1
|
Oraby MA, Abdel Mageed SS, Amr Raouf A, Abdelshafy DA, Ahmed EF, Khalil RT, Mangoura SA, Fadaly DS. Remdesivir ameliorates ulcerative colitis-propelled cell inflammation and pyroptosis in acetic acid rats by restoring SIRT6/FoxC1 pathway. Int Immunopharmacol 2024; 137:112465. [PMID: 38878489 DOI: 10.1016/j.intimp.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a primary culprit of inflammatory bowel disease that entails prompt and effective clinical intervention. Remdesivir (RDV), a broad-spectrum antiviral nucleotide, has been found to exert anti-inflammatory effects in experimental animals. AIM This study investigates the prospective anti-inflammatory merit of RDV on an experimental model of UC. The role of SIRT6/FoxC1 in regulating colonic cell inflammation and pyroptosis is delineated. METHOD Rats were challenged with a single intrarectal dose of acetic acid (AA) solution (2 ml; 4 % v/v) to induce colitis. RDV (20 mg/kg, ip) and sulfasalazine (100 mg/kg, po) were administered to rats 14 days before the injection of AA. RESULTS Administration of RDV ameliorated colonic cell injury and loss as manifested by improvement of severe colon histopathological mutilation and macroscopic damage and disease activity index scores together with restoration of normal colon weight/length ratio. In addition, RDV alleviated colonic inflammatory reactions, thereby curtailing NF-κB activation and the inflammatory cytokines, TNF-α, IL-18, and IL-1β. Mitigation of colonic oxidative stress and apoptotic reactions were also evident in the setting of RDV treatment. Mechanistically, RDV enhanced the anti-inflammatory cascade, SIRT6/FoxC1, together with curbing the pyroptotic signal, NLRP3/cleaved caspase-1/Gasdermin D-elicited colonic inflammatory cell death. CONCLUSION This study reveals, for the first time, the anti-inflammatory effect of RDV against experimental UC. Augmenting SIRT6/FoxC1-mediated repression of colonic inflammation and pyroptosis might advocate the colo-protective potential of RDV.
Collapse
Affiliation(s)
- Mamdouh A Oraby
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Dareen A Abdelshafy
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Eman F Ahmed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rowida T Khalil
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Safwat A Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Doaa S Fadaly
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
2
|
Abd-Ellatieff HA, Georg K, Abourawash ARA, Ghazy EW, Samak DH, Goda WM. Aspergillus awamori: potential antioxidant, anti-inflammatory, and anti-apoptotic activities in acetic acid-induced ulcerative colitis in rats. Inflammopharmacology 2024; 32:2541-2553. [PMID: 38763983 PMCID: PMC11300502 DOI: 10.1007/s10787-024-01489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/22/2024] [Indexed: 05/21/2024]
Abstract
Ulcerative colitis (UC) is a chronic colonic inflammation with a significant health hazard. Aspergillus awamori (A. awamori) is a microorganism with various bioactive compounds with natural antioxidant and anti-inflammatory properties. The present work aimed to elucidate the protective and therapeutic effects of varying concentrations of A. awamori against acetic acid (AA)-induced ulcerative colitis (UC) in rats. Nine groups of albino male rats were established: a control negative group (G1), a control positive group (G2,AA), and preventive protocol groups (including G3A, G4A, and G5A) that received 100 mg, 50 mg, and 25 mg/kg b.w, respectively, of A. awamori orally and daily from the 1st day of the experiment and for 7 consecutive days. Then, they were subjected to one dose of AA intrarectally on day 8th. G3B, G4B, and G5B were termed as curative protocol groups that received one dose of AA on day 8th and then administered 100 mg, 50 mg, and 25 mg/kg b.w. of A. awamori, respectively, on day 9th and continued receiving these doses daily until day 16th. Rats in the AA group exhibited marked histopathological alterations of the distal colon, with an exaggeration of the DAI. In addition, a remarkable increase in oxidative stress was represented by the elevation of MDA and NO levels with a decline in SOD and GPx activities. In addition, upregulation of TNF-α, IL-6, and IL-1β mRNA expressions and downregulation of Muc2 and Nrf2 levels were detected. Unambiguously, a remarkable anti-inflammatory effect was noticed either in A. awamori prevented or treated groups expounded by reducing and regulating TNF-α, IL-6, and IL-1β with improved pathological lesion scoring. The Muc2, Nrf2, and bcl-2 gene levels were upregulated and restored also. In summary, the findings in this work reveal that A. awamori supplementation successfully alleviated the UC induced by AA, which had a better effect when administered before colitis induction.
Collapse
Affiliation(s)
- Hoda A Abd-Ellatieff
- Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
| | - Kristen Georg
- Cure Lab Clinical Pathology, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Emad W Ghazy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Dalia H Samak
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Wael M Goda
- Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- Clinical Pathology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour-El-Beheira, Egypt
| |
Collapse
|
3
|
Esfahani SK, Dehghani S, Hosseinzadeh H, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. An exosomal approach for oral delivery of resveratrol: Implications for inflammatory bowel disease treatment in rat model. Life Sci 2024; 346:122638. [PMID: 38614294 DOI: 10.1016/j.lfs.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
AIMS Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches. MAIN METHODS The current study developed RSV-loaded MEXOs to enhance the RSV oral bioavailability, introducing a suitable exosomal formulation for suppressing colon inflammation in acetic acid-induced rat models. KEY FINDINGS The results showed a remarkable encapsulation efficiency of 83.33 %. The in vitro release profile demonstrated a good retaining capability in acidic conditions (pH 1.2) and a considerable release in a simulated duodenal environment (pH 6.8). According to the permeability study, encapsulation of RSV improved its transportation across the Caco-2 monolayer. Moreover, the in vivo and histological analysis results proved that the RSV-MEXOs formulation successfully alleviates the inflammation in colitis rat models and effectively relieves the colitis. SIGNIFICANCE Our findings suggest that MEXOs should be of great attention as promising oral drug delivery vehicles for further clinical evaluations.
Collapse
Affiliation(s)
- Shaghayegh Kazemi Esfahani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Minaiyan M, Abolhasani S, Sima S, Yegdaneh A. Effect of Tamarindus indica L. fruit pulp and seed extracts on experimental ulcerative colitis in rats. Res Pharm Sci 2024; 19:276-286. [PMID: 39035814 PMCID: PMC11257200 DOI: 10.4103/rps.rps_131_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/20/2023] [Accepted: 12/16/2023] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Tamarindus indica L. which has anti-inflammatory, radical scavenging, and ulcer healing effects can be useful for the alleviation of inflammatory bowel disease (IBD). Therefore, the effects of T. indica fruit pulp (TIPE) and seed extracts (TISE) were investigated on experimental colitis. Experimental approach TIPE and TISE (125, 250, and 500 mg/kg) were made by maceration (ethanol/water: 80/30) and administered to male Wistar rats with acetic acid-induced colitis. Prednisolone (4 mg/kg) and mesalazine (100 mg/kg) were used as reference drugs. The colon tissues were examined for macroscopic and pathologic parameters and myeloperoxidase (MPO) and malondialdehyde (MDA) values. Findings/Results The total phenols were 45.7 ± 1.1 and 453.0 ± 3.3 mg/g in terms of gallic acid for TIPE and TISE, respectively. Both of the extracts significantly improved most of the investigated parameters including body weight loss, the weight of colons, indices of ulcers, and total colitis. MPO activity and MDA in the treatment groups (except for TIPE at 125 mg/Kg) significantly decreased compared to the control. Conclusion and implications Both TIPE and TISE were effective in the treatment of colitis however it seems that the effective ingredients were more concentrated in seeds rather than pulp extract so the highest dose of seed extract had a competitive effect with reference drugs. More studies are needed to introduce T. indica as a suitable complementary medicine or food for patients with IBD.
Collapse
Affiliation(s)
- Mohsen Minaiyan
- Department of Pharmacology and Toxicology and Isfahan Pharmaceutical Sciences Research Centre, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sepehr Abolhasani
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Setareh Sima
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afsaneh Yegdaneh
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Zhang S, Zhang M, Li W, Ma L, Liu X, Ding Q, Yu W, Yu T, Ding C, Liu W. Research progress of natural plant polysaccharides inhibiting inflammatory signaling pathways and regulating intestinal flora and metabolism to protect inflammatory bowel disease. Int J Biol Macromol 2023; 253:126799. [PMID: 37703965 DOI: 10.1016/j.ijbiomac.2023.126799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Natural plant polysaccharides are macromolecular substances with a wide range of biological activities. They have a wide range of biological activities, especially play an important role in the treatment of inflammatory bowel disease. The molecular weight of polysaccharides, the composition of monosaccharides and the connection of glycosidic bonds will affect the therapeutic effect on inflammatory bowel disease. Traditional Chinese medicine plant polysaccharides and various types of plant polysaccharides reduce the levels of inflammatory cytokines IL-1β, IL-6, IL-8 and IL-17, increase the level of anti-inflammatory factor IL-10, regulate NF-κB signaling pathway, and NLRP3 inflammasome to relieve colitis. At the same time, they can play a protective role by regulating the balance of intestinal flora in mice with colitis and increasing the abundance of probiotics to promote the metabolism of polysaccharide metabolites SCFAs. This review summarizes the research on the treatment of inflammatory bowel disease by many natural plant polysaccharides, and provides a theoretical basis for the later treatment of polysaccharides on inflammatory bowel disease.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Mingxu Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lina Ma
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Weimin Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China; School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China.
