1
|
Tao JQ, Chen Y. [Clinical value of renal phosphorus threshold in the diagnosis and treatment X-linked hypophosphatemic rickets in children]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:926-932. [PMID: 39267507 PMCID: PMC11404464 DOI: 10.7499/j.issn.1008-8830.2401056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
OBJECTIVES To explore the clinical value of the renal phosphorus threshold (ratio of tubular maximum reabsorption of phosphate to glomerular filtration rate, TmP/GFR) in the diagnosis and treatment of children with X-linked hypophosphatemic rickets (XLH). METHODS A retrospective study was conducted, including 83 children diagnosed with XLH at Children's Hospital of Nanjing Medical University from January 2010 to January 2023. Initial diagnosis and follow-up data were collected to investigate the correlation of TmP/GFR with the severity of rickets, calcium and phosphorus metabolism indicators, and the dosage of phosphate treatment. Children were divided into two groups based on the occurrence of renal calcification: the renal calcification group (n=47) and the non-renal calcification group (n=36). Clinical data between the two groups were compared. Multivariate logistic regression analysis was used to identify factors influencing renal calcification in XLH children. The predictive value of TmP/GFR for renal calcification in XLH children was evaluated using receiver operating characteristic (ROC) curves. RESULTS In the 83 XLH children, the initial TmP/GFR was (0.78±0.21) mmol/L, with significant individual variation (range: 0.28-1.24 mmol/L). TmP/GFR showed no significant correlation with the severity of rickets (P>0.05). Parathyroid hormone was negatively correlated with TmP/GFR (rs=-0.020, P=0.008), while blood phosphorus (rs=0.384, P<0.001), blood calcium (rs=0.251, P<0.001), and 25-hydroxyvitamin D (rs=0.179, P<0.001) were positively correlated with TmP/GFR. No significant correlation was found between TmP/GFR and alkaline phosphatase (rs=-0.002, P=0.960) or phosphate treatment dosage (rs=0.012, P=0.800). Blood calcium and TmP/GFR levels were significantly lower in the renal calcification group than in the non-renal calcification group (P<0.05), while parathyroid hormone and urine calcium levels were significantly higher in the renal calcification group (P<0.05). Multivariate logistic regression analysis indicated that TmP/GFR and urine calcium levels were closely associated with renal calcification in XLH children (P<0.05). ROC curve analysis revealed that the areas under the curve for TmP/GFR, urine calcium, and their combined detection predicting renal calcification in XLH children were 0.696, 0.679, and 0.761, respectively. CONCLUSIONS TmP/GFR may serve as an important diagnostic indicator for pediatric XLH; however, it does not reflect the severity or activity of rickets and cannot be used to judge the efficacy of traditional treatment. Urine calcium and TmP/GFR are valuable predictors for renal calcification in XLH children.
Collapse
Affiliation(s)
- Jia-Qi Tao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ying Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
2
|
Nabeshima Y, Sato T, Zukeran H, Komatsu R, Nakano S, Ichihashi Y, Tominaga T, Miwa M, Amano N, Ishii T, Hasegawa T. Fibroblast growth factor 23 levels in cord and peripheral blood during early neonatal period as possible predictors of affected offspring of X-linked hypophosphatemic rickets: report of three female cases from two pedigrees. J Pediatr Endocrinol Metab 2023; 36:786-790. [PMID: 37342899 DOI: 10.1515/jpem-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The role of serum fibroblast growth factor 23 (FGF23) level in early neonatal period on the diagnosis of X-linked hypophosphatemic rickets (XLH) remains unclear. CASE PRESENTATION Two female patients from the first pedigree had an affected mother, and the other female from the second pedigree had an affected father. In all three cases, FGF23 levels were high in cord blood and peripheral blood at day 4-5. Additionally, the FGF23 levels considerably increased from birth to day 4-5. We identified a PHEX pathogenic variant and initiated treatment during infancy in each case. CONCLUSIONS In neonates with a parent diagnosed as PHEX-associated XLH, FGF23 in cord blood and peripheral blood at day 4-5 may be useful markers for predicting the presence of XLH.
