1
|
Azhar AS, Abdel-Naim AB, Ashour OM. 2-Methoxyestradiol inhibits carotid artery intimal hyperplasia induced by balloon injury via inhibiting JAK/STAT axis in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59524-59533. [PMID: 35384535 DOI: 10.1007/s11356-022-19936-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Intimal hyperplasia (IH) is a common complication of vascular interventional procedures that leads to narrowing of the vessel lumen. 2-Methoxyestradiol (2ME), an estrogen metabolite, has numerous pharmacological actions, including vasoprotective and antiproliferative activities. The present study aimed to evaluate the potential of 2ME, prepared as a self-nanoemulsifying drug delivery system (SNEDDS), to inhibit IH induced by balloon injury (BI) in the rat carotid artery. The prepared 2ME SNEDDS had a particle size of 119 ± 2.3 nm and a zeta potential of -7.1 ± 1.4 mV. Animals were divided into 5 groups, namely control, sham, BI, BI + 2ME (100 μg/kg), and BI + 2ME (250 μg/kg). The obtained data indicated that 2ME significantly inhibited IH as indicated by the histological and morphometric assessment of the intima, media and lumen areas. This was associated with enhanced expression of Bax and inhibited expression of Bcl2 mRNA. Furthermore, 2ME exhibited significant antioxidant properties as evidenced by prevention of malondialdehyde accumulation as well as superoxide dismutase and catalase enzymatic exhaustion. In addition, 2ME showed significant anti-inflammatory actions as it significantly inhibited vascular content of interleukin-6, tumor necrosis factor-alpha, and nuclear factor-κB. The observed vasoprotective activities of 2ME were accompanied by inhibition of Janus kinase/signal transducers and activators of transcription (JAK/STAT) protein expression. In conclusion, this study revealed that 2ME ameliorates balloon injury-induced IH in rats via suppressing JAK/STAT axis. This may help to develop new strategies to combat IH.
Collapse
Affiliation(s)
- Ahmad S Azhar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pediatric Cardiac Center of Excellence, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
3
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
4
|
Zhang Y, Li P, Gao Q, Simoncini T, Fu X. 2-Methoxyestradiol prevents monocyte adhesion to vascular endothelial cells via downregulation of VCAM-1 expression. Gynecol Endocrinol 2016; 32:571-6. [PMID: 26880304 DOI: 10.3109/09513590.2016.1141880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
2-Methoxyestradiol (2-ME) reduces atherosclerotic lesion formation. However, the underlying mechanisms remain largely unknown. In this work, we investigated the effect of 2-ME on monocyte adhesion to vascular endothelial cells. Lipopolysaccharides (LPS) greatly increased the attachment of monocyte onto cultured human umbilical vascular endothelial cells (HUVECs), which was inhibited by 2-ME in a dose- and time-dependent manner, or by the vascular cell adhesion protein-1 (VCAM-1) neutralizing antibody, suggesting that a functional releationship between 2-ME and VCAM-1 may exist. In accordance with this, treatment with 2-ME (10(-)(7)-10(-)(5) M) for 6-48 h downregulated VCAM-1 protein expression. Meanwhile, the nuclear factor κB (NF-κB) p65 subunit activity and its nuclear translocation was inhibited by 2-ME in HUVECs. The PI3K inhibitor wortmannin or the specific Akt siRNA both inhibited the effects of 2-ME, suggesting that 2-ME inhibited p65 activity via PI3K/Akt signaling. In conclusion, 2-ME inhibits VCAM-1 expression and thus prevents monocyte adhesion to vascular endothelial cells via regulation of PI3K/Akt and NF-κB signaling. These findings will be helpful for better understanding the mechanisms through which 2-ME improves endothelial function.