| |
Collapse
|
6
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Rostamabadi F, Bagheri F, Khaksari M, Azimi M. Ameliorating effects of Acacia arabica and Ocimum basilicum on acetic acid-induced ulcerative colitis model through mitigation of inflammation and oxidative stress. Heliyon 2023; 9:e22355. [PMID: 38058645 PMCID: PMC10696014 DOI: 10.1016/j.heliyon.2023.e22355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum. The disease is characterized by oxidative stress and severe inflammation. Research has shown the anti-oxidative and anti-inflammatory effects induced by consuming the Acacia arabia and Ocimum basilicum. The present study aimed to evaluate the effect of treatment with O. basilicum together with A. arabica on healing, inflammation, and oxidative stress in the course of experimental colitis in rats. Methods A total number of 50 male rats were selected and randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with a 4 % acetic acid solution. Four days after the colitis induction, the rats were orally treated for the next 4 days with saline or a combination of A. arabica and O. basilicum (1000 mg/kg) or sulfasalazine (100 mg/kg). Results Acetic acid-induced colitis increased the colon's macroscopic and histopathological damage scores; increased colon levels of MDA (Malondialdehyde), MPO (Myeloperoxidase), TNF-α (Tissue necrosis factor α), IL6 (Interleukin 6), and IL17 (Interleukin 17); and decreased SOD (Superoxide Dismutase), GPx (Glutathione Peroxidase), and IL10 (Interleukin 10) levels in the treated rats compared with the control group (P < 0.001). Overall, a combination of A. arabica and O. basilicum reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, and MDA, MPO, TNF-α, IL6 (P < 0.001), and IL17 (P < 0.01) levels of the colon. Furthermore, it increased SOD, GPx, and IL10 levels compared to the colitis group (P < 0.01). Conclusion A. arabica and O. basilicum have improving effects on UC by reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Mohammad Abbas Bejeshk
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mohammad Amin Rajizadeh
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of Pathology, Afzalipour School of Medicine, Kerman, Iran
- Legal Medicine Research Center, Legal Medicine Organization, Kerman, Iran
| | - Mohammad Khaksari
- Department of Physiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Azimi
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Blagov AV, Orekhova VA, Sukhorukov VN, Melnichenko AA, Orekhov AN. Potential Use of Antioxidant Compounds for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:1150. [PMID: 37631065 PMCID: PMC10458684 DOI: 10.3390/ph16081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Varvara A. Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| |
Collapse
|
8
|
El-Boghdady NA, El-Hakk SA, Abd-Elmawla MA. The lncRNAs UCA1 and CRNDE target miR-145/TLR4/NF-қB/TNF-α axis in acetic acid-induced ulcerative colitis model: The beneficial role of 3,3-Diindolylmethane. Int Immunopharmacol 2023; 121:110541. [PMID: 37390564 DOI: 10.1016/j.intimp.2023.110541] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 07/02/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic disease that alters the colonic and rectal mucosa. The high prevalence rates of UC make it a worldwide healthcare problem. However, its underlying molecular mechanisms remain vague. AIM OF THE STUDY To investigate the molecular mechanisms underlying UC and to study the cross-talk among the regulatory role of the lncRNAs UCA1, CRNDE, and miR-145 on TLR4/NF-κB/TNF-α signaling pathway. Moreover, the study was extended to examine the beneficial effects of 3,3-Diindolylmethane (DIM) on relieving UC. METHODS UC was induced in rats by injecting 2 ml of 4% acetic acid (AA) solution transrectally. After 24 h, rats were treated with either DIM (20 mg/kg) or sulphasalazine (SSZ) (500 mg/kg) orally for 7 days. RESULTS The present study revealed that the gene expression of the lncRNAs UCA1 and CRNDE were significantly upregulated in the AA-induced UC model compared with the control group, whereas miR-145 was significantly downregulated. There was a significant association between the expression of these non-coding RNAs and TLR4/ NF-κB/TNF-α axis as well as malondialdehyde and glutathione levels. Favorably, the DIM-treated group showed significant downregulation of the lncRNAs UCA1 and CRNDE along with upregulated miR-145 compared with the AA-induced UC model. Furthermore, DIM showed remarkable inhibition of the TLR4/ NF-κB /TNF-α cascade compared with non-treated UC rats. CONCLUSIONS The present study is the first to document the interrelated role of the lncRNAs UCA1 and CRNDE in UC via orchestrating miR-145/TLR4/ NF-κB /TNF-α inflammatory cascade. Furthermore, the study demonstrated a new molecular basis for the pleiotropic activities of DIM in relieving UC.
Collapse
Affiliation(s)
- Noha A El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
9
|
Koohi O, Shahriarirad R, Erfani A, Nekouei F, Seifbehzad S, Ebrahimi A, Tanideh N, Hosseinzadeh M, Nadimi E, Ashkani-Esfahani S. Evaluation of oral and topical bovine colostrum compared to mesalamine in the treatment of animal model of acetic acid-induced ulcerative colitis. Ann Gastroenterol 2023; 36:300-306. [PMID: 37144020 PMCID: PMC10152808 DOI: 10.20524/aog.2023.0796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Oxidative activity and inflammatory responses have been shown to play a pivotal role in the pathogenesis of ulcerative colitis (UC). Colostrum is a natural product with anti-inflammatory and antioxidative properties. Methods UC was induced in 37 Sprague Dawley rats by administration of a 2 mL enema of 3% acetic acid (AA). The control groups received no treatment during the study, while the experimental groups received either oral or rectal administration of 100 mg/kg 5-aminosalicylic acid, or oral or rectal administration of 300 mg/kg of colostrum. Histopathological and serological analyses were performed 7 days following treatment. Results A significant decrease in weight was seen in all rats except for the test groups receiving colostrum (P<0.001). After treatment, the level of superoxide dismutase increased more significantly in the test groups that received colostrum (P<0.05). All test groups had a reduction in C-reactive protein and white blood cell levels. The colostrum test groups also showed a decrease in inflammation rate, ulceration, destruction, disorganization, and crypt abscess of the colonic mucosa. Conclusions The findings of this study show that the administration of colostrum can improve the pathological changes of the intestinal mucosa, as well as inflammatory responses, in animal models of UC. Further studies at both preclinical and clinical levels are suggested to confirm these findings.
Collapse
Affiliation(s)
- Omid Koohi
- Central Research Laboratory, Shiraz University of Medical Sciences (Omid Koohi)
| | - Reza Shahriarirad
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad)
| | - Amirhossein Erfani
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad)
| | - Fatemeh Nekouei
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad)
| | - Sarvin Seifbehzad
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad)
| | - Alireza Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
| | - Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences (Nader Tanideh)
| | - Masoud Hosseinzadeh
- Department of Pathology, Shiraz University of Medical Sciences (Masoud Hosseinzadeh)
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences (Elham Nadimi); Shiraz, Iran
| | - Soheil Ashkani-Esfahani
- Student Research Committee, Shiraz University of Medical Sciences (Reza Shahriarirad, Amirhossein Erfani, Fatemeh Nekouei, Sarvin Seifbehzad, Alireza Ebrahimi, Soheil Ashkani-Esfahani)
| |
Collapse
|
10
|
Analysis of the Nutritional Value of Diets and Food Choices in Polish Female Ulcerative Colitis Individuals Compared with a Pair-Matched Control Sample. Nutrients 2023; 15:nu15040857. [PMID: 36839214 PMCID: PMC9964133 DOI: 10.3390/nu15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ulcerative colitis patients often attribute their symptoms to specific dietary products. Therefore, even though there are no specific dietary recommendations, these patients commonly have dietary restrictions, often with no consultation from their physician or dietitian, as they believe that they may be beneficial for them. The aim of the study was to analyze the nutritional value of diets and food choices in Polish female ulcerative colitis individuals, in comparison with a pair-matched control sample. The study was conducted on a group of 44 Polish female ulcerative colitis individuals being in remission and 44 individuals within a pair-matched control sample, matched by their age and concurrent diseases, excluding those resulting from ulcerative colitis. The analysis of the diet was based on the self-reported data, including 3-day dietary records (to assess the intake of nutrients and food products), as well as the simple open-ended question about food products excluded from their diet. It was stated that Polish female ulcerative colitis individuals were characterized by a lower energy value of diet (p = 0.0043), accompanied by the higher proportion of total protein (p = 0.0128) than the pair-matched control sample. As a result of a lower energy value for ulcerative colitis individuals, the intake of numerous nutrients was also lower (p < 0.05); however, after recalculation per 1000 kcal, ulcerative colitis individuals were characterized by higher total protein (p = 0.0121), starch (p = 0.0009), and vitamin B6 intake (p = 0.0319), as well as lower alcohol intake (p = 0.0464). Similarly, as a result of a lower energy value for ulcerative colitis individuals, the intake of numerous foods was also lower (p < 0.05); however, after recalculation per 1000 kcal, ulcerative colitis individuals were characterized by higher meat (p = 0.0058) and potatoes intake (p = 0.0052), as well as lower legumes (p = 0.0301), chocolate sweets (p = 0.0165), and alcoholic beverages intake (p = 0.0062). For chocolate sweets (p = 0.0134) and alcoholic beverages (p = 0.0091), ulcerative colitis individuals were characterized by a higher frequency of declaration of dietary exclusion. At the same time, ulcerative colitis individuals were characterized by a lower frequency of meeting the recommended intake for magnesium (p = 0.0005), iron (p = 0.0189), vitamin E (p = 0.0389), and vitamin B1 (p = 0.0032). It was concluded that even in remission, there is a risk of inadequate consumption, not meeting the recommended intake, and nutritional deficiencies in the population of female ulcerative colitis patients.
Collapse
|
11
|
Shibrya EE, Rashed RR, Abd El Fattah MA, El-Ghazaly MA, Kenawy SA. Apigenin and Exposure to Low Dose Gamma Radiation Ameliorate Acetic Acid-Induced Ulcerative Colitis in Rats. Dose Response 2023; 21:15593258231155787. [PMID: 36756150 PMCID: PMC9900677 DOI: 10.1177/15593258231155787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease involving chronic and recurring colon inflammation. Current management protocols are limited by adverse effects or short-term symptomatic relief. We aimed to investigate the possible therapeutic prospect of low dose gamma (γ) irradiation or apigenin treatment in acetic acid-induced UC in rats. Induction of UC was carried out by installation of acetic acid intra-rectally. One hour post-induction, rats received a sole dose of γ-radiation (0.5 Gray) or were treated with apigenin (3 mg/kg/day, peroral) for 7 successive days. Antioxidant and anti-inflammatory effects of both agents were assessed via determination of colon malondialdehyde (MDA), reduced glutathione (GSH), total nitrate/nitrite (NOx), mucosal addressin cell adhesion molecule-1 (MAdCAM-1), and interleukin-1beta (IL-1β) contents as well as myeloperoxidase (MPO) activity. Body weight (BW), colon weight/length (W/L) ratio, disease activity index (DAI), and histopathological changes were evaluated. Gamma irradiation and apigenin significantly ameliorated the acetic acid-induced biochemical and histopathological changes. Both therapeutic approaches significantly restored colon contents of the investigated biomarkers. They modulated BW, colon W/L ratio and DAI. This study proposes low dose γ-irradiation as a new therapeutic candidate for the management of UC. We also concluded that apigenin exhibited therapeutic benefits in UC management.