Collapse
Affiliation(s)
- Yukiyo Nabeshima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Metropolitan Hospital Otsuka, Tokyo, Japan
| | - Takeshi Sato
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Zukeran
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Komatsu
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Satsuki Nakano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Ichihashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Masayuki Miwa
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Naoko Amano
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Kubota M, Hamasaki Y, Hashimoto J, Aoki Y, Kawamura T, Saito A, Yuasa R, Muramatsu M, Komaba H, Toyoda M, Fukagawa M, Shishido S, Sakai K. Fibroblast growth factor 23-Klotho and mineral metabolism in the first year after pediatric kidney transplantation: A single-center prospective study. Pediatr Transplant 2023; 27:e14440. [PMID: 36471536 DOI: 10.1111/petr.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The role of fibroblast growth factor 23 (FGF23) levels in mineral metabolism before and after kidney transplantation in pediatric patients is poorly understood. METHODS We prospectively evaluated 24 patients under 18 years of age (4.5 [3.3-9.8] years) who underwent living kidney transplantation between July 2016 and March 2018, and measured intact FGF23 and serum αKlotho levels, and other parameters of mineral metabolism before and after transplantation (Day 7, 1 and 4 months, and 1 year). Relationships between parameters were examined by linear analysis. RESULTS FGF23 level was 440.8 [63.4-5916.3] pg/ml pre-transplant and decreased significantly to 37.1 [16.0-71.5] pg/ml at Day 7 post-transplant (-91.6%, p < .001). Thereafter, it remained at normal levels until 1 year. αKlotho level was 785 [568-1292] pg/ml pre-transplant and remained low at Day 7 and 1 month post-transplant, with an increasing trend at 4 months. Post-transplant phosphorus levels were significantly decreased compared with pre-transplant, with a lowest level of 1.7 [1.3-2.9] mg/dl, -5.7 [-6.8, -3.8] SD at Day 4, followed by gradual recovery. Phosphorus levels and the ratio of tubular maximum phosphate reabsorption were significantly and negatively associated with pre-transplant FGF23 until 4 months of post-transplant. Pre-transplant αKlotho was negatively associated with pre-transplant FGF23 but not FGF23 or other parameters after transplantation. CONCLUSION FGF23 in pediatric kidney transplant patients decreased rapidly after transplantation and associated with post-transplant hypophosphatemia and increased phosphorus excretion. Post-transplant αKlotho was low early post-transplant but tended to increase subsequently. Post-transplant αKlotho was unaffected by pre-transplant FGF23 or other factors, suggesting pre-transplant chronic kidney disease status has no effect.
Collapse
Affiliation(s)
- Mai Kubota
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Yuko Hamasaki
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Junya Hashimoto
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Yujiro Aoki
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Takeshi Kawamura
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Akinobu Saito
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Rena Yuasa
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Masaki Muramatsu
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Seichiro Shishido
- Department of Pediatric Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| | - Ken Sakai
- Department of Nephrology, Toho University, Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare type of hereditary hypophosphatemic rickets. Patients with XLH have various symptoms that lower their QOL as defined by HAQ, RAPID3, SF36-PCS, and SF36-MCS in adult patients and SF-10 and PDCOI in pediatric patients. Early diagnosis and treatment are needed to reduce the burden, but the condition is often diagnosed late in childhood. The present review aims to summarize the symptoms, radiological and biological characteristics, and long-term prognosis of pediatric XLH. Typical symptoms of XLH are lower leg deformities (age six months or later), growth impairment (first year of life or later), and delayed gross motor development with progressive lower limb deformities (second year of life or later). Other symptoms include dental abscess, bone pain, hearing impairment, and Chiari type 1 malformation. Critical, radiological findings of rickets are metaphyseal widening, cupping, and fraying, which tend to occur in the load-bearing bones. The Rickets Severity Score, validated for XLH, is useful for assessing the severity of rickets. The biochemical features of XLH include elevated FGF23, hypophosphatemia, low 1,25(OH)2D, and elevated urine phosphate. Renal phosphate wasting can be assessed using the tubular maximum reabsorption of phosphate per glomerular filtration rate (TmP/GFR), which yields low values in patients with XLH. XLH should be diagnosed early because the multisystem symptoms often worsen over time. The present review aims to help physicians diagnose XLH at an early stage.
Collapse
|
5
|
Jin JY, Zhang LY, Guo S, Tang K, Zeng L, Xiang R, Liang JY. Genetic analysis combined with 3D-printing assistant surgery in diagnosis and treatment for an X-linked hypophosphatemia patient. J Clin Lab Anal 2022; 36:e24243. [PMID: 35106857 PMCID: PMC8906030 DOI: 10.1002/jcla.24243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022] Open
Abstract
Background Hypophosphatemia is mainly characterized by hypophosphatemia and a low level of 1alpha,25‐Dihydroxyvitamin D2 (1,25‐(OH)2D2) and/or 1alpha,25‐Dihydroxyvitamin D3 (1,25‐(OH)2D3) in the blood. Previous studies have demonstrated that variants in PHEX and FGF23 are primarily responsible for this disease. Although patients with variants of these two genes share almost the same symptoms, they exhibit the different hereditary pattern, X‐link dominant and autosome dominant, respectively. Three‐dimensional (3D) printing is a method which can accurately reconstruct physical objects, and its applications in orthopedics can contribute to realizing a more accurate surgical performance and a better outcome. Methods An X‐linked hypophosphatemia (XLH) family was recruited, with four patients across three generations. We screened candidate genes and filtered a duplication variant in PHEX. Variant analysis and co‐segregation confirmation were then performed. Before the operation of our patient, a digital model of our patient's leg had been rebuilt upon the CT scan data, and a polylactic acid (PLA) model had been 3D‐printed. Results A novel duplication PHEX variant c.574dupG (p.A192GfsX20) was identified in a family with XLH. Its pathogenicity was confirmed by the co‐segregation assay and online bioinformatics database. The preoperative plan was made with the help of the PLA model. Then, arch osteotomy and transverse osteotomy were performed under the guidance of the previous simulation. The appearance of the surgical‐intervened leg was satisfactory. Conclusions This study identified a novel PHEX variant and showed that 3D printing tech is a very promising approach for corrective osteotomies.
