Hassan Al-Sari
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Capital Region of Denmark, Denmark
| | - Ismo Matias Mattila
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Capital Region of Denmark, Denmark
| | - Anne-Sophie Sejling
- Boston Global Development, Novo Nordisk, Søborg, Capital Region of Denmark, Denmark
| | - Jens Pedersen
- Department of Internal Medicine, Herlev Hospital, Herlev, Capital Region of Denmark, Denmark
| | - Cristina Legido-Quigley
- Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Capital Region of Denmark, Denmark
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Nordsjællands Hospital, Hillerød, Capital Region of Denmark, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Kobenhavn, Capital Region of Denmark, Denmark
| |
Collapse
|
12
|
Baxter F, Baillie N, Forbes S. Study protocol: a randomised controlled proof-of-concept real-world study - does maximising time in range using hybrid closed loop insulin delivery and a low carbohydrate diet restore the glucagon response to hypoglycaemia in adults with type 1 diabetes? BMJ Open 2022; 12:e054958. [PMID: 36600427 PMCID: PMC9772676 DOI: 10.1136/bmjopen-2021-054958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION People with type 1 diabetes (T1D) develop an impaired glucagon response to hypoglycaemia within 5 years of diagnosis, increasing their risk of severe hypoglycaemia. It is not known whether eliminating hypoglycaemia and hyperglycaemia allows recovery of this glucagon response. Hybrid closed loop (HCL) technologies improve glycaemic time in range (TIR). However, post-prandial glycaemic excursions are still evident. Consuming a low carbohydrate diet (LCD) may minimise these excursions. METHODS AND ANALYSIS This feasibility study will assess if maximising TIR (glucose ≥3.9 mmol/L≤10 mmol/L) using HCL systems plus an LCD (defined here as <130 g carbohydrate/day) for >8 months, restores the glucagon response to insulin-induced hypoglycaemia. Adults (n=24) with T1D (C-peptide <200 pmol/L), naïve to continuous glucose monitoring (CGM) and HCL systems, will be recruited and randomised to: group 1 (non-HCL) to continue their standard diabetes care with intermittent blinded CGM; or group 2 (HCL-LCD) to use the HCL system and follow a LCD. Baseline data on diet and glycaemia will be collected from all participants. The HCL-LCD group will then enter a 2-week run-in to acclimatise to their devices. Throughout, the HCL-LCD group will have their glucose closely monitored and adjusted aiming for glycaemic TIR >70%. Participants will have their glucagon response to hypoglycaemia measured at the beginning and 8 months later at the study end using a stepped hyperinsulinaemic hypoglycaemic clamp, in combination with the stable isotopes 6,6-2H2-glucose (D2-glucose) and 1,1,2,3,3-2H5-glycerol (D5-glycerol) to assess glucose and glycerol kinetics. The impact of hypoglycaemia on symptoms and cognitive function will be assessed during each clamp study. The primary outcome is the difference in the glucagon response to hypoglycaemia between and within groups at baseline versus study end. ETHICS AND DISSEMINATION Ethical (20/SS/0117)/institutional review board (2021/0001) approval has been obtained. The study will be disseminated by peer-reviewed publications and conference presentations. TRIAL REGISTRATION NUMBER NCT04614168.