Collapse
Affiliation(s)
- Eman E. Shibrya
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Rasha R. Rashed
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Mai A. Abd El Fattah
- Department of Pharmacology and
Toxicology, Faculty of Pharmacy, Cairo
University, Cairo, Egypt
| | - Mona A. El-Ghazaly
- Department of Drug Radiation
Research, National Centre for Radiation Research and Technology,
Egyptian
Atomic Energy Authority, Cairo,
Egypt
| | - Sanaa A. Kenawy
- Department of Pharmacology and
Toxicology, Faculty of Pharmacy, Cairo
University, Cairo, Egypt,Sanaa A. Kenawy, Department of Pharmacology
and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Ainy street,
Cairo 12411, Egypt.
| |
Collapse
|
12
|
Fan X, Yin J, Yin J, Weng X, Ding R. Comparison of the anti-inflammatory effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium-induced ulcerative colitis. Exp Ther Med 2023; 25:98. [PMID: 36761001 PMCID: PMC9893224 DOI: 10.3892/etm.2023.11797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to compare the clinical effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC), and to elucidate the underlying mechanisms associated with changes in the levels of cytokines. After successful establishment of the rat model of DSS-induced UC, prednisolone (1 mg/kg), vitamin D (50 ng) and vitamin E (6, 30 and 150 IU/kg) were orally administered for 1 week. The pharmacodynamics were evaluated by a daily combination of clinical observation (CO) scores, histopathological evaluations and assessment of molecular markers of inflammation. Administration of vitamin D, vitamin E (30 and 150 IU/kg), prednisolone, and the combination of vitamin D and vitamin E resulted in a decrease in CO scores. The severity of inflammation of the colon was markedly alleviated in the treatment groups compared with that in the untreated DSS group according to the results of histopathological examination; however, they showed different inhibitory effects on the levels of some cytokines. In conclusion, the present results indicated that oral administration of vitamin E could promote recovery of DSS-induced UC by the inhibition of proinflammatory cytokines, and that its underlying mechanism may differ from that of vitamin D and glucocorticoid drugs.
Collapse
Affiliation(s)
- Xing Fan
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China,Office of Laboratory Management, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Jiye Yin
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China,Correspondence to: Dr Xiechuan Weng, Department of Neuroscience, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China NULL
| | - Rigao Ding
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China,Correspondence to: Dr Xiechuan Weng, Department of Neuroscience, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China NULL
| |
Collapse
|
13
|
Vitali R, Prioreschi C, Lorenzo Rebenaque L, Colantoni E, Giovannini D, Frusciante S, Diretto G, Marco-Jiménez F, Mancuso M, Casciati A, Pazzaglia S. Gut–Brain Axis: Insights from Hippocampal Neurogenesis and Brain Tumor Development in a Mouse Model of Experimental Colitis Induced by Dextran Sodium Sulfate. Int J Mol Sci 2022; 23:ijms231911495. [PMID: 36232813 PMCID: PMC9569494 DOI: 10.3390/ijms231911495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1β, S-100, Tgf-β and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/−/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.
Collapse
Affiliation(s)
- Roberta Vitali
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Clara Prioreschi
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Laura Lorenzo Rebenaque
- Departamento Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Universidad CEU-Cardenal Herrera, 46115 Valencia, Spain
| | - Eleonora Colantoni
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Daniela Giovannini
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Sarah Frusciante
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Gianfranco Diretto
- Biotechnology Laboratory, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mariateresa Mancuso
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
| | - Arianna Casciati
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| | - Simonetta Pazzaglia
- Biomedical Technologies Laboratory, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy
- Correspondence: (A.C.); (S.P.)
| |
Collapse
|
14
|
Özsoy M, Stummer N, Zimmermann FA, Feichtinger RG, Sperl W, Weghuber D, Schneider AM. Role of Energy Metabolism and Mitochondrial Function in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:1443-1450. [PMID: 35247048 DOI: 10.1093/ibd/izac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Mihriban Özsoy
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Nathalie Stummer
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Franz A Zimmermann
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - René G Feichtinger
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.,Research Program for Receptor Biochemistry and Tumor Metabolism, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anna M Schneider
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
15
|
Bejeshk MA, Aminizadeh AH, Rajizadeh MA, Khaksari hadad M, Lashkarizadeh M, Shahrokhi N, Zahedi MJ, Azimi M. The effect of combining basil seeds and gum Arabic on the healing process of experimental acetic acid-induced ulcerative colitis in rats. J Tradit Complement Med 2022; 12:599-607. [PMID: 36325241 PMCID: PMC9618398 DOI: 10.1016/j.jtcme.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023] Open
Abstract
Background & aim Ulcerative colitis (UC) is a chronic recurrent inflammatory disease of the large intestine and rectum that oxidative stress and severe inflammation are the main features of this disease. Previous studies have shown that separate consumption of basil and gum arabic can reduce inflammation and oxidative stress. The aim of the study was evaluating the effect of treatment with basil seeds given together with gum arabic on healing, inflammation and oxidative stress in the course of experimental colitis in rats. Experimental procedure A total number of 50 male rats were used, randomly assigned to five groups of 10 rats each. Colitis was induced in rats by enemas with 4% solution od acetic acid. Four days after induction of colitis, rats were treated for next 4 days with saline or combination of basil seeds plus gum arabic (1 mg/kg) or sulfasalazine (100 mg/g) rectally. The experiment was terminated after last dose of treatment. Rats without induction of colitis were used as a sham group. Results Acetic acid-induced colitis increased the macroscopic and histopathological damage scores of the colon as well as colon levels of MDA(Malondialdehyde), MPO(Myeloperoxidase), TNFα(Tissue necrosis factor α), IL6 (Interleukin 6)and IL17(Interleukin 17) and decreased SOD(Superoxide Dismutase), GPx (Glutathione Peroxidase) and IL10 (Interleukin 10) levels compared with the control group(P < 0.001). Treatment with basil and gum arabic reduced macroscopic and histopathological damage scores (P < 0.01) of the colon, MDA, MPO, TNFα, IL6(P < 0.001) and IL17 (P < 0.01) levels of the colon and increased SOD, GPx and IL10 levels compared to the colitis group (P < 0.01). Conclusion Rectal administration of combination of basil seeds plus gum arabic after induction of colitis, exhibits antioxidant and anti-inflammatory effects, and accelerates the healing of the colon in experimental colitis evoked by acetic acid.
Collapse
|
16
|
Lee E, Lee SW, Adam GO, Yoo YJ, Shin HY, Ahn D, Jang TH, Oh BT, Park BY, Kim IS, Lee SH, Lee JH, Tae HJ. Anti-Inflammatory Effects of Aralia elata Extract Against Dextran Sodium Sulfate-Induced Colitis in Mice and Raw 264.7 Macrophage Cells Exposed to Lipopolysaccharide: First Report. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aralia elata (AE) is an anti-inflammatory, polyphenolic containing medicinal plant. However, little is known about AE and its application to ulcerative colitis (UC). This study aimed to confirm AE extract's antioxidant and anti-inflammatory effects in vivo and in vitro. The in vitro antioxidant activity was evaluated by measuring total polyphenol and flavonoid content in AE extract. AE extract (10 000 mg/L) contained 186.8 mg GAE/g polyphenol and 81.9 mg QE/g flavonoid. Mice were divided into 6 groups, including control, which received normal saline, and treatment groups, which received dextran sodium sulfate (DSS) with or without AE extract (250, 500, and 1000 mg/kg). RAW 264.7 macrophage cells were divided into 2 groups: control and treatment. RAW 264.7 macrophage cells treated with sterile double distilled water, 1 mg/L lipopolysaccharide (LPS), and AE extracts (25, 50, 75, 100 µg/mL) were used to assess the cytotoxicity and anti-inflammatory activity. High-performance liquid chromatography, enzyme-linked immunosorbent assay (ELISA) kits, and histology were employed to analyze the AE extract contents, nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, as oxidative stress markers. In addition, the disease activity index (DAI) and cytotoxicity were determined in mice and cells, respectively. High-performance liquid chromatography analysis revealed that AE extract is rich in chlorogenic acid (96 ± 0.01 mg/g). DSS increased the DAI and levels of TNF-α, IL-1β, and immune cell infiltration compared with those of the control animals. Furthermore, LPS eventually reduced cell viability and increased the levels of NO, TNF-α, IL-1β, and IL-6 in contrast to control cells. After treatment, a noticeable reduction was observed in the levels of DAI, NO, TNF-α, IL-1β, and IL-6 compared to those without AE treatments. Overall, AE extract is safe and had anti-inflammatory properties. Therefore, AE extract can be considered a potential pre-treatment supplement for UC.
Collapse
Affiliation(s)
- Euiyong Lee
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Gareeballah Osman Adam
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan
- Integrated Omics Institute, Wonkwang University, Iksan, Republic of Korea
| | - Yeo-Jin Yoo
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Ha-Young Shin
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Tae-Hu Jang
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Seung Hyun Lee
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| | - Jeong Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang-gun, Republic of Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
17
|
Evaluation of Phytochemistry and Pharmacological Properties of Alnus nitida. Molecules 2022; 27:molecules27144582. [PMID: 35889458 PMCID: PMC9320741 DOI: 10.3390/molecules27144582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
In the current study, the anti-inflammatory and analgesic potential of Alnus nitida (leaves and fruits) was evaluated in the Sprague-Dawley rat. Traditionally, A. nitida was used for the treatment of inflammatory ailments. However, A. nitida leaves and fruits have not been yet reported regarding any potential medicinal effects. Leaves/fruits of A. nitida were extracted with methanol and fractionated to attain n-hexane, chloroform, ethyl acetate and aqueous fractions. These extracts were then evaluated for in vivo analgesic and anti-inflammatory potential. For in vivo anti-inflammatory activity, carrageenan-induced paw edema assay, Freunds’ complete adjuvant-induced edema, xylene-induced ear edema and histamine-induced paw edema models were used in rats, which showed significant (p < 0.01) reduction (70−80%) in edema in comparison of inflammatory controls. On other hand, for the analgesic assessment, hot plate assay and acetic acid-induced writhing tests were used, which showed a significant (p < 0.01) rise in latency time (40−60%) as compared with pain-induced controls. These results were comparable with standard drugs in a concentration-dependent manner and no mortality or toxicity was observed during all experiments. Then, for the identification of chemical constituents gas chromatography−mass spectrometry (GC-MS) analysis was performed, which indicated the presence of neophytadiene, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, phytol and vitamin E, justifying the use of A. nitida to treat inflammatory disorders.