Collapse
Affiliation(s)
- Jie-Yuan Jin
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| | - Li-Yang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Shuai Guo
- School of Life Sciences, Central South University, Changsha, China
| | - Ke Tang
- School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lei Zeng
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Xiang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jie-Yu Liang
- Department of Orthopaedics, Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
6
|
Marcucci G, Brandi ML. Congenital Conditions of Hypophosphatemia Expressed in Adults. Calcif Tissue Int 2021; 108:91-103. [PMID: 32409880 DOI: 10.1007/s00223-020-00695-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023]
Abstract
The main congenital conditions of hypophosphatemia expressed in adulthood include several forms of hereditary hypophosphatemic rickets and a congenital disorder of vitamin D metabolism characterized by osteomalacia and hypophosphatemia in adult patients. Hypophosphatemia in adults is defined as serum phosphate concentration < 0.80 mmol/L. The principal regulators of phosphate homeostasis, as is well known, are parathyroid hormone (PTH), activated vitamin D, and Fibroblast Growth Factor 23 (FGF23). Differential diagnosis of hypophosphatemia is based on the evaluation of mechanisms leading to this alteration, such as high PTH activity, inadequate phosphate absorption from the gut, or renal phosphate wasting, either due to primary tubular defects or high FGF23 levels. The most common inherited form associated to hypophosphatemia is X-linked hypophosphatemic rickets (XLH), caused by PHEX gene mutations with enhanced secretion of the FGF23. Until now, the management of hypophosphatemia in adulthood has been poorly investigated. It is widely debated whether adult patients benefit from the conventional treatments normally used for pediatric patients. The new treatment for XLH with burosumab, a recombinant human IgG1 monoclonal antibody that binds to FGF23, blocking its activity, may change the pharmacological management of adult subjects with hypophosphatemia associated to FGF23-dependent mechanisms.
Collapse
Affiliation(s)
- Gemma Marcucci
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Florence, Italy
| | - Maria Luisa Brandi
- Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, AOU Careggi, Florence, Italy.
- Head Bone Metabolic Diseases Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Largo Palagi 1, 50139, Florence, Italy.
| |
Collapse
|
7
|
Lin Y, Xu J, Li X, Sheng H, Su L, Wu M, Cheng J, Huang Y, Mao X, Zhou Z, Zhang W, Li C, Cai Y, Wu D, Lu Z, Yin X, Zeng C, Liu L. Novel variants and uncommon cases among southern Chinese children with X-linked hypophosphatemia. J Endocrinol Invest 2020; 43:1577-1590. [PMID: 32253725 DOI: 10.1007/s40618-020-01240-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE X-linked hypophosphatemia (XLH) is the most common inherited renal phosphate wasting disorder and is often misdiagnosed as vitamin D deficiency. This study aims to provide clinical and mutational characteristics of 65 XLH pediatric patients in southern China. METHODS In this work, a combination of DNA sequencing and qPCR analysis was used to study the PHEX gene in 80 pediatric patients diagnosed with hypophosphatemia. The clinical and laboratory data of confirmed 65 XLH patients were assessed and analyzed retrospectively. RESULTS In 65 XLH patients from 61 families, 51 different variants in the PHEX gene were identified, including 23 previously reported variants and 28 novel variants. In this cohort of XLH patients, the c.1601C>T(p.Pro534Leu) variant appears more frequently. Fourteen uncommon XLH cases were described, including four boys with de novo mosaic variants, eight patients with large deletions and a pair of monozygotic twins. The clinical manifestations in this cohort are very similar to those previously reported. CONCLUSION This study extends the mutational spectrum of the PHEX gene, which will contribute to accurate diagnosis. This study also suggests a supplementary qPCR or MLPA assay may be performed along with classical sequencing to confirm the gross insertion/deletion.
Collapse
Affiliation(s)
- Y Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - J Xu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - H Sheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - L Su
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - M Wu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - J Cheng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Y Huang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Mao
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Z Zhou
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - W Zhang
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - C Li
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Y Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - D Wu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - Z Lu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - X Yin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China
| | - C Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| | - L Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Rd., Guangzhou, 510623, China.
| |
Collapse
|
8
|
Torregrosa JV, Sánchez Del Pozo J, Luiz Yanes MI, Muñoz Torres M. Panel Discussion: Some Aspects of the Management of Patients with X-Linked Hypophosphataemic Rickets. Adv Ther 2020; 37:121-126. [PMID: 32236878 DOI: 10.1007/s12325-019-01208-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/01/2022]
Abstract
X-linked hypophosphataemia (XLH) rickets is a rare disease frequently misdiagnosed and mismanaged. Despite having clinical guidelines that offers some therapeutic recommendations based on the clinical experience of experts, physicians still have questions about some important aspects of the diagnosis and treatment of XLH, such as when the disease should be suspected, who should be in charge of the diagnosis, what should be done once the disease is diagnosed, or what therapeutic options are currently available. The objective of this paper is to answer some of the more frequent questions related to the management of patients with XLH by a group of experts participating in a scientific conference on XLH held in Madrid.