Collapse
Affiliation(s)
- Yongfu Zhang
- a Department of Anesthesiology , Guangzhou Women and Children's Medical Center , Guangzhou, Guangdong Province , China
| | - Ping Li
- b School of Basic Sciences, Guangzhou Medical University , Guangzhou, Guangdong Province , China
| | - Qi Gao
- c Department of Anesthesiology , Longhua Hospital , Shenzhen, Guangdong Province , China , and
| | - Tommaso Simoncini
- d Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa , Pisa , Italy
| | - Xiaodong Fu
- b School of Basic Sciences, Guangzhou Medical University , Guangzhou, Guangdong Province , China
| |
Collapse
|
5
|
Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep 2016; 6:28612. [PMID: 27363580 PMCID: PMC4929442 DOI: 10.1038/srep28612] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens.
Collapse
|
6
|
Yorifuji T, Uchida T, Abe H, Toyofuku Y, Tamaki M, Fujitani Y, Hirose T, Kawamori R, Takeda S, Watada H. 2-Methoxyestradiol ameliorates glucose tolerance with the increase in β-cell mass in db/db mice. J Diabetes Investig 2014; 2:180-5. [PMID: 24843481 PMCID: PMC4014916 DOI: 10.1111/j.2040-1124.2010.00087.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Aims/Introduction: 2‐Methoxyestradiol (2ME) is an estradiol metabolite with little estrogenic activity. Previous data identified its anti‐carcinogenic properties and possible cardiovascular benefits. However, its effect on diabetes mellitus has not been fully elucidated. The aim of the present study was to determine the effects of 2ME on glucose metabolism in the diabetic state. Materials and Methods: To evaluate the effects of 2ME, pellets of two different doses of the drug were implanted into female db/db mice at the age of 5 weeks. Intraperitoneal glucose tolerance test and insulin tolerance test were carried out at the age of 8 weeks. The pancreas was harvested for morphological analysis and β‐cell function at the age of 9 weeks. Results: 2ME improved random blood glucose levels and glucose tolerance with increases in insulin levels during an intraperitoneal glucose tolerance test. Insulin sensitivity judged by an insulin tolerance test was comparable in the low‐ and high‐dose 2ME groups and the control group. Although glucose‐stimulated insulin secretion in isolated islets was comparable among the three groups, β‐cell mass in 2ME‐treated groups was higher than the control group. In the 2ME‐treated groups, the number of Ki67‐positive cells in islets was higher, whereas the number of cleaved caspase‐3‐positive cells was comparable with the control. Conclusions: 2ME ameliorates glucose tolerance by promoting the proliferation of β‐cell mass in db/db mice. Our data suggests its potential clinical usefulness as a disease‐modifying drug for type 2 diabetes mellitus. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00087.x, 2011)
Collapse
Affiliation(s)
| | | | | | | | | | - Yoshio Fujitani
- Medicine, Metabolism and Endocrinology ; Center for Therapeutic Innovations in Diabetes
| | - Takahisa Hirose
- Medicine, Metabolism and Endocrinology ; Center for Therapeutic Innovations in Diabetes
| | - Ryuzo Kawamori
- Medicine, Metabolism and Endocrinology ; Center for Therapeutic Innovations in Diabetes ; Center for Beta Cell Biology and Regeneration
| | | | - Hirotaka Watada
- Medicine, Metabolism and Endocrinology ; Center for Beta Cell Biology and Regeneration
| |
Collapse
|
7
|
Pinto MP, Medina RA, Owen GI. 2-methoxyestradiol and disorders of female reproductive tissues. Discov Oncol 2014; 5:274-83. [PMID: 24764201 DOI: 10.1007/s12672-014-0181-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022] Open
Abstract
2-Methoxyestradiol (2ME) is an endogenous metabolite of 17β-estradiol. Once thought of as a mere degradation product, 2ME has gained attention as an important component of reproductive physiology and as a therapeutic agent in reproductive pathologies such as preeclampsia, endometriosis, infertility, and cancer. In this review, we discuss the involvement of 2ME in reproductive pathophysiology and summarize its known mechanisms of action: microtubule disruption, inhibition of angiogenesis and stimulation of apoptosis. Currently, the clinical uses of 2ME as a single agent are limited due to its poor water solubility and thus low bioavailability; however, 2ME analogs and derivatives have been recently developed and tested as cancer treatments. Despite some isolated success stories and ongoing research, 2ME derivatives have not yet provided the expected results. The adjuvant use of 2ME derivatives with chemotherapeutic agents is hindered by their intrinsic toxicity confounding the unwanted secondary effects of chemotherapy. However, due to the well-tested tolerance of the body to high doses of native 2ME, it may the combination of native 2ME with conventional treatments that will offer novel clinically relevant regimens for cancer and other reproductive disorders.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