Collapse
|
18
|
Guo Y, Li Y, Cao Q, Ye L, Wang J, Guo M. The Function of Natural Polysaccharides in the Treatment of Ulcerative Colitis. Front Pharmacol 2022; 13:927855. [PMID: 35860025 PMCID: PMC9289104 DOI: 10.3389/fphar.2022.927855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/02/2022] [Indexed: 01/30/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease that is persistent and nonspecific. There are several medications available for the treatment of UC. However, conventional UC medications have substantial adverse effects, low clinical effectiveness, and a high recurrence rate. Therefore, it is critical to discover new medicines that are both safe and effective for UC patients. Natural polysaccharides offer a wide range of pharmacological benefits, including anti-inflammatory, anti-virus, anti-tumor, anti-aging, immune enhancement, and gut flora regulation. In the therapy of UC, natural polysaccharides can modulate inflammatory factors, the immune system, and intestinal flora, and preserve the intestinal mucosa. It demonstrates a good curative effect and is of safety to use, thereby being a potential treatment for UC patients. This paper covers the structure, the pharmacological effects on UC, and the mechanisms of natural polysaccharides. Finally, limitations, challenges, and perspectives are discussed. It is hoped that the findings of this publication will inspire more natural polysaccharides research and provide a theoretical foundation for the creation of new UC medications.
Collapse
Affiliation(s)
- Yafei Guo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qiang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Leilei Ye
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Junmei Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mei Guo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Chemistry and Quality of Traditional Chinese Medicine and Tibetan Medicine of Gansu Provincial Colleges, Lanzhou, China
- *Correspondence: Mei Guo,
| |
Collapse
|
19
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
20
|
Shahid M, Raish M, Ahmad A, Bin Jardan YA, Ansari MA, Ahad A, Alkharfy KM, Alaofi AL, Al-Jenoobi FI. Sinapic Acid Ameliorates Acetic Acid-Induced Ulcerative Colitis in Rats by Suppressing Inflammation, Oxidative Stress, and Apoptosis. Molecules 2022; 27:4139. [PMID: 35807383 PMCID: PMC9268465 DOI: 10.3390/molecules27134139] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| |
Collapse
|
21
|
Mota J, Casimiro S, Fernandes J, Hartmann RM, Schemitt E, Picada J, Costa L, Marroni N, Raymundo A, Lima A, Ferreira RB. Lupin Protein Concentrate as a Novel Functional Food Additive That Can Reduce Colitis-Induced Inflammation and Oxidative Stress. Nutrients 2022; 14:2102. [PMID: 35631241 PMCID: PMC9143369 DOI: 10.3390/nu14102102] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Food fortification with bioactive compounds may constitute a way to ameliorate inflammatory bowel diseases (IBDs). Lupin seeds contain an oligomer named deflamin that can reduce IBD’s symptoms via MMP-9 inhibition. Here, our goal was to develop a lupin protein concentrate (LPC) enriched in deflamin and to test its application as a food additive to be used as a functional food against colitis. The nutritional profile of the LPC was evaluated, and its efficacy in vivo was tested, either alone or as added to wheat cookies. The LPC presented high protein and carbohydrate contents (20.09 g/100 g and 62.05/100 g, respectively), as well as antioxidant activity (FRAP: 351.19 mg AAE/10 mg and DPPH: 273.9 mg AAE/10 mg). It was also effective against TNBS-induced colitis in a dose dependent-manner, reducing DAI scores by more than 50% and concomitantly inhibiting MMP-9 activity. When added to cookies, the LPC activities were maintained after baking, and a 4-day diet with LPC cookies induced a significant protective effect against acetic acid-induced colitis, overall bringing lesions, oxidative stress and DNA damage levels to values significantly similar to controls (p < 0.001). The results show that the LPC is an efficient way to deliver deflamin in IBD-targeted diets.
Collapse
Affiliation(s)
- Joana Mota
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Sandra Casimiro
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
| | - João Fernandes
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Renata M. Hartmann
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Elizângela Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Jaqueline Picada
- Genetic Toxicologic Laboratory, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil;
| | - Luís Costa
- Clinical and Translational Oncology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (S.C.); (L.C.)
- Oncology Division, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
| | - Norma Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (R.M.H.); (E.S.); (N.M.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| | - Ana Lima
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Ricardo Boavida Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (J.F.); (A.R.); (A.L.); (R.B.F.)
| |
Collapse
|
22
|
Ahmed O, Farid A, Elamir A. Dual role of melatonin as an anti-colitis and anti-extra intestinal alterations against acetic acid-induced colitis model in rats. Sci Rep 2022; 12:6344. [PMID: 35428860 PMCID: PMC9012815 DOI: 10.1038/s41598-022-10400-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The available ulcerative colitis drugs exhibit limited outcomes and adverse side effects. Therefore, our study aimed to investigate the therapeutic efficacy of melatonin in acetic acid (AA)-induced colitis to establish a possible treatment for colitis and its impacts on vital organs. Following colitis induction (2 ml 5% AA, rectally), rats were orally received melatonin (5 mg/kg) once per day for 6 days after colitis induction. Then, histopathological examination of colon, kidney, liver, and spleen was conducted, interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and total antioxidant capacity (TAC) levels were assessed in colon tissue. Colitis induction in untreated rats caused necrotic effects in colon tissues, a significant increase in colonic IL-1β, TNF-α, MPO, and MDA levels, and a remarkable decrease in GSH and TAC levels in colon tissue in comparison to the control group. Meanwhile, melatonin treatment reversed these parameters by improving the microscopic and macroscopic colitis features and extra-intestinal (kidney, liver, and spleen) changes in all treated rats compared to the colitis control group. These results denote a reduction in colitis severity due to the anti-inflammatory and anti-oxidative effects of melatonin and its positive impact on the vital organs.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
23
|
Baicalein and Αlpha-Tocopherol Inhibit Toll-like Receptor Pathways in Cisplatin-Induced Nephrotoxicity. Molecules 2022; 27:molecules27072179. [PMID: 35408581 PMCID: PMC9000769 DOI: 10.3390/molecules27072179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
Cisplatin (CP) is a conventional chemotherapeutic agent with serious adverse effects. Its toxicity was linked to the stimulation of oxidative stress and inflammation. As a result, this study explored the protective effect of baicalein and alpha-tocopherol in nephrotoxicity induced by cisplatin. Until receiving an intraperitoneal injection of CP (3 mg/kg BW), rats were given baicalein orally 100 mg/kg for seven days or/and a single intraperitoneal injection of α-tocopherol 250 mg/kg. Renal function was tested to explore whether baicalein and α-tocopherol have any beneficial effects; blood urea nitrogen (BUN), serum creatinine, malondialdehyde (MDA) content, antioxidant activity biomarkers and histopathology of renal tissue, oxidative stress biomarkers, inflammatory response markers, and histopathological features of kidney architecture were measured. Cisplatin treatment resulted in extreme renal failure, as measured by high serum creatinine and BUN levels and severe renal changes. Cisplatin therapy resulted in increased lipid peroxidation and decreased glutathione and superoxide dismutase levels, reflecting oxidative stress. Upon treatment with α-tocopherol, baicalein, and combined therapy, there was augmentation in the antioxidant status as well as a reduction in IL-6, NF-κB, TNF, TLR2, and TLR4 and a significant increase in Keap-1 and NRF-2. The combined treatment was the most effective and the nearest to the normal status. These findings suggest that baicalein and α-tocopherol may be useful in preventing cisplatin-induced nephrotoxicity.
Collapse
|
24
|
Alsharif IA, Fayed HM, Abdel-Rahman RF, Abd-Elsalam RM, Ogaly HA. Miconazole Mitigates Acetic Acid-Induced Experimental Colitis in Rats: Insight into Inflammation, Oxidative Stress and Keap1/Nrf-2 Signaling Crosstalk. BIOLOGY 2022; 11:303. [PMID: 35205169 PMCID: PMC8869207 DOI: 10.3390/biology11020303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/23/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023]
Abstract
Ulcerative colitis (UC) is the most common type of inflammatory bowel disease, characterized by oxidative stress and elevated pro-inflammatory cytokines. Miconazole is an azole antifungal that stimulates the expression of antioxidant enzymes via Nrf2 activation, which consequently inhibits ROS formation and NF-κB activation. Hence, the present study aimed to investigate the protective effect of miconazole, sulfasalazine (as a reference drug) and their combination on acetic acid (AA)-induced UC in a rat model which was induced by intra-rectal administration of 4% AA. Rats were pretreated with miconazole (20 and 40 mg/kg, orally) or sulfasalazine (100 mg/kg, orally), or their combination (20 mg/kg miconazole and 50 mg/Kg of sulfasalazine, orally). Pretreatment with miconazole significantly reduced wet colon weight and macroscopic scores, accompanied by a significant amelioration of the colonic architecture disorder. Moreover, the treatment also significantly decreased the malondialdehyde (MDA) level and prevented the depletion of superoxide dismutase (SOD) activity and GSH content in inflamed colons. Additionally, the treatment showed suppressive activities on pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and C-reactive protein (CRP), and upregulated the anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, the treatment upregulated the protein levels of Nrf-2 and heme oxygenase-1 (HO-1) in the colon tissue. Taken together, miconazole is effective in alleviating AA-induced colitis in rats, and the mechanism of its action is associated with the activation of Nrf2-regulated cytoprotective protein expression.