Collapse
Affiliation(s)
- José-Vicente Torregrosa
- Servicio de Nefrología y Trasplante Renal, Hospital Clinic, Universidad de Barcelona, Barcelona, Spain.
| | - Jaime Sánchez Del Pozo
- Sección de Endocrinología, Nutrición y Dismorfología Pediátrica, Servicio de Pediatría, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - María Isabel Luiz Yanes
- Unidad de Nefrología Pediátrica, Servicio de Pediatría, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Manuel Muñoz Torres
- Departamento de Medicina, Universidad de Granada, UGC Endocrinología y Nutrición. Hospital Universitario San Cecilio, CIBERFES, Instituto de Salud Carlos III, Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|
9
|
Wagner CA, Rubio-Aliaga I, Egli-Spichtig D. Fibroblast growth factor 23 in chronic kidney disease: what is its role in cardiovascular disease? Nephrol Dial Transplant 2019; 34:1986-1990. [PMID: 30903187 DOI: 10.1093/ndt/gfz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/10/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carsten A Wagner
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daniela Egli-Spichtig
- National Center of Competence in Research Kidney, CH, Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 2019; 15:435-455. [PMID: 31068690 PMCID: PMC7136170 DOI: 10.1038/s41581-019-0152-5] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
X-linked hypophosphataemia (XLH) is the most common cause of inherited phosphate wasting and is associated with severe complications such as rickets, lower limb deformities, pain, poor mineralization of the teeth and disproportionate short stature in children as well as hyperparathyroidism, osteomalacia, enthesopathies, osteoarthritis and pseudofractures in adults. The characteristics and severity of XLH vary between patients. Because of its rarity, the diagnosis and specific treatment of XLH are frequently delayed, which has a detrimental effect on patient outcomes. In this Evidence-Based Guideline, we recommend that the diagnosis of XLH is based on signs of rickets and/or osteomalacia in association with hypophosphataemia and renal phosphate wasting in the absence of vitamin D or calcium deficiency. Whenever possible, the diagnosis should be confirmed by molecular genetic analysis or measurement of levels of fibroblast growth factor 23 (FGF23) before treatment. Owing to the multisystemic nature of the disease, patients should be seen regularly by multidisciplinary teams organized by a metabolic bone disease expert. In this article, we summarize the current evidence and provide recommendations on features of the disease, including new treatment modalities, to improve knowledge and provide guidance for diagnosis and multidisciplinary care.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany.
- Center for Congenital Kidney Diseases, Center for Rare Diseases, Hannover Medical School, Hannover, Germany.
| | - Francesco Emma
- Department of Pediatric Subspecialties, Division of Nephrology, Children's Hospital Bambino Gesù - IRCCS, Rome, Italy
| | - Deborah M Eastwood
- Department of Orthopaedics, Great Ormond St Hospital for Children, Orthopaedics, London, UK
- The Catterall Unit Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK
| | - Martin Biosse Duplan
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Justine Bacchetta
- Department of Pediatric Nephrology, Rheumatology and Dermatology, University Children's Hospital, Lyon, France
| | - Dirk Schnabel
- Center for Chronic Sick Children, Pediatric Endocrinology, Charitè, University Medicine, Berlin, Germany
| | - Philippe Wicart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Pediatric Orthopedic Surgery, Necker - Enfants Malades University Hospital, Paris, France
- Paris Descartes University, Paris, France
| | - Detlef Bockenhauer
- University College London, Centre for Nephrology and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fernando Santos
- Hospital Universitario Central de Asturias (HUCA), University of Oviedo, Oviedo, Spain
| | - Elena Levtchenko
- Department of Pediatric Nephrology and Development and Regeneration, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Pol Harvengt
- RVRH-XLH, French Patient Association for XLH, Suresnes, France
| | - Martha Kirchhoff
- Phosphatdiabetes e.V., German Patient Association for XLH, Lippstadt, Germany
| | - Federico Di Rocco
- Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Centre de Référence Craniosténoses, Université de Lyon, Lyon, France
| | - Catherine Chaussain
- Dental School, Université Paris Descartes Sorbonne Paris Cité, Montrouge, France
- APHP, Department of Odontology, Bretonneau Hospital, Paris, France
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
| | - Maria Louisa Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Lars Savendahl