8
|
Evans CE, Grover SP, Humphries J, Saha P, Patel AP, Patel AS, Lyons OT, Waltham M, Modarai B, Smith A. Antiangiogenic Therapy Inhibits Venous Thrombus Resolution. Arterioscler Thromb Vasc Biol 2014; 34:565-70. [DOI: 10.1161/atvbaha.113.302998] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Colin E. Evans
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Steven P. Grover
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Julia Humphries
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Prakash Saha
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Anant P. Patel
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Ashish S. Patel
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Oliver T. Lyons
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Matt Waltham
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Bijan Modarai
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| | - Alberto Smith
- From the Academic Department of Vascular Surgery, Cardiovascular Division, Kings College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at Kings Health Partners, St Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
9
|
Quezada M, Alvarez M, Peña OA, Henríquez S, d' Alençon CA, Lange S, Oliva B, Owen GI, Allende ML. Antiangiogenic, antimigratory and antiinflammatory effects of 2-methoxyestradiol in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:141-9. [PMID: 23142146 DOI: 10.1016/j.cbpc.2012.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 12/13/2022]
Abstract
2-Methoxyestradiol (2ME), an endogenous metabolite of 17β-estradiol, has been previously reported to possess antiangiogenic and antitumor properties. Herein, we demonstrate that the effects of this antiangiogenic steroid can be readily assayed in live zebrafish, introducing a convenient and robust new model system as a screening tool for both single cell and collective cell migration assays. Using the in vitro mammalian endothelial cell line EA.hy926, we first show that cell migration and angiogenesis, as estimated by wound assay and tube formation respectively, are antagonized by 2ME. In zebrafish (Danio rerio) larvae, dose-dependent exposure to 2ME diminishes (1) larval angiogenesis, (2) leukocyte recruitment to damaged lateral line neuromasts and (3) retards the lateral line primordium in its migration along the body. Our results indicate that 2ME has an effect on collective cell migration in vivo as well as previously reported anti-tumorigenic activity and suggests that the molecular mechanisms governing cell migration in a variety of contexts are conserved between fish and mammals. Moreover, we exemplify the versatility of the zebrafish larvae for testing diverse physiological processes and screening for antiangiogenic and antimigratory drugs in vivo.
Collapse
Affiliation(s)
- Marisol Quezada
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhou M, Hamza A, Zhan CG, Thorson JS. Assessing the regioselectivity of OleD-catalyzed glycosylation with a diverse set of acceptors. JOURNAL OF NATURAL PRODUCTS 2013; 76:279-86. [PMID: 23360118 PMCID: PMC3607945 DOI: 10.1021/np300890h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To explore the acceptor regioselectivity of OleD-catalyzed glucosylation, the products of OleD-catalyzed reactions with six structurally diverse acceptors flavones- (daidzein), isoflavones (flavopiridol), stilbenes (resveratrol), indole alkaloids (10-hydroxycamptothecin), and steroids (2-methoxyestradiol)-were determined. This study highlights the first synthesis of flavopiridol and 2-methoxyestradiol glucosides and confirms the ability of OleD to glucosylate both aromatic and aliphatic nucleophiles. In all cases, molecular dynamics simulations were consistent with the determined product distribution and suggest the potential to develop a virtual screening model to identify additional OleD substrates.