Collapse
Affiliation(s)
- Ifat A. Alsharif
- Biology Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Rehab F. Abdel-Rahman
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Reham M. Abd-Elsalam
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
25
|
The protective effect of Boswellic acid and Ellagic acid loaded, colon targeted, and pH-sensitive N-succinyl chitosan in ulcerative colitis rat model. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Ahmed O, Abdel-Halim M, Farid A, Elamir A. Taurine loaded chitosan-pectin nanoparticle shows curative effect against acetic acid-induced colitis in rats. Chem Biol Interact 2022; 351:109715. [PMID: 34695389 DOI: 10.1016/j.cbi.2021.109715] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Owing to the poor outcomes and adverse side effects of existing ulcerative colitis drugs, the study aimed to develop an alternative nano-based treatment approach. The study was designed to characterize the in vitro and in vivo properties of taurine, taurine-loaded chitosan pectin nanoparticles (Tau-CS-PT-NPs) and chitosan pectin nanoparticles (CS-PT-NPs) in the therapy of acetic acid (AA)-induced colitis in rats. CS-PT-NPs and Tau-CS-PT-NPs were prepared by ionic gelation method then in vitro characterized, including transmission electron microscopy (TEM), polydispersity index (PDI), zeta potential, Fourier transform infrared (FTIR) spectroscopy, encapsulation efficiency (EE), and drug release profile. Following colitis induction, rats were orally administrated with free taurine, Tau-CS-PT-NPs, and CS-PT-NPs once per day for six days. The sizes of Tau-CS-PT-NPs and CS-PT-NPs were 74.17 ± 2.88 nm and 42.22 ± 2.41 nm, respectively. EE was about 69.09 ± 1.58%; furthermore, 60% of taurine was released in 4 h in simulated colon content. AA-induced colitis in untreated rats led to necrosis of colon tissues and a significant increase in interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), myeloperoxidase (MPO), and malondialdehyde (MDA) levels associated with a remarkable reduction in glutathione (GSH) level in colon tissue in comparison to control group. Treatment with taurine, Tau-CS-PT-NPs, and CS-PT-NPs partly reversed these effects. The present study demonstrated that the administration of free taurine, CS-PT-NPs, and Tau-CS-PT-NPs exerted beneficial effects in acetic acid-induced colitis by their anti-inflammatory and antioxidant activities. The best therapeutic effect was observed in animals treated with taurine-loaded chitosan pectin nanoparticles.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad Abdel-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, 11835, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
27
|
Elgalil Mohamed Ahmed A, Attia MA, Abd-Elaziz MEE, Abd Ellatif R. Histological study of the effect of quercetin on experimentally induced ulcerative colitis in adult male albino rats. TANTA MEDICAL JOURNAL 2022; 50:285. [DOI: 10.4103/tmj.tmj_101_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
28
|
ElMahdy MK, Antar SA, Elmahallawy EK, Abdo W, Hijazy HHA, Albrakati A, Khodir AE. A Novel Role of Dapagliflozin in Mitigation of Acetic Acid-Induced Ulcerative Colitis by Modulation of Monocyte Chemoattractant Protein 1 (MCP-1)/Nuclear Factor-Kappa B (NF-κB)/Interleukin-18 (IL-18). Biomedicines 2021; 10:40. [PMID: 35052720 PMCID: PMC8773032 DOI: 10.3390/biomedicines10010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
Colon illnesses, particularly ulcerative colitis, are considered a major cause of death in both men and women around the world. The present study investigated the underlying molecular mechanisms for the potential anti-inflammatory effect of Dapagliflozin (DAPA) against ulcerative colitis (UC) induced by intracolonic instillation of 3% v/v acetic acid (AA). DAPA was administered to rats (1 mg/kg, orally) for two weeks during the treatment regimen. Interestingly, compared to the normal group, a marked increase in the index of colon/body weight, colon weight/colon length ratio, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP), besides decrease in the serum total antioxidant capacity (TAC), were reported in the AA control group (p ˂ 0.05). Elevation in colon monocyte chemoattractant protein (MCP1), Interleukin 18 (IL-18), and inflammasome contents were also reported in the AA control group in comparison with the normal group. In addition, colon-specimen immunohistochemical staining revealed increased expression of nuclear factor-kappa B (NF-κB) and Caspase-3 with histopathological changes. Moreover, DAPA significantly (p ˂ 0.05) reduced the colon/body weight index, colon weight/colon length ratio, clinical evaluation, and macroscopic scoring of UC, and preserved the histopathological architecture of tissues. The inflammatory biomarkers, including colon MCP1, IL-18, inflammasome, Caspase-3, and NF-κB, were suppressed following DAPA treatment and oxidants/antioxidants hemostasis was also restored. Collectively, the present data demonstrate that DAPA represents an attractive approach to ameliorating ulcerative colitis through inhibiting MCP1/NF-κB/IL-18 pathways, thus preserving colon function. Antioxidant, anti-inflammatory, and anti-apoptotic properties of DAPA are implicated in its observed therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed Kh. ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| | - Samar A. Antar
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hayfa Hussin Ali Hijazy
- Department of Family Education, Faculty of Education, Umm Al-Qura University, Makka Al-Mukarama 21955, Saudi Arabia;
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed E. Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| |
Collapse
|
29
|
Effect of Plant Biostimulants on Nutritional and Chemical Profiles of Almond and Hazelnut. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increasing interest in natural foods with functional effects demands progressively higher production levels. Nonetheless, there is an orientation towards practicing more sustainable agriculture, free from environmentally harmful pesticides and fertilizers. Plant biostimulants, a class of bio-based agriculture products designed to improve crop development, represent a feasible alternative to chemical fertilizers, or, at least, an effective way of reducing the employed quantities. Herein, different types of plant biostimulants compatible with organic farming (Phytoalgae, Foliar B, Amino Acids, Soil B, Fitoalgas Green® and Sprint Plus®) were tested in two of the most important nut products worldwide: almonds and hazelnuts, which were tested for nutritional parameters, fatty acids profiles and tocopherols contents. Overall, the most notorious effects in almond samples were obtained with phytoalgae (seaweed Ascophyllum nodosum extracts), particularly reflected in the upraising around 10% of γ-tocopherol and β-tocopherol contents. Likewise, hazelnuts treated with NPK + phytoalgae were also characterized by an increase of almost 18% in tocopherols levels, while treatment with NPK alone induced 15.1% higher percentage of linoleic acid.
Collapse
|
30
|
Pambianchi E, Pecorelli A, Valacchi G. Gastrointestinal tissue as a "new" target of pollution exposure. IUBMB Life 2021; 74:62-73. [PMID: 34289226 DOI: 10.1002/iub.2530] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/26/2022]
Abstract
Airborne pollution has become a leading cause of global death in industrialized cities and the exposure to environmental pollutants has been demonstrated to have adverse effects on human health. Among the pollutants, particulate matter (PM) is one of the most toxic and although its exposure has been more commonly correlated with respiratory diseases, gastrointestinal (GI) complications have also been reported as a consequence to PM exposure. Due to its composition, PM is able to exert on intestinal mucosa both direct damaging effects, (by reaching it either via direct ingestion of contaminated food and water or indirect inhalation and consequent macrophagic mucociliary clearance) and indirect ones via generation of systemic inflammation. The relationship between respiratory and GI conditions is well described by the lung-gut axis and more recently, has become even clearer during coronavirus disease 2019 (COVID-19) pandemic, when respiratory symptoms were associated with gastrointestinal conditions. This review aims at pointing out the mechanisms and the models used to evaluate PM induced GI tract damage.
Collapse
Affiliation(s)
- Erika Pambianchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Alessandra Pecorelli
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA
| | - Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, Kannapolis, North Carolina, USA.,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
31
|
Darwish AA, Fawzy M, Osman WAL, El Ebissy EA. Clinicopathological and bacteriological studies on lamb bacterial enteritis and monitoring the oregano oil and vitamins A,D 3,E effect on its treatment. J Adv Vet Anim Res 2021; 8:291-299. [PMID: 34395600 PMCID: PMC8280979 DOI: 10.5455/javar.2021.h514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/22/2022] Open
Abstract
Objective: The objective of the study was to assess the effect of A,D3,E (I/M) and oregano oil extract 15% on some clinicopathological parameters during lamb bacterial enteritis treatment. Materials and Methods: Sixty Barki lambs, 20 apparently healthy (control group) and, 40 suffered from bacterial enteritis [enteric group (EG)], were subdivided into four treated groups (TGs): antibiotic group (AG), antibiotic + A,D3,E group (A + A,D3,E), antibiotic + oregano oil (AOG), and oregano group (OG). Fecal swabs were collected from EG then aseptically cultured, isolated, phenotypically identified, genotypically confirmed, and sequenced by PCR 16srRNA. Paper disk diffusion test was used for estimation of oregano oil extract 15% antibacterial activity. After blood sample aspiration from all animals, they were clinicopathologically and statistically analyzed. Results: Escherichia coli, followed by Salmonella species and then Klebsiella species, was the main causative agents of lamb diarrhea and were susceptible to oregano oil extract 15%. A + A,D3,E and AOG showed significant (p < 0.05) enhancement of some clinicopathological parameters more than AG or OG. Matrix metalloproteinases (MMP-2 and MMP-9) and total antioxidant capacity (TAC), yielded area under the curve, sensitivity, negative predictive value as 1, 100% and 100% respectively, were determined in both EG and TGs. Conclusion: Oregano oil extract 15% has good antibacterial properties against enteric bacteria in vitro and in vivo. The combination between antibiotic and antioxidant vitamins or oregano plant extract of 15% has a good impact on some clinicopathological alterations in lamb bacterial enteritis treatment. TAC, MMP-9, and MMP-2 may be good markers for the disease and its treatment follow-up.
Collapse
Affiliation(s)
- Asmaa Abdallah Darwish
- Department of animal and poultry health, animal and poultry division, Desert Research Center, Cairo, Egypt
| | - Marwa Fawzy
- Department of animal and poultry health, animal and poultry division, Desert Research Center, Cairo, Egypt
| | - Wafaa Abd-Latif Osman
- Department of animal and poultry health, animal and poultry division, Desert Research Center, Cairo, Egypt
| | - Eman A El Ebissy
- Department of animal and poultry health, animal and poultry division, Desert Research Center, Cairo, Egypt
| |
Collapse
|
32
|
Eskandrani AA. Effect of supplementing fava bean ( Vicia faba L.) on ulcerative colitis and colonic mucosal DNA content in rats fed a high-sucrose diet. Saudi J Biol Sci 2021; 28:3497-3504. [PMID: 34121890 PMCID: PMC8176050 DOI: 10.1016/j.sjbs.2021.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with high morbidity. Acetic acid-induced damage of colonic mucosa in rats is a commonly used experimental animal model of UC. This research aimed to explore for the first time the ameliorative effect of dietary supplementation with fava bean on the incidence of UC in rats fed with sucrose containing diet. Rats were divided into five groups as follows: G1, control healthy rats; G2, colitic rats; G3, colitic rats fed diets containing 30% sucrose, G4, healthy rats fed diets containing 30% sucrose and G5, colitic rats fed diets containing 30% sucrose supplemented with dried ground fava bean. Colonic injury and inflammation were evaluated through a disturbance of oxidative biomarkers, a significant increase in inflammatory biomarkers and inflammatory cytokines, and histological abnormalities in colonic tissues accompanied by colonic mucosal DNA damage. Colitic rats fed on sucrose containing diet demonstrated additional histological, biochemical, and DNA alterations in colonic mucosa of rats. Dietary supplementation with dried ground fava bean significantly corrected the impaired oxidative and inflammatory biomarker levels and modulated histological features and DNA alterations. Finally, fava bean attenuated the oxidative damage and colonic injury induced by acetic acid, which confirmed its high anti-oxidant and anti-incendiary properties.