- Pediatric Endocrinology Unit, Karolinska University Hospital, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Karine Briot
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- Paris Descartes University, Paris, France
- APHP, Department of Rheumatology, Cochin Hospital, Paris, France
- INSERM UMR-1153, Paris, France
| | - Peter Kamenicky
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- APHP, Department of Endocrinology and Reproductive Diseases, Bicêtre Paris-Sud Hospital, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Lars Rejnmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Agnès Linglart
- APHP, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, and Filière OSCAR, Paris, France
- INSERM U1185, Bicêtre Paris-Sud, Paris-Sud - Paris Saclay University, Le Kremlin-Bicêtre, France
- APHP, Platform of Expertise of Paris-Sud for Rare Diseases and Filière OSCAR, Bicêtre Paris-Sud Hospital (HUPS), Le Kremlin-Bicêtre, France
- APHP, Endocrinology and Diabetes for Children, Bicêtre Paris-Sud Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Marcucci G, Masi L, Ferrarì S, Haffner D, Javaid MK, Kamenický P, Reginster JY, Rizzoli R, Brandi ML. Phosphate wasting disorders in adults. Osteoporos Int 2018; 29:2369-2387. [PMID: 30014155 DOI: 10.1007/s00198-018-4618-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
A cause of hypophosphatemia is phosphate wasting disorders. Knowledge concerning mechanisms involved in phosphate wasting disorders has greatly increased in the last decade by the identification of phosphatonins, among them FGF-23. FGF-23 is a primarily bone derived factor decreasing renal tubular reabsorption of phosphate and the synthesis of calcitriol. Currently, pharmacological treatment of these disorders offers limited efficacy and is potentially associated to gastrointestinal, renal, and parathyroid complications; therefore, efforts have been directed toward newer pharmacological strategies that target the FGF-23 pathway. This review focuses on phosphate metabolism, its main regulators, and phosphate wasting disorders in adults, highlighting the main issues related to diagnosis and current and new potential treatments.
Collapse
Affiliation(s)
- G Marcucci
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - L Masi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - S Ferrarì
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - D Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - M K Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - P Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, Centre de référence des Maladies Rares du métabolisme du calcium et du phosphore, Hopital de Bicêtre - AP-HP, 94275, Le Kremlin-Bicêtre, France
| | - J-Y Reginster
- Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium
| | - R Rizzoli
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - M L Brandi
- Metabolic Bone Diseases Unit, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
12
|
Miyai K, Ariyasu D, Numakura C, Yoneda K, Nakazato H, Hasegawa Y. Hypophosphatemic rickets developed after treatment with etidronate disodium in a patient with generalized arterial calcification in infancy. Bone Rep 2015; 3:57-60. [PMID: 28377967 PMCID: PMC5365274 DOI: 10.1016/j.bonr.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/02/2022] Open
Abstract
Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was originally reported as a responsible gene for generalized arterial calcification in infancy (GACI). Though the prognosis of GACI patients is poor because of myocardial infarction and heart failure in relation to medial calcification of the coronary arteries, some patients rescued by bisphosphonate treatment have been reported. Recently, ENPP1 is also reported as responsible for autosomal recessive hypophosphatemic rickets type 2. We show here a boy with homozygous ENPP1 mutations diagnosed as having GACI in early infancy. After the diagnosis, he was treated with etidronate disodium (EHDP) in combination with antihypertensive drugs. The calcification of major arteries was diminished and disappeared by the age of eight months. He also showed mild hypophosphatemia (2.6–3.7 mg/dl) from the age of one year. After the treatment with EHDP for five years, he showed genu valgum with hypophosphatemia (2.6 mg/dl). He was diagnosed as having hypophosphatemic rickets at the age of seven years. The findings that hyper-mineralization of the arteries and hypo-mineralization of the bone observed in the same patient are noteworthy. ENPP1 could be regarded as a controller of the calcification of the whole body at least in part. A boy with homozygous ENPP1 mutation suffered GACI and subsequent hypophosphatemic rickets. ENPP1 mutation caused both hyper-mineralization in the arteries and hypo-mineralization in the bone in the same patient. ENPP1 could be regarded as a mineralization controller of the body.