Collapse
Affiliation(s)
- Maoquan Zhou
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Adel Hamza
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone St. Lexington, Kentucky 40536 USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone St. Lexington, Kentucky 40536 USA
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, 789 S. Limestone St. Lexington, Kentucky 40536 USA
| |
Collapse
|
11
|
Abstract
Estrogens not only play a pivotal role in sexual development but are also involved in several physiological processes in various tissues including vasculature. While several epidemiological studies documented an inverse relationship between plasma estrogen levels and the incidence of cardiovascular disease and related it to the inhibition of atherosclerosis, an interventional trial showed an increase in cardiovascular events among postmenopausal women on estrogen treatment. The development of atherosclerotic lesions involves complex interplay between various pro- or anti-atherogenic processes that can be effectively studied only in vivo in appropriate animal models. With the advent of genetic engineering, transgenic mouse models of atherosclerosis have supplemented classical dietary cholesterol-induced disease models such as the cholesterol-fed rabbit. In the last two decades, these models were widely applied along with in vitro cell systems to specifically investigate the influence of estrogens on the development of early and advanced atherosclerotic lesions. The present review summarizes the results of these studies and assesses their contribution toward better understanding of molecular mechanisms underlying anti- and/or pro-atherogenic effects of estrogens in humans.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Albert Schweizer Campus 1, Gebäude A1, 48129 Münster, Germany.
| |
Collapse
|
12
|
Masood DEN, Roach EC, Beauregard KG, Khalil RA. Impact of sex hormone metabolism on the vascular effects of menopausal hormone therapy in cardiovascular disease. Curr Drug Metab 2011; 11:693-714. [PMID: 21189141 DOI: 10.2174/138920010794233477] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 10/25/2010] [Indexed: 12/24/2022]
Abstract
Epidemiological studies have shown that cardiovascular disease (CVD) is less common in pre-menopausal women (Pre-MW) compared to men of the same age or post-menopausal women (Post-MW), suggesting cardiovascular benefits of estrogen. Estrogen receptors (ERs) have been identified in the vasculature, and experimental studies have demonstrated vasodilator effects of estrogen/ER on the endothelium, vascular smooth muscle (VSM) and extracellular matrix. Several natural and synthetic estrogenic preparations have been developed for relief of menopausal vasomotor symptoms. However, whether menopausal hormone therapy (MHT) is beneficial in postmenopausal CVD remains controversial. Despite reports of vascular benefits of MHT from observational and experimental studies, randomized clinical trials (RCTs), such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women's Health Initiative (WHI), have suggested that, contrary to expectations, MHT may increase the risk of CVD. These discrepancies could be due to agerelated changes in sex hormone synthesis and metabolism, which would influence the effective dose of MHT and the sex hormone environment in Post-MW. Age-related changes in the vascular ER subtype, structure, expression, distribution, and post-ER signaling pathways in the endothelium and VSM, along with factors related to the design of RCTs, preexisting CVD condition, and structural changes in the blood vessels architecture have also been suggested as possible causes of MHT failure in CVD. Careful examination of these factors should help in identifying the causes of the changes in the vascular effects of estrogen with age. The sex hormone metabolic pathways, the active versus inactive estrogen metabolites, and their effects on vascular function, the mitochondria, the inflammatory process and angiogenesis should be further examined. Also, the genomic and non-genomic effects of estrogenic compounds should be viewed as integrated rather than discrete responses. The complex interactions between these factors highlight the importance of careful design of MHT RCTs, and the need of a more customized approach for each individual patient in order to enhance the vascular benefits of MHT in postmenopausal CVD.