Collapse
Affiliation(s)
- Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| |
Collapse
|
33
|
Rath B, Abul Qais F, Patro R, Mohapatra S, Sharma T. Design, synthesis and molecular modeling studies of novel mesalamine linked coumarin for treatment of inflammatory bowel disease. Bioorg Med Chem Lett 2021; 41:128029. [PMID: 33839254 DOI: 10.1016/j.bmcl.2021.128029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBD) are continuous idiopathic inflammation of GIT. Ulcerative colitis, inflammation of the colonic or rectal mucosa has no known medical cure and its treatment is aimed at reducing the signs and symptoms associated with the disorders, induction and maintenance of remission. In this study, we have reported the synthesis of mesalamine and coumarin linked together by a diazo group. The compound was characterized by various spectroscopic methods. Therapeutic potential of the synthesized compound was investigated through acetic acid induced ulcerative rat model. Pharmacokinetic properties were predicted for the compounds by ADMET related descriptors. Molecular docking studies were conducted with four proteins (COX-2, MMP-9, TNF-α and MPO) to examine the interaction of mesalamine (MS) and mesalamine coumarin derivative (MS-CU). Moreover, molecular dynamic simulations were carried out to study the dynamics and stability of the complexes in solvent system. The binding energy of MS-CU with MPO, COX-2, MMP-9 and TNF-α was found to be -9.5, -10.4, -9.2 and -8.4 kcal/mol respectively. MS-CU exhibited higher binding affinity towards all tested proteins than MS. Molecular dynamic simulation reveals that both MS and MS-CU formed a stable complex with all test proteins in aqueous system. Overall binding energy of MS-CU was more than MS showing stronger affinity towards the test portions. In conclusion, Mesalamine-coumarin derivative reduces colonic damage in acetic acid induced ulcerative colitis in rat model, and therefore may prove to be effective in the management of IBD.
Collapse
Affiliation(s)
- Biswabhusan Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Randeep Patro
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
34
|
Firouzabadi N, Alimoradi N, Najafizadeh M, Najafizadeh P. Effect of escitalopram on an acetic acid-induced ulcerative colitis model. Clin Exp Pharmacol Physiol 2021; 48:782-790. [PMID: 33561885 DOI: 10.1111/1440-1681.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/18/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Ulcerative colitis (UC) is a chronic and recurrent gastrointestinal (GI) disorder with an unknown aetiology and pathogenesis. Regarding the effectiveness of antidepressants on UC in animal models of depression and the known anti-inflammatory effects of escitalopram this study was conducted to evaluate the beneficial effects of escitalopram on an acetic acid-induced UC model without depression. UC model was induced by intra rectal (i.r.) administration of 4% acetic acid in rats after 24 hours of fasting. Animals were treated with three doses of escitalopram (5, 10 and 20 mg/kg). Prednisolone (4 mg/kg) was used as a reference drug in UC. Histological and oxidative stress markers were measured in all groups. Results showed significant increase in superoxide dismutase (SOD) activity and glutathione (GSH) levels, as well as significant decrease in myeloperoxidase (MPO) activity, malondialdehyde (MDA) levels, macroscopic factors (ulcer surface area, ulcer severity and weight-to-colon ratio) and microscopic and histological parameters (severity and extent of inflammation, cryptic destruction and severity of tissue involvement) in escitalopram treated rats (10, 20 mg/kg) compared to the UC group. In conclusion, the results of our study are in support of beneficial anti-inflammatory and antioxidant effects of escitalopram in UC.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Alimoradi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Najafizadeh
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvaneh Najafizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Salami AT, Okotie GE, Echendu PN, Akpamu U, Olaleye SB. Potassium bromate (KBrO 3) modulates oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis in Wistar rats. Can J Physiol Pharmacol 2021; 99:989-999. [PMID: 33848442 DOI: 10.1139/cjpp-2020-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potassium bromate (KBrO3) present in consumed ozonised water was recently documented to exacerbate experimental gastric ulcer. Information, however, is vague as regards its effects in the colon where water reabsorption occurs. In this study, we observed the possible effects of KBrO3 on oxidative stress and inflammatory biomarkers in sodium hydroxide (NaOH) - induced Crohn's colitis (CC). Wistar rats (180-200 g) were divided into six groups (n = 10): (i) control; (ii) untreated CC (induced by 1.4% NaOH; intra-rectal administration); and (iii-vi) CC treated with vitamin E, KBrO3, vitamin E+KBrO3, and sulphazalazine, respectively, for 7 days. Body weight and stool score were monitored daily. By day 3 and 7, excised colon was evaluated for ulcer scores and biochemical and histological analysis. Blood samples collected on days 3 and 7 were assayed for haematological indices using standard methods. Data were subjected to analysis of variance (ANOVA) and p ≤ 0.05 considered significant. Platelet/lymphocyte ratio, colonic ulcer score, malondialdehyde, and mast cells were significantly decreased while colonic sulfhydryl, and Ca2+- and Na+/K+-ATPase activities were increased following KBrO3 treatment compared with untreated CC. These findings suggest that KBrO3 may mitigate against NaOH-induced CC via inhibiting mast cell population and oxidative and inflammatory content but stimulating colonic sulfhydryl and Ca2+- and Na+/K+-ATPase activities.
Collapse
Affiliation(s)
- Adeola Temitope Salami
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gloria Enevwo Okotie
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Precious Nekachi Echendu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Uwaifoh Akpamu
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria.,Gastrointestinal secretions and inflammation research unit, Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
36
|
Dziąbowska-Grabias K, Sztanke M, Zając P, Celejewski M, Kurek K, Szkutnicki S, Korga P, Bulikowski W, Sztanke K. Antioxidant Therapy in Inflammatory Bowel Diseases. Antioxidants (Basel) 2021; 10:antiox10030412. [PMID: 33803138 PMCID: PMC8000291 DOI: 10.3390/antiox10030412] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are a group of chronic, incurable diseases of the digestive tract, the etiology of which remains unclear to this day. IBD result in significant repercussions on the quality of patients’ life. There is a continuous increase in the incidence and prevalence of IBD worldwide, and it is becoming a significant public health burden. Pharmaceuticals commonly used in IBD management, for example, mesalamine, sulfasalazine, corticosteroids, and others, expose patients to diverse, potentially detrimental side effects and frequently do not provide sufficient disease control. The chronic inflammation underlies the etiology of IBD and closely associates with oxidative/nitrosative stress and a vast generation of reactive oxygen/nitrogen species. Relative to this, several substances with antioxidant and anti-inflammatory properties are now intensively researched as possible adjunctive or independent treatment options in IBD. Representatives of several different groups, including natural and chemical compounds will be characterized in this dissertation.
Collapse
Affiliation(s)
- Katarzyna Dziąbowska-Grabias
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Małgorzata Sztanke
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-486-195
| | - Przemysław Zając
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Michał Celejewski
- Department of Gastroenterology, 1st Military Research Hospital, and Polyclinic of Lublin, 20-049 Lublin, Poland; (K.D.-G.); (P.Z.); (M.C.)
| | - Katarzyna Kurek
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (K.K.); (S.S.)
| | - Stanisław Szkutnicki
- Department of Pneumonology, Oncology, and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (K.K.); (S.S.)
| | - Patryk Korga
- Department of Gastroenterology, 10ft Military Research Hospital, and Polyclinic of Bydgoszcz, 85-681 Bydgoszcz, Poland;
| | | | - Krzysztof Sztanke
- Laboratory of Bioorganic Synthesis and Analysis, Chair and Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
37
|
Colares JR, Schemitt EG, Hartmann RM, Moura RM, Morgan-Martins MI, Fillmann HS, Fillmann L, Marroni NP. Effect of lecithin on oxidative stress in an experimental model of rats colitis induced by acetic acid. JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1016/j.jcol.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractUlcerative colitis (UC) is an inflammatory disease that affects the bowels. Reactive oxygen species (ROS) are involved in the progress of UC.
Objective Evaluate the antioxidant effect of lecithin in an experimental model of acute UC induced by administration of acetic acid (AA) in rats.
Methods Lecithin (0.5 mL/kg/day) administered orally 2 days before and after induction of colitis with 4% AA in a volume of 4 mL. Twenty-five male Wistar rats were divided in 5 groups: control (CO); control + lecithin (CO + LE); colitis (CL); colitis + lecithin (CL + LE); lecithin + colitis (LE + CL). Anal sphincter pressure, LPO (TBARS), and antioxidant activity of enzymes superoxide dismutase (SOD) and catalase (CAT) were measured, and a histological analysis with H&E was performed.
Results and discussion Anal sphincter pressure was significantly smaller in the CO group, lecithin treatment increased it in pre- and post-treated groups. LPO and SOD activity were increased in the CO group and decreased in the lecithin-treated groups. CAT activity was increased in CO group and decreased in lecithin groups. The histological analysis showed damage to the bowels with destruction of crypts, edema, and inflammatory infiltrate. Use of lecithin preserved the crypts and decreased the edema.
Conclusion Ulcerative colitis increased lipid peroxidation, and the use of lecithin was effective reducing damage to the bowels in the model of experimental colitis.