Collapse
Affiliation(s)
- Kentaro Miyai
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo 183-8561, Japan
- Corresponding author at: Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo 183-8561, Japan.Tokyo Metropolitan Children's Medical Center2-8-29 MusashidaiFuchuTokyo183-8561Japan
| | - Daisuke Ariyasu
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan
| | - Kaori Yoneda
- Department of Pediatrics, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hitoshi Nakazato
- Department of Pediatrics, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo 183-8561, Japan
| |
Collapse
|
13
|
Lin HA, Shih SR, Tseng YT, Chen CH, Chiu WY, Hsu CY, Tsai KS. Ovarian cancer-related hypophosphatemic osteomalacia--a case report. J Clin Endocrinol Metab 2014; 99:4403-7. [PMID: 25181387 PMCID: PMC4255128 DOI: 10.1210/jc.2014-2120] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused primarily by benign mesenchymal tumors. It has been associated with malignancies in rare cases. High serum levels of fibroblast growth factor (FGF) 23 reported in a group of patients with ovarian cancer had normal serum phosphate levels. There had been no ovarian cancer-related hypophosphatemic osteomalacia in a search of the literature. OBJECTIVE We investigated a 57-year-old woman with progressive low back pain. DESIGN AND INTERVENTION Clinical, biochemical, and radiological assessments were performed. The patient's serum phosphate and FGF23 levels were evaluated at baseline and after treatment for ovarian cancer. RESULTS The patient presented with progressive low back pain and weight loss during the previous 6 months. Imaging studies revealed low bone mineral density and multiple suspicious spinal metastatic lesions. Laboratory examination showed hypophosphatemia, hyperphosphaturia, normocalcemia, an elevated serum alkaline phosphatase level, and an elevated serum FGF23 level. Because TIO was suspected, a tumor survey was performed, and ovarian carcinoma with multiple metastasis was detected. After surgery and chemotherapy treatments for ovarian cancer, the serum phosphate and FGF23 levels returned to normal, and the low back pain improved. CONCLUSIONS To our knowledge, this is the first case of ovarian cancer-related hypophosphatemic osteomalacia reported in the literature. TIO should be considered in patients with ovarian cancer presenting with weakness, bone pain, and fractures. Investigation of TIO is appropriate when these patients present hypophosphatemia.
Collapse
Affiliation(s)
- Hung-An Lin
- Lo-Sheng Sanatorium and Hospital (H.-A.L.), Ministry of Health and Welfare, New Taipei City 242, Taiwan; National Taiwan University College of Medicine (S.-R.S., K.-S.T.), Taipei 100, Taiwan; and Departments of Internal Medicine (S.-R.S., Y.-T.T., W.-Y.C., C.-Y.H., K.-S.T.) and Obstetrics and Gynecology (C.-H.C.), National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
14
|
Gkentzi D, Efthymiadou A, Kritikou D, Chrysis D. Fibroblast growth factor 23 and Klotho serum levels in healthy children. Bone 2014; 66:8-14. [PMID: 24880094 DOI: 10.1016/j.bone.2014.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 12/18/2022]
Abstract
Data for fibroblast growth factor 23 (FGF23) and particularly for Klotho in healthy children are limited. We aimed to investigate the relationship between FGF23 and Klotho with age and TmP/GFR and to evaluate parameters that might affect FGF23 and Klotho. In 159 healthy children (82 boys) with a mean±SD age of 8.78±3.47years we measured FGF23 (intact FGF23/iFGF23 and C-terminal FGF23/cFGF23) and soluble aKlotho serum levels by ELISA. Mean±SD value for cFGF23, was 51.14±12.79 RU/ml whereas median (range) values for iFGF23 and Klotho were 35 (8.8, 120) pg/ml and 1945 (372, 5866) pg/ml respectively. Neither FGF23 nor Klotho were significantly associated with age. Pubertal children had higher Klotho than prepubertal (p<0.05), and girls had higher levels of cFGF23 (p<0.05) and Klotho (p<0.001) than boys. Serum phosphate and TmP/GFR were positively associated with cFGF23 (p<0.01 and p<0.001), iFGF23 (p<0.05 and p<0.001) and Klotho (p<0.05 and p<0.01). Klotho was positively correlated with IGF-I (p<0.0001) and 1,25 (OH)2 vitamin D (p<0.05). In this study we provide data on cFGF23, iFGF23, and Klotho measured simultaneously in healthy children. The positive association of serum phosphate and TmP/GFR with FGF23 and Klotho suggests that they have a counterregulatory effect on phosphate homeostasis. The strong association of Klotho with IGF-I could indicate a role of Klotho in linear growth through phosphate regulation, but further studies are required.
Collapse
Affiliation(s)
- Despoina Gkentzi
- Department of Pediatrics, Medical School, University of Patras, Rio, Greece.