Collapse
Affiliation(s)
- Durr-e-Nayab Masood
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
13
|
Synergistic therapeutic effects of 2-methoxyestradiol with either sildenafil or bosentan on amelioration of monocrotaline-induced pulmonary hypertension and vascular remodeling. J Cardiovasc Pharmacol 2011; 56:475-83. [PMID: 20881615 DOI: 10.1097/fjc.0b013e3181f215e7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
2-Methoxyestradiol (2ME) is a major nonestrogenic metabolite of estradiol. Our previous studies suggest that 2ME, in several models of cardiac and/or vascular injury, strongly inhibits cardiac and vascular remodeling. Furthermore, our most recent study shows that in male rats, 2ME attenuates the development and retards the progression of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH), and in female rats, 2ME eliminates the exacerbation of PAH and the increased mortality due to ovariectomy. The current standard of care of patients with PAH includes treatment with an endothelin receptor antagonist (eg, bosentan) or a phosphodiesterase5 inhibitor (eg, sildenafil). Moreover, combination therapy is often prescribed. Therefore, in the present study, we compared the efficacy of 2ME (10 μg · kg(-1) · h(-1), 2ME-10) to the effects of bosentan (200 mg/kg; BOS), sildenafil (50 mg/kg; SIL), and their respective combinations with 2ME-10 (2ME + BOS and 2ME + SIL groups, respectively). Treatments were initiated 12 days after administration of MCT (60 mg/kg). Twenty-eight days after MCT administration, right ventricular peak systolic pressure was measured and morphometric analysis was conducted. 2ME exhibited beneficial effects in pulmonary hypertensive animals and had efficacy comparable to that of BOS and SIL. Importantly, combination treatments had favorable effects on survival, vascular remodeling, and inflammatory response, and the 2ME + SIL combination was significantly more efficacious than any other treatment. These results indicate that 2ME is effective in experimental PAH and suggests that 2ME may provide additional therapeutic benefit over existing drugs used for the treatment of pulmonary hypertension.
Collapse
|
14
|
Verenich S, Gerk PM. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm 2010; 7:2030-9. [PMID: 20831190 DOI: 10.1021/mp100190f] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
2-Methoxyestradiol (2MeO-E2) is an endogenous metabolite of estrogen which was initially considered to be inactive. During the last few decades it has been shown that 2MeO-E2 is a promising anticancer drug. In vitro experiments have demonstrated that it has several anticancer activities, and potential to alleviate hypertension, glomerulosclerosis, hypercholesterolemia, and other disorders. However, due to its low solubility and extensive glucuronidation, to achieve effective concentrations large doses of 2MeO-E2 would be required. Clinical studies reflected very high inter- and intrapatient variability and oral bioavailability of 1 to 2%. Thus, this review paper highlights the origin of this compound, its therapeutic promises, and possible mechanisms of action. It also discusses the pharmacokinetic properties of 2MeO-E2 as well as current developments to overcome low drug solubility and its extensive first pass metabolism.
Collapse
Affiliation(s)
- Svetlana Verenich
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, PO Box 980533, Richmond, Virginia 23298-0581, USA
| | | |
Collapse
|
15
|
Dubey RK, Jackson EK. Potential vascular actions of 2-methoxyestradiol. Trends Endocrinol Metab 2009; 20:374-9. [PMID: 19734053 PMCID: PMC2761235 DOI: 10.1016/j.tem.2009.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 04/03/2009] [Accepted: 04/07/2009] [Indexed: 12/29/2022]
Abstract
2-Methoxyestradiol (2-ME) is a biologically active metabolite of 17beta-estradiol that appears to inhibit key processes associated with cell replication in vitro. The molecule has been suggested to have potent growth-inhibitory effects on proliferating cells, including smooth muscle cells and endothelial cells, and may be antiangiogenic. Because of these potential roles for 2-ME, its lack of cytotoxicity and low estrogenic activity, we hypothesize that 2-ME could be a valuable therapeutic molecule for prevention and treatment of cardiovascular diseases. Whether 2-ME is as effective in vivo as it is in vitro at modulating vascular processes remains controversial. Here we discuss recent developments regarding mechanisms by which 2-ME might regulate vascular activity and angiogenesis and speculate on the therapeutic implications of these developments.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- Clinic for Reproductive Endocrinology, Department of Obstetrics and Gynecology, Zurich Center for Integrative Human Physiology, University Hospital Zurich, Frauenklinikstrasse, Zurich, Switzerland.