Collapse
Affiliation(s)
- Faye Baxter
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Nicola Baillie
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shareen Forbes
- University of Edinburgh Division of BHF Centre for Cardiovascular Science, Edinburgh, UK
- Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK
- Edmonton Islet Transplant Programme, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Sanchez-Rangel E, Deajon-Jackson J, Hwang JJ. Pathophysiology and management of hypoglycemia in diabetes. Ann N Y Acad Sci 2022; 1518:25-46. [PMID: 36202764 DOI: 10.1111/nyas.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the century since the discovery of insulin, diabetes has changed from an early death sentence to a manageable chronic disease. This change in longevity and duration of diabetes coupled with significant advances in therapeutic options for patients has fundamentally changed the landscape of diabetes management, particularly in patients with type 1 diabetes mellitus. However, hypoglycemia remains a major barrier to achieving optimal glycemic control. Current understanding of the mechanisms of hypoglycemia has expanded to include not only counter-regulatory hormonal responses but also direct changes in brain glucose, fuel sensing, and utilization, as well as changes in neural networks that modulate behavior, mood, and cognition. Different strategies to prevent and treat hypoglycemia have been developed, including educational strategies, new insulin formulations, delivery devices, novel technologies, and pharmacologic targets. This review article will discuss current literature contributing to our understanding of the myriad of factors that lead to the development of clinically meaningful hypoglycemia and review established and novel therapies for the prevention and treatment of hypoglycemia.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Rangel
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jelani Deajon-Jackson
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Janice Jin Hwang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.,Division of Endocrinology, Department of Internal Medicine, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Teigen IA, Riaz M, Åm MK, Christiansen SC, Carlsen SM. Vasodilatory effects of glucagon: A possible new approach to enhanced subcutaneous insulin absorption in artificial pancreas devices. Front Bioeng Biotechnol 2022; 10:986858. [PMID: 36213069 PMCID: PMC9532737 DOI: 10.3389/fbioe.2022.986858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with diabetes mellitus type 1 depend on exogenous insulin to keep their blood glucose concentrations within the desired range. Subcutaneous bihormonal artificial pancreas devices that can measure glucose concentrations continuously and autonomously calculate and deliver insulin and glucagon infusions is a promising new treatment option for these patients. The slow absorption rate of insulin from subcutaneous tissue is perhaps the most important factor preventing the development of a fully automated artificial pancreas using subcutaneous insulin delivery. Subcutaneous insulin absorption is influenced by several factors, among which local subcutaneous blood flow is one of the most prominent. We have discovered that micro-doses of glucagon may cause a substantial increase in local subcutaneous blood flow. This paper discusses how the local vasodilative effects of micro-doses of glucagon might be utilised to improve the performance of subcutaneous bihormonal artificial pancreas devices. We map out the early stages of our hypothesis as a disruptive novel approach, where we propose to use glucagon as a vasodilator to accelerate the absorption of meal boluses of insulin, besides using it conventionally to treat hypoglycaemia.
Collapse
Affiliation(s)
- Ingrid Anna Teigen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Misbah Riaz
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Marte Kierulf Åm
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre Christian Christiansen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sven Magnus Carlsen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
15
|
Bisgaard Bengtsen M, Møller N. Review: experimentally induced hypoglycemia-associated autonomic failure in humans: determinants, designs and drawbacks. J Endocr Soc 2022; 6:bvac123. [PMID: 36042977 PMCID: PMC9419494 DOI: 10.1210/jendso/bvac123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Context Iatrogenic hypoglycemia remains one of the leading hindrances of optimal glycemic management in insulin-treated diabetes. Recurring hypoglycemia leads to a condition of hypoglycemia-associated autonomic failure (HAAF). HAAF refers to a combination of (i) impaired hormonal counterregulatory responses and (ii) hypoglycemia unawareness to subsequent hypoglycemia, substantially increasing the risk of severe hypoglycemia. Several studies since the 1990s have experimentally induced HAAF, yielding variable results. Objective The aim of this review was to assess the varying designs, clinical outcomes, potential assets, and drawbacks related to these studies. Method A systemic literature search was conducted on PubMed and Embase in winter 2021 to include all human studies attempting to experimentally induce HAAF. In different combinations, the search terms used were “hypoglycemia-associated autonomic failure,” “HAAF,” “hypoglycemia,” “recurring,” “recurrent,” “repeated,” “consecutive,” and “unawareness,” yielding 1565 publications. Inclusion criteria were studies that had aimed at experimentally inducing HAAF and measuring outcomes of hormonal counterregulation and awareness of hypoglycemia. Results The literature search yielded 27 eligible publications, of which 20 were successful in inducing HAAF while statistical significantly impairing both hormonal counterregulation and impairing awareness of hypoglycemia to subsequent hypoglycemia. Several factors were of significance as regards inducing HAAF: Foremost, the duration of antecedent hypoglycemia should be at least 90 minutes and blood glucose should be maintained below 3.4 mmol/L. Other important factors to consider are the type of participants, insulin dosage, and the risk of unintended hypoglycemia prior to the study. Conclusion Here we have outlined the most important factors to take into consideration when designing a study aimed at inducing HAAF, including to take into consideration other disease states susceptible to hypoglycemia, thus hopefully clarifying the field and allowing qualified studies in the future.