| | - Alexandra Efthymiadou
- Pediatric Endocrine Unit, Department of Pediatrics, Medical School, University of Patras, Rio, Greece
| | - Dimitra Kritikou
- Pediatric Endocrine Unit, Department of Pediatrics, Medical School, University of Patras, Rio, Greece
| | - Dionisios Chrysis
- Pediatric Endocrine Unit, Department of Pediatrics, Medical School, University of Patras, Rio, Greece
| |
Collapse
|
15
|
Pekkarinen T, Lorenz-Depiereux B, Lohman M, Mäkitie O. Unusually severe hypophosphatemic rickets caused by a novel and complex re-arrangement of thePHEXgene. Am J Med Genet A 2014; 164A:2931-7. [DOI: 10.1002/ajmg.a.36721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/09/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Tuula Pekkarinen
- Division of Endocrinology; Department of Medicine; Helsinki University Central Hospital; Vantaa Finland
| | | | - Martina Lohman
- HUS Medical Imaging Center; Helsinki University Hospital; Helsinki Finland
| | - Outi Mäkitie
- Pediatric Endocrinology and Metabolic Bone Diseases; Children's Hospital; Helsinki University Central Hospital and University of Helsinki; Helsinki Finland
- Folkhälsan Institute of Genetics; Helsinki Finland
- Department of Molecular Medicine and Surgery; Karolinska Institutet; and Department of Clinical Genetics; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
16
|
Dayal D, Sharda S, Attri SV, Kumar R. Hypophosphatemic rickets caused by a novel PHEX gene mutation in an Indian girl. J Pediatr Endocrinol Metab 2014; 27:787-9. [PMID: 24756041 DOI: 10.1515/jpem-2013-0270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 02/28/2014] [Indexed: 11/15/2022]
Abstract
We report a girl who presented with clinical and biochemical features of hypophosphatemic rickets. Mutational analysis detected a heterozygous nonsynonymous sequence variation in exon 11 of the PHEX gene (NM_000444.4:c.1216T>C, NP_000435.3:p.Cys406Arg). This previously undescribed PHEX mutation is probably the cause of renal phosphate wasting in our patient that resulted in rickets.
Collapse
|
17
|
Penido MGMG, Alon US. Hypophosphatemic rickets due to perturbations in renal tubular function. Pediatr Nephrol 2014; 29:361-73. [PMID: 23636577 DOI: 10.1007/s00467-013-2466-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
The common denominator for all types of rickets is hypophosphatemia, leading to inadequate supply of the mineral to the growing bone. Hypophosphatemia can result from insufficient uptake of the mineral from the gut or its disproportionate losses in the kidney, the latter being caused by either tubular abnormalities per se or the effect on the tubule of circulating factors like fibroblast growth factor-23 and parathyroid hormone (PTH). High serum levels of the latter result in most cases from abnormalities in vitamin D metabolism which lead to decreased calcium absorption in the gut and hypocalcemia, triggering PTH secretion. Rickets is a disorder of the growth plate and hence pediatric by definition. However, it is important to recognize that the effect of hypophosphatemia on other parts of the skeleton results in osteomalacia in both children and adults. This review addresses the etiology, pathophysiologic mechanisms, clinical manifestations and treatment of entities associated with hypophosphatemic rickets due to perturbations in renal tubular function.
Collapse
Affiliation(s)
- Maria Goretti M G Penido
- Pediatric Nephrology Unit, Clinics Hospital, School of Medicine, Federal University of Minas Gerais, Av. Professor Alfredo Balena, 190, CEP, 30130100, Belo Horizonte, MG, Brazil,
| | | |
Collapse
|
18
|
Braithwaite V, Jones KS, Assar S, Schoenmakers I, Prentice A. Predictors of intact and C-terminal fibroblast growth factor 23 in Gambian children. Endocr Connect 2013; 3:1-10. [PMID: 24258305 PMCID: PMC3869962 DOI: 10.1530/ec-13-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/20/2013] [Indexed: 12/16/2022]
Abstract
Elevated C-terminal fibroblast growth factor 23 (C-FGF23) concentrations have been reported in Gambian children with and without putative Ca-deficiency rickets. The aims of this study were to investigate whether i) elevated C-FGF23 concentrations in Gambian children persist long term; ii) they are associated with higher intact FGF23 concentrations (I-FGF23), poor iron status and shorter 25-hydroxyvitamin D half-life (25OHD-t1/2); and iii) the persistence and predictors of elevated FGF23 concentrations differ between children with and without a history of rickets. Children (8-16 years, n=64) with a history of rickets and a C-FGF23 concentration >125 RU/ml (bone deformity (BD), n=20) and local community children with a previously measured elevated C-FGF23 concentration (LC+, n=20) or a previously measured C-FGF23 concentration within the normal range (LC-, n=24) participated. BD children had no remaining signs of bone deformities. C-FGF23 concentration had normalised in BD children, but remained elevated in LC+ children. All the children had I-FGF23 concentration within the normal range, but I-FGF23 concentration was higher and iron status poorer in LC+ children. 1,25-dihydroxyvitamin D was the strongest negative predictor of I-FGF23 concentration (R(2)=18%; P=0.0006) and soluble transferrin receptor was the strongest positive predictor of C-FGF23 concentration (R(2)=33%; P≤0.0001). C-FGF23 and I-FGF23 concentrations were poorly correlated with each other (R(2)=5.3%; P=0.07). 25OHD-t1/2 was shorter in BD children than in LC- children (mean (s.d.): 24.5 (6.1) and 31.5 (11.5) days respectively; P=0.05). This study demonstrated that elevated C-FGF23 concentrations normalised over time in Gambian children with a history of rickets but not in local children, suggesting a different aetiology; that children with resolved rickets had a shorter 25OHD-t1/2, suggesting a long-standing increased expenditure of 25OHD, and that iron deficiency is a predictor of elevated C-FGF23 concentrations in both groups of Gambian children.