| | | |
Collapse
|
16
|
2-methoxyestradiol attenuates bleomycin-induced pulmonary hypertension and fibrosis in estrogen-deficient rats. Vascul Pharmacol 2009; 51:190-7. [PMID: 19540933 DOI: 10.1016/j.vph.2009.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 05/01/2009] [Accepted: 06/09/2009] [Indexed: 12/13/2022]
Abstract
Pulmonary hypertension (PH) is a common and life-threatening complication of pulmonary fibrosis. Estradiol (E2) is protective in experimental PH, and its non-estrogenic metabolite 2-methoxyestradiol (2ME) prevents the development and retards the progression of monocrotaline-induced PH in male and female rats. However, the effects of E2 and 2ME on pulmonary fibrosis and associated PH have not been examined. Therefore, we compared the growth inhibitory effects of E2 and 2ME in human lung fibroblasts (hLFs) and pulmonary vascular smooth muscle cells (hPASMCs), and we investigated the effects of estrogen deficiency and 2ME on bleomycin-induced pulmonary fibrosis and PH. Intact and ovariectomized (OVX) female Sprague-Dawley rats were administered intratracheally either saline or bleomycin (15IU/kg), and a subset of OVX bleomycin-treated rats received 2ME (10microg/kg/h) for 21days. Estradiol had only limited inhibitory effects on growth in hPASMCs and no effect in hLFs, whereas 2ME exhibited strong and concentration-dependent (1-10microM) antimitogenic effects in both cell types. Bleomycin caused lung injury/PH (significantly increased lung and right ventricle (RV) weights, RV peak systolic pressure (RVPSP), and RV/left ventricle + septum ratio (RV/LV + S); caused medial hypertrophy and adventitial widening of pulmonary arteries; induced marked focal/diffuse fibrosis with diffuse infiltration of inflammatory (ED1+) cells; and resulted in 30% mortality). OVX exacerbated the disease and increased mortality (to 75%); whereas 2ME tended to reduce mortality (55.5%) and in surviving animals reduced RVPSP and RV/LV + S ratio, and attenuated vascular remodeling, pulmonary inflammation and fibrosis. This study suggests that 2ME may have protective effects in bleomycin-induced PH and fibrosis. Further investigation of 2ME in pulmonary fibrosis and PH is warranted.
Collapse
|
17
|
Bonacasa B, Sanchez ML, Rodriguez F, Lopez B, Quesada T, Fenoy FJ, Hernández I. 2-Methoxyestradiol attenuates hypertension and coronary vascular remodeling in spontaneously hypertensive rats. Maturitas 2008; 61:310-6. [PMID: 19010616 DOI: 10.1016/j.maturitas.2008.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Accumulating data provide evidence that some metabolites of 17beta-estradiol are biologically active and mediate multiple effects on the cardiovascular and renal systems. We investigated the effect of 2-methoxyestradiol (an active metabolite of estradiol with non-feminizing activity) on the development of hypertension and myocardial vascular remodeling in male and female ovarectomized SHR. METHODS Rats were divided into five groups: intact females, ovarectomized (OVX), OVX+ 2-methoxyestradiol (2ME), control males, and male+2ME. Systolic blood pressure was determined from 10 to 18 weeks. Structural changes in coronary vessels were quantified by an image analyzer. Immunoblotting of phosphorylated ERK1/2 and NADPH oxidase activity were performed on mesenteric arteries. RESULTS Treatment with 2ME reduced the increase in systolic blood pressure in male and ovarectomized rats to values not different from those obtained in intact females. Myocardial arterioles and small arteries showed significant increases in wall-to-lumen ratio and perivascular fibrosis in male and ovarectomized rats when compared with intact females. NADPH oxidase activity was increased in mesenteric arteries from males and ovarectomized females as compared with intact females. Finally, the expression of phosphorilated ERK1/2 were significantly higher in mesenteric arteries from male and ovariectomized animals than in those from intact females. Those effects of ovarectomy and gender differences were totally or partially prevented by treatment with 2-methoxyestradiol. CONCLUSIONS These data demonstrate that 2-methoxyestradiol protects the vasculature from hypertension-induced myocardial arterial remodeling in male and ovarectomized SHR, and that might be in part related to decreased superoxide generation and ERK1/2 activation.