Collapse
Affiliation(s)
- Josieli Raskopf Colares
- Bio Health, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Oxidative Stress and Antioxidants, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elizângela Gonçalves Schemitt
- Laboratory of Oxidative Stress and Antioxidants, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Minuzzo Hartmann
- Laboratory of Oxidative Stress and Antioxidants, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rosa Maria Moura
- Applied Toxicology, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Maria Isabel Morgan-Martins
- Laboratory of Oxidative Stress and Antioxidants, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Henrique Sarubbi Fillmann
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lúcio Fillmann
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Norma Possa Marroni
- Bio Health, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Oxidative Stress and Antioxidants, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
- Laboratory of Hepatology and Experimental Gastroenterology, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Applied Toxicology, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
38
|
Gao Y, Li T, Duan S, Lyu L, Li Y, Xu L, Wang Y. Impact of titanium dioxide nanoparticles on intestinal community in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis mice and the intervention effect of vitamin E. NANOSCALE 2021; 13:1842-1862. [PMID: 33438704 DOI: 10.1039/d0nr08106j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely applied as additives in foods due to their excellent whitening and brightening capability. Although the toxicity and antibacterial activity of TiO2-NPs have been extensively studied, their impact on the gut microbiota in vivo still remains unclear, especially in animals with gastrointestinal disorders. In the present study, healthy mice and TNBS-induced colitis mice were administered with TiO2-NPs (38.3 ± 9.3 nm) orally at a dose of 100 mg per kg bw daily for 10 days to study the impact of TiO2-NPs on the gut microbiota and colitis development. Moreover, the mechanism of TiO2-NPs on the gut microbiota was also discussed when the colitis mice were additionally administered with vitamin E to remove ROS. Changes in the microbiota community structure and gut-associated function prediction were analyzed through bioinformatics. The result showed that the oral administration of TiO2-NPs mitigated colitis symptoms by reducing the DAI and CMDI scores and TNF-α level. Furthermore, 16S rDNA sequencing analysis showed that the structure and function prediction of gut microbiota could be modified in healthy mice and colitis mice after exposure to TiO2-NPs, but the opposite physiological effect occurred since the dominant flora varied in these two groups. Moreover, vitamin E intervention did not change the effects of TiO2-NPs on the microbiota community structure and gut-associated function, which indicates that the mechanism of the biological effects of TiO2-NPs on the gut microbiota may not be associated with their ability to induce the generation of ROS. In summary, our work firstly found that TiO2-NPs could regulate the gut microbiota of colitis mice and participate in the mitigation of TNBS-induced acute colitis, and the capability of TiO2-NPs to induce the generation of ROS inducement did not contribute to this process.
Collapse
Affiliation(s)
- Yanjun Gao
- Department of Occupational and Environmental Health Sciences School of Public Health Peking University, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Irrazabal T, Thakur BK, Croitoru K, Martin A. Preventing Colitis-Associated Colon Cancer With Antioxidants: A Systematic Review. Cell Mol Gastroenterol Hepatol 2021; 11:1177-1197. [PMID: 33418102 PMCID: PMC7907812 DOI: 10.1016/j.jcmgh.2020.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers.
Collapse
Affiliation(s)
| | - Bhupesh K Thakur
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Croitoru
- Department of Medicine, Division of Gastroenterology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
40
|
Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J. Evaluation of neuroprotective effects of alpha-tocopherol in cuprizone-induced demyelination model of multiple sclerosis. Res Pharm Sci 2020; 15:602-611. [PMID: 33828603 PMCID: PMC8020858 DOI: 10.4103/1735-5362.301345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and axonal loss. Quantitative estimation of behavioral, locomotor, and histological changes following the use of alpha-tocopherol (AT) in the animal model of MS have not been reported. The present study was planned to evaluate whether AT can improve sensorimotor dysfunction and reduce demyelination in the cuprizone (CPZ)-induced rat model of MS. EXPERIMENTAL APPROACH Female Sprague-Dawley rats (8 weeks) were fed with cuprizone diet for 5 weeks followed by intraperitoneal injections of alpha-tocopherol (100 mg/Kg) or PBS for 2 weeks (groups E1 and E2, n = 8). Group C (n = 8) was fed with normal pellets followed by intraperitoneal doses of PBS. Open-field test and beam walking were carried out on every 10th day. The mean area of demyelination in the corpus callosum was quantified in Luxol® fast blue (LFB) stained histological sections of the forebrain. Qualitative grading for relative changes in the stains of myelinated fibers was also done. FINDINGS/RESULTS During withdrawal of CPZ, AT treatment increased the average speed by 22% in group E1, compared to group E2 (P < 0.05). The mean time to walk the beam was reduced in group E1 by 2.6% compared to group E2 (P < 0.05). The rearing frequency was increased in group E1 during week 6-7 compared to that in the period of CPZ treatment. The mean area of demyelination in the corpus callosum showed a 12% reduction in group E1 compared to group E2 (P < 0.05). CONCLUSION AND IMPLICATIONS Short-term AT therapy showed improvement in motor dysfunction and reduction of demyelination in the animal model of MS.
Collapse
Affiliation(s)
- Nilesh Kumar Mitra
- Human Biology Division, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kong Yu Xuan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Charmaine Caryn Teo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ng Xian-Zhuang
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Anudeep Singh
- Human Biology Division, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Zahouani Y, Ben Rhouma K, Kacem K, Sebai H, Sakly M. Aqueous Leaf Extract of Pistacia lentiscus Improves Acute Acetic Acid-Induced Colitis in Rats by Reducing Inflammation and Oxidative Stress. J Med Food 2020; 24:697-708. [PMID: 33156733 DOI: 10.1089/jmf.2020.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigate the antioxidant activity and protective effects of the aqueous leaf extract of Pistacia lentiscus (AELPL) against ulcerative colitis induced by acetic acid infusion through the rectum in Wistar rats. Phytochemical analyses allowed the identification of numerous phenolic compounds in P. lentiscus leaves such as flavonoids (isoquercetin and luterolin), flavonols (catechin, rutin, and kaempferol), phenolic acids (ellagic and dicaffeoylquinic), and tanins. Acetic acid exposure induced macroscopic colonic mucosal lesions with hemorrhage, congestion, edema, and the development of an expected oxidative stress state revealed by an increase in lipoperoxidation and carbonylation of proteins and a decrease in sulfhydryl (SH) group levels and antioxidant enzyme activities such as superoxide dismutase, catalase, glutathione-S-peroxidase, and glutathione transferase, as well as an increase in the inflammatory cytokine, interleukin-6, in the colon and plasma. Administration of acetic acid also increased plasma and tissue levels of hydrogen peroxide and rates of iron and free calcium, whereas AELPL significantly and dose-dependently attenuated all the previous biochemical alterations and intracellular mediator perturbations. In conclusion, the AELPL exhibited a potent cytoprotective effect against acetic acid-induced colitis in rats, mainly through its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yasmine Zahouani
- Laboratory Integrated Physiology, Life Sciences Department, Faculty of Sciences Bizerta, University of Carthage, Zarzouna, Tunisia
| | - Khemais Ben Rhouma
- Laboratory Integrated Physiology, Life Sciences Department, Faculty of Sciences Bizerta, University of Carthage, Zarzouna, Tunisia
| | - Kamel Kacem
- Laboratory Integrated Physiology, Life Sciences Department, Faculty of Sciences Bizerta, University of Carthage, Zarzouna, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Development Bioresources, Department of Biology, Higher Institute of Biotechnology, University of Jendouba, Beja, Tunisia
| | - Mohsen Sakly
- Laboratory Integrated Physiology, Life Sciences Department, Faculty of Sciences Bizerta, University of Carthage, Zarzouna, Tunisia
| |
Collapse
|
42
|
Mostafa AF, Elalfy MM, Shata A, Elhadidy MG. Prophylactic effect of aquatic extract of stevia on acetic acid induced-ulcerative colitis in male rats: a possible role of Nrf2 and PPARγ. J Basic Clin Physiol Pharmacol 2020; 32:1093-1104. [PMID: 33035185 DOI: 10.1515/jbcpp-2020-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Objectives Ulcerative colitis (UC) is a non-specific intestinal inflammatory disease. Several studies demonstrated that inflammation and oxidative stress play significant role in the pathogenesis of this disease. This study aimed to determine the protective effect and possible mechanism by which stevia affects the course of experimentally induced colitis. Methods Male rats were received stevia 20, 40, 80 mg/kg/day before induction of colitis by intra-rectal administration of 2 mL of 4% acetic acid, AA. Macroscopic and histopathological examination of the colon were done. Colonic content of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), myeloperoxidase (MPO) and thiobarbituric acid reactive substances (TBARS) activities and serum levels of interleukin (IL)1- β and tumor necrosis factor (TNF)-α were assessed. Real time-PCR (RT-PCR) was done to determine the expression of NF-κB, Nrf2 and PPARγ genes. Spontaneous contraction and effects of increasing concentrations of acetylcholine and stevia have been studied on the isolated colonic segments. Results Stevia ameliorated colitis not only histopathologically but also it decreased the level of TNF-α, IL-1β, TBARS, MPO and the expression of NF-κB which were significantly increased in the AA group. The concentration of GSH, SOD, CAT and expression of Nrf2 and PPARγ were significantly increased with stevia. Moreover, stevia showed a relaxant effect on the colonic contractility which was increased in AA group. These all effects of stevia were more prominent with its highest dose. Conclusion Our results explored that, stevia acts protectively against UC by its anti-inflammatory and antioxidant properties which mediated by up-regulation of Nrf2 and PPARγ with downregulation of NF-κB. We suggest that stevia has the potential for treatment of chronic inflammatory diseases, such as UC.
Collapse
Affiliation(s)
- Abeer F Mostafa
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud M Elalfy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Shata
- Department of Clinical pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Pharmacy Practice Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mona G Elhadidy
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
43
|
Zhang J, Wang W, Mao X. Chitopentaose protects HaCaT cells against H2O2-induced oxidative damage through modulating MAPKs and Nrf2/ARE signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
44
|
Bo X, Wang P, Nie Y, Li R, Lu J, Wang H. Protective effect of hypothermia and vitamin E on spermatogenic function after reduction of testicular torsion in rats. Exp Ther Med 2020; 20:796-801. [PMID: 32765649 PMCID: PMC7388547 DOI: 10.3892/etm.2020.8800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
This study was designed to investigate the protective effect of hypothermia and vitamin E on spermatogenic function after reduction of testicular torsion in rats. Ninety-six pure inbred male SD rats were divided into group A, B, C and D according to the principle of body weight and birth similarity, with 24 rats in each group. Four groups of rats were respectively twisted on the left testis to establish unilateral testicular torsion rats. Rats in groups A, B, C, D were respectively given normal saline, hypothermia therapy, vitamin E therapy, and hypothermia and vitamin E therapy. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content of the four groups were detected, and the correlation levels of inflammatory factors IL-1β, hs-CRP and related sex hormones luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone (T) were detected by ELISA. Apoptosis of spermatogenic cells of testis in the four groups was detected by flow cytometry. SOD activity and MDA content in groups B, C and D were significantly higher than those in group A, MDA content was significantly lower than that in group A (P<0.05), SOD activity in group D was higher than that in groups B and C, while MDA content was lower than that in groups B and C (P<0.05). The levels of IL-1β and hs-CRP in group A were much higher than those in groups B, C and D (P<0.05). LH and FSH levels in group A were significantly higher than those in groups B, C and D (P<0.05), and in group D were significantly lower than those in groups B and C (P<0.05). Apoptosis rate of spermatogenic cells in group A was significantly higher than that in groups B, C and D (P<0.05). Hypothermia combined with vitamin E can reverse testicular injury in rats and reduce the apoptosis rate of spermatogenic cells.