Collapse
Affiliation(s)
| | - Niels Møller
- Department of Endocrinology and Internal Medicine , Aarhus University Hospital, Denmark
| |
Collapse
|
16
|
Colberg SR. Why Glucagon Matters for Hypoglycemia and Physical Activity in Individuals With Type 1 Diabetes. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:889248. [PMID: 36992764 PMCID: PMC10012082 DOI: 10.3389/fcdhc.2022.889248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022]
|
17
|
Assessment of Two Different Glucagon Assays in Healthy Individuals and Type 1 and Type 2 Diabetes Patients. Biomolecules 2022; 12:biom12030466. [PMID: 35327658 PMCID: PMC8946514 DOI: 10.3390/biom12030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
Methods for glucagon analysis suffered in the past from lack of specificity and a narrow sensitivity range, which has led to inaccurate results and to the suggestion that type 1 diabetes (T1D) and type 2 diabetes (T2D) patients have elevated fasting glucagon levels. However, the availability of more specific and more sensitive methods to detect intact glucagon has shown that actual glucagon levels are lower than previously assumed. This study aimed to characterize fasting plasma glucagon levels in healthy individuals and T1D and T2D patients with two different glucagon assays. The study included 20 healthy individuals, 20 T1D and 20 T2D patients. Blood was collected under fasting conditions. A double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) and a conventional radioimmunoassay (RIA) were used. A significant difference in fasting glucagon levels between healthy individuals and T2D was observed by ELISA, but not by RIA. ELISA also yielded lower glucagon levels in healthy individuals than in T1D and T2D patients which RIA did not. RIA produced significantly (p = 0.0001) higher overall median glucagon values than ELISA in a pooled analysis. These results underline the notion that the choice of selective laboratory methods is highly relevant for mechanistic endocrine research.
Collapse
|
18
|
Armour SL, Frueh A, Knudsen JG. Sodium, Glucose and Dysregulated Glucagon Secretion: The Potential of Sodium Glucose Transporters. Front Pharmacol 2022; 13:837664. [PMID: 35237171 PMCID: PMC8882857 DOI: 10.3389/fphar.2022.837664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 01/01/2023] Open
Abstract
Diabetes is defined by hyperglycaemia due to progressive insulin resistance and compromised insulin release. In parallel, alpha cells develop dysregulation of glucagon secretion. Diabetic patients have insufficient glucagon secretion during hypoglycaemia and a lack of inhibition of glucagon secretion at higher blood glucose levels resulting in postprandial hyperglucagonaemia, which contributes to the development of hyperglycaemia. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are an efficient pharmacologic approach for the treatment of hyperglycaemia in type 2 diabetes. While SGLT2 inhibitors aim at increasing glycosuria to decrease blood glucose levels, these inhibitors also increase circulating glucagon concentrations. Here, we review recent advances in our understanding of how SGLTs are involved in the regulation of glucagon secretion. Sodium plays an important role for alpha cell function, and a tight regulation of intracellular sodium levels is important for maintaining plasma membrane potential and intracellular pH. This involves the sodium-potassium pump, sodium-proton exchangers and SGLTs. While the expression of SGLT2 in alpha cells remains controversial, SGLT1 seems to play a central role for alpha cell function. Under hyperglycaemic conditions, SGLT1 mediated accumulation of sodium results in alpha cell dysregulation due to altered cellular acidification and ATP production. Taken together, this suggests that SGLT1 could be a promising, yet highly underappreciated drug target to restore alpha cell function and improve treatment of both type 1 and 2 diabetes.
Collapse
Affiliation(s)
| | | | - Jakob G. Knudsen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|