Collapse
Affiliation(s)
- B Bonacasa
- Department of Physiology, Facultad de Medicina, Universidad de Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Motojima K, Azuma K, Kitahara Y, Miura K, Mita T, Hirose T, Fujitani Y, Kawamori R, Watada H. Repetitive postprandial hypertriglyceridemia induces monocyte adhesion to aortic endothelial cells in Goto-Kakizaki rats. Endocr J 2008; 55:373-9. [PMID: 18379124 DOI: 10.1507/endocrj.k07e-124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To compare the effects of postprandial hypertriglyceridemia and postprandial hyperglycemia on monocyte adhesion to endothelial cells, we investigated the effects of twice-daily standard diet (5% fat) and high-fat diet (30% fat) for 3 weeks on monocyte adhesion to endothelial cells and the expression of adhesion molecules in the aortic artery in non-obese type 2 diabetic Goto-Kakizaki rats. Fasting glucose, insulin, non-esterified fatty acid (NEFA), HbA1c, and body weight were comparable between the two diet groups. Postprandial glucose and insulin were higher in the standard diet group, while postprandial NEFA and triglyceride were higher in the high fat diet group, compared with the other group. The number of monocyte adherent to endothelial cells was higher in the high-fat diet group than the standard diet group. Consumption of high-fat diet resulted in overexpression of heme oxygenase-1, intercellular adhesion molecule-1 (ICAM-1), and connecting segment-1 fibronectin on the arterial wall, compared with standard diet. Thus, our data demonstrated that short-term intermittent high-fat diet prevented postprandial hyperglycemia in a model of type 2 diabetes without a significant increase in body weight. However, the resulting postprandial hypertriglyceridemia induces more monocyte adhesion to endothelial cells than postprandial hyperglycemia. This increased monocyte adhesion is associated with the increased aortic expression of adhesion molecules such as ICAM-1, and connecting segment-1 fibronectin.
Collapse
Affiliation(s)
- Kayoko Motojima
- Department of Medicine, Metabolism and Endocrinology, Juntendo University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Issekutz AC, Sapru K. Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an anti-angiogenic action. Int Immunopharmacol 2008; 8:708-16. [PMID: 18387513 DOI: 10.1016/j.intimp.2008.01.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a prominent feature in rheumatoid arthritis. 2-methoxyestradiol (2ME2) inhibits endothelial cell proliferation, and angiogenesis in vivo. We evaluated the effect of 2ME2 in rats with adjuvant arthritis (AA), an autoimmune T-cell-dependent polyarticular arthritis induced by immunization with Mycobacterium organisms. Rats were immunized with Mycobacterium butyricum and arthritis was assessed clinically, by radiolabeled blood neutrophil (PMNL) migration to joints and by histology. Treatment with 2ME2 (30 mg/kg/d or 100 mg/kg/d) from day 6 post-immunization inhibited arthritis severity on day 14 (vehicle clinical score=11.2; 2ME2 groups=7-8, p<0.05). When treatment was delayed until signs of clinical arthritis on day 10 post-immunization, 2ME2 treatment still inhibited arthritis severity. PMNL migration to the joints was significantly inhibited (by 35-40%; p<0.01) by early 2ME2 treatment (day 6-14). Treatment with 2ME2 inhibited PMNL migration to dermal inflammation induced by TNF-alpha but not by LPS or C5a. Joint histology revealed decrease in leukocyte infiltration and especially in cartilage damage. However, synovial vascularity was not affected by 2ME2 treatment. The marked splenomegaly, splenitis and lymphoid hyperplasia associated with AA were prevented by 2ME2 therapy. Furthermore, the ex vivo proliferative response to mycobacterial antigen (PPD) of lymphocytes from 2ME2-treated rats with AA was markedly diminished, although response to mitogens was unaffected. Thus 2ME2 has anti-arthritic properties with a disease-modifying action, separate from its anti-angiogenic properties. The selective inhibition of TNF-alpha-induced leukocyte recruitment, lymphoid hyperplasia and attenuated recall response to antigen suggests both immunomodulatory and anti-inflammatory actions of 2ME2.
Collapse
Affiliation(s)
- Andrew C Issekutz
- Department of Pediatrics Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|