Collapse
Affiliation(s)
- Xuejun Bo
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Ping Wang
- Operation Room, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Yan Nie
- Health Management Section and 4Department of Dermatology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Rongfen Li
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Jiru Lu
- Department of Urology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| | - Haiying Wang
- Department of Dermatology, Dongying People's Hospital, Dongying, Shandong 257091, P.R. China
| |
Collapse
|
45
|
Abdallah HM, Ammar NM, Abdelhameed MF, Gendy AENGE, Ragab TIM, Abd-ElGawad AM, Farag MA, Alwahibi MS, Elshamy AI. Protective Mechanism of Acacia saligna Butanol Extract and Its Nano-Formulations against Ulcerative Colitis in Rats as Revealed via Biochemical and Metabolomic Assays. BIOLOGY 2020; 9:E195. [PMID: 32751448 PMCID: PMC7463518 DOI: 10.3390/biology9080195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a relapsing inflammatory disease of unknown etiology. The increased risk of cancer in UC patients warrants for the development of novel drug treatments. Herein, this work concerns with the investigation of the protective effects of Acacia saligna butanol extract (ASBE) and its nanoformulations on UC in a rat model and its underlying mechanism. Colitis was induced by slow intrarectal infusion of 2 mL of 4% (v/v in 0.9% saline) acetic acid. Colon samples were evaluated macroscopically, microscopically, and assayed for pro-inflammatory cytokine levels. To monitor associated metabolic changes in acetic acid-induced UC model, serum samples were analyzed for primary metabolites using GC-MS followed by multivariate data analyses. Treatment with ASBE attenuated acetic acid-induced UC as revealed by reduction of colon weight, ulcer area, and ulcer index. ASBE treatment also reduced Cyclooxygenase-2 (COX-2), Prostaglandin E2 (PGE2) & Interleukin-1β (IL-1β) levels in the inflamed colon. The nano-formulation of ASBE showed better protection than the crude extract against ulcer indices, increased PGE2 production, and histopathological alterations such as intestinal mucosal lesions and inflammatory infiltration. Distinct metabolite changes were recorded in colitis rats including a decrease in oleamide and arachidonic acid along with increased levels of lactic acid, fructose, and pyroglutamic acid. Treatment with nano extract restored metabolite levels to normal and suggests that cytokine levels were regulated by nano extract in UC. Conclusion: ASBE nano extract mitigated against acetic acid-induced colitis in rats, and the underlying mechanism could be attributed to the modulatory effects of ASBE on the inflammatory cascades. The applicability of metabolomics developed in this rat model seems to be crucial for evaluating the anti-inflammatory mechanisms of new therapeutics for acute colitis.
Collapse
Affiliation(s)
- Heba M.I. Abdallah
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Naglaa M. Ammar
- Therapeutic Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Mohamed F. Abdelhameed
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Abd El-Nasser G. El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Center, Dokki, Giza 12622, Egypt;
| | - Tamer I. M. Ragab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt;
| | - Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B., Cairo 11562, Egypt;
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Center, Dokki, Giza 12622, Egypt
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
46
|
Effects of Aqueous and Methanolic Extracts of Stem Bark of Alstonia boonei De Wild. (Apocynaceae) on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4918453. [PMID: 32565862 PMCID: PMC7277065 DOI: 10.1155/2020/4918453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
Among the most exploited species in Cameroon, Alstonia boonei is widely used in African medicine for the relief of several pathologies including gastrointestinal disorders. This study was conducted in order to assess the effects of aqueous and methanol stem-bark extracts of Alstonia boonei on DSS- (dextran sodium sulfate-) induced intestinal colitis and to determine its antioxidant potential. The classes of secondary metabolites present in these extracts were determined by chemical screening. The production of TNF-α, IL-6, IL-1β, and PGE2 was performed by in vitro ELISA analysis. Anticolitis effects were determined using an in vivo model of ulcerative colitis induced by DSS. The colitis was induced with a double dose of DSS (3% and 1%), and the aqueous and methanol extracts were administered orally from the 6th day after commencement of induction. The phytochemical screening revealed the presence of six classes of secondary metabolites in these crude extracts: tannins, saponins, alkaloids, steroids, flavonoids, and phenols. Methanol and aqueous extracts of Alstonia boonei significantly (P < 0.001) inhibited TNF-α, IL-6, IL-1β, and PGE2 production stimulated by LPS. Both extracts at all doses significantly reduced (P < 0.01, P < 0.001) the signs of DSS-induced colitis in the Wistar rats by decreasing inflammation and chronic colon damage. In addition, the extracts significantly (P < 0.001) reduced malondialdehyde and nitric oxide levels in the colon and significantly (P < 0.01) increased superoxide dismutase and catalase and reduced glutathione (P < 0.05). Both extracts showed greater activity than the reference substance (prednisolone 4 mg/kg) used in this study. This study has demonstrated that aqueous and methanol extracts of Alstonia boonei stem bark have healing properties against colitis experimentally induced by DSS in rats.
Collapse
|
47
|
Gandhi H, Rathore C, Dua K, Vihal S, Tambuwala MM, Negi P. Efficacy of resveratrol encapsulated microsponges delivered by pectin based matrix tablets in rats with acetic acid-induced ulcerative colitis. Drug Dev Ind Pharm 2020; 46:365-375. [PMID: 32041433 DOI: 10.1080/03639045.2020.1724127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives: The objective of the present work to encapsulate the resveratrol (RES) inside the chitosan-based microsponges, employing the systematic optimization by 33 Box-Behnken design for the colonic targeting.Significance: Enhanced therapeutic efficacy of RES-loaded microsponges and matrix tablets, vis-a-vis pureRES for ulcerative colitis.Methods: RES-loaded microsponges were prepared employing the systematic optimization by 33 Box-Behnken design for the colonic targeting. The best-optimizedRES-loaded microsponge was compressed in the form of a tablet, employing pectin as a matrix-forming material. The encapsulation of RES inside microsponge was confirmed by XRD, DSC and FT-IR. Further, both RES-loaded microsponges and matrix tablets were evaluated for in vitro release kinetics and further evaluated for in vivo ulcerative colitis animal model.Results: Optimization experiments was obtained as the high value of r2 (particle size = 0.9999; %EE = 0.9652; %CDR = 0.9469) inferred excellent goodness of fit. SEM revealed nearly spherical and porous nature of RES-loaded microsponges. The in vitro release kinetic showed zero-order release for RES-loaded microsponges and Korsmeyer-Peppas model for matrix tablets. The pharmacodynamic studies, in ulcerative colitis rat model, indicated better therapeutic efficacy of drug-loaded microsponges and matrix tablets, vis-a-vis pure RES. Thus, the present study advocates the potential of RES based microsponges delivered by pectin based matrix tablet, in the treatment of various colonic disorders.Conclusion: The present study proved that RES-loaded microsponges and matrix tablets based on chitosan and pectin can be the ideal delivery system for colonic delivery of RES.
Collapse
Affiliation(s)
- Himanshu Gandhi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Charul Rathore
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, United Kingdom
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
48
|
Owusu G, Obiri DD, Ainooson GK, Osafo N, Antwi AO, Duduyemi BM, Ansah C. Acetic Acid-Induced Ulcerative Colitis in Sprague Dawley Rats Is Suppressed by Hydroethanolic Extract of Cordia vignei Leaves through Reduced Serum Levels of TNF- α and IL-6. Int J Chronic Dis 2020; 2020:8785497. [PMID: 32090060 PMCID: PMC7026722 DOI: 10.1155/2020/8785497] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a recurrent inflammatory bowel disease (IBD) that causes long-lasting inflammation on the innermost lining of the colon and rectum. Leaf decoctions of Cordia vignei have been used in traditional medicine either alone or in combination with other plant preparations to treat the disease. AIM In this study, we investigated the effect of hydroethanolic extract of Cordia vignei have been used in traditional medicine either alone or in combination with other plant preparations to treat the disease. METHOD Male Sprague Dawley rats received oral treatment of either saline (10 ml/kg), sulfasalazine (500 mg/kg), or CVE (30-300 mg/kg) daily for 7 days. On day 4, colitis was induced by a single intrarectal administration of 500 μl of acetic acid (4% v/v/. RESULTS CVE significantly (P < 0.05) prevented colonic ulceration and reduced the inflammatory score. Serum levels of TNF-α and IL-6 were significantly reduced. Depletion of superoxide dismutase (SOD) and catalase (CAT) activities by acetic acid was significantly inhibited while lipid peroxidation indexed as malondialdehyde (MDA) level in the colon was reduced. However, loss of body weight was not significantly affected by treatment with CVE. CONCLUSION This data suggest that CVE has a potential antiulcerative effect.
Collapse
Affiliation(s)
- George Owusu
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Department of Pharmacology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
| | - David D. Obiri
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - George K. Ainooson
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Newman Osafo
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Aaron O. Antwi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Babatunde M. Duduyemi
- Department of Pathology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Charles Ansah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
49
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
50
|
Tanideh N, Sadeghi F, Amanat S, Firoozi D, Noorafshan A, Iraji A, Koohi-Hosseinabadi O. Protection by pure and genistein fortified extra virgin olive oil, canola oil, and rice bran oil against acetic acid-induced ulcerative colitis in rats. Food Funct 2020; 11:860-870. [DOI: 10.1039/c9fo01951k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Conjugation of genistein and dietary oils improves the anti-inflammatory and antioxidant effects of genistein on colitis in rats.
Collapse
Affiliation(s)
- Nader Tanideh
- Colorectal Research Center and Department of Pharmacology
- School of Medicine
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Fatemeh Sadeghi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Sasan Amanat
- Student Research Committee
- Larestan University of Medical Sciences
- Larestan
- Iran
| | - Donya Firoozi
- School of Nutrition and Food Sciences
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Centre
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Aida Iraji
- Central Research Laboratory
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | | |
Collapse
|