Collapse
Affiliation(s)
- Vickie Braithwaite
- Medical Research Council (MRC) Human Nutrition ResearchElsie Widdowson LaboratoriesFulbourn Road, Cambridge, CB1 9NLUK
| | - Kerry S Jones
- Medical Research Council (MRC) Human Nutrition ResearchElsie Widdowson LaboratoriesFulbourn Road, Cambridge, CB1 9NLUK
- MRC Keneba, KenebaWest KiangThe Gambia
| | - Shima Assar
- Medical Research Council (MRC) Human Nutrition ResearchElsie Widdowson LaboratoriesFulbourn Road, Cambridge, CB1 9NLUK
| | - Inez Schoenmakers
- Medical Research Council (MRC) Human Nutrition ResearchElsie Widdowson LaboratoriesFulbourn Road, Cambridge, CB1 9NLUK
| | - Ann Prentice
- Medical Research Council (MRC) Human Nutrition ResearchElsie Widdowson LaboratoriesFulbourn Road, Cambridge, CB1 9NLUK
- MRC Keneba, KenebaWest KiangThe Gambia
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Description of the recent advances on the regulation of phosphate metabolism, gene mutations, and new approaches to treatment in patients with hypophosphatemic rickets. RECENT FINDINGS Fibroblast growth factor 23 (FGF23) overproduction may be a primary cause of hypophosphatemic rickets. Inactivating mutations of phosphate-regulating gene with homologies to endopeptidases on the X chromosome, dentin matrix acidic phosphoprotein 1, and ectonucleotide pyrophosphatase/phosphodiesterase 1 are associated with X-linked hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets 1, and autosomal recessive hypophosphatemic rickets 2, respectively. Activating mutations of FGF23 gene is the cause of autosomal dominant hypophosphatemic rickets. Iron deficiency may affect autosomal dominant hypophosphatemic rickets phenotype by regulating FGF23 production.Current treatment with activated vitamin D metabolites and oral inorganic phosphate salts may partially correct skeletal lesions and linear growth in patients with hypophosphatemic rickets. However, some patients have poor improvement by the current treatment. SUMMARY Identification of the causative mutation in patients with hypophosphatemic rickets may be useful to confirm the diagnosis and probably for prognosis. Inhibition of FGF23 overproduction by anti-FGF23 neutralizing antibodies could be a future approach for treatment of patients with FGF23-dependent hypophosphatemic rickets.
Collapse
Affiliation(s)
- Giampiero I Baroncelli
- Pediatric Unit I, Department of Obstetrics, Gynecology and Pediatrics, University-Hospital, Pisa, Italy.
| | | | | |
Collapse
|
20
|
Pettifor JM, Thandrayen K. Hypophosphatemic rickets: unraveling the role of FGF23. Calcif Tissue Int 2012; 91:297-306. [PMID: 23001439 DOI: 10.1007/s00223-012-9651-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/06/2012] [Indexed: 12/29/2022]
Abstract
The classification of the various forms of hypophosphatemic rickets has been rationalized by the discovery of the central role that fibroblast growth factor 23 (FGF23) plays in the pathogenesis of a number of genetic and acquired forms of the disease. Although the details of the interaction of FGF23 with other osteoblast/osteocyte-derived proteins remain unclear at present, the measurement of circulating levels of FGF23 appears to be a useful biochemical test in determining the various causes of hypophosphatemic rickets. Furthermore, animal studies suggest that agents interfering in the action of FGF23 might play important roles in the future management of the FGF23-mediated forms of rickets. Phase 1 and phase 2 trials in humans with X-linked hypophosphatemic rickets are currently under way.
Collapse
Affiliation(s)
- John M Pettifor
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, 7 York Rd, Parktown, Johannesburg 2193, South Africa.
| | | |
Collapse
|
21
|
Han F, Yu H, Li P, Zhang J, Tian C, Li H, Zheng QY. Mutation in Phex gene predisposes BALB/c-Phex(Hyp-Duk)/Y mice to otitis media. PLoS One 2012; 7:e43010. [PMID: 23028440 PMCID: PMC3461009 DOI: 10.1371/journal.pone.0043010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/17/2012] [Indexed: 12/02/2022] Open
Abstract
Genetic susceptibility underlying otitis media (OM) remains to be understood. We show in this study that mutation in Phex gene predisposes the BALB/c-PhexHyp-Duk/Y (abbreviated Hyp-Duk/Y) mice to OM, which occurs at post-natal day 21 (P21) with an average penetrance of 73%. The OM was identified by effusion in the middle ear cavity and/or thickening of middle ear mucosae, and was characterised by increase in goblet cells, deformity of epithelial cilia and higher expression of proliferating cell nuclear antigen (PCNA) in cells of the middle ear mucosae. Moreover, the transcription levels of Tlr2, Tlr4, Nfkb1, Ccl4, Il1b and Tnfα in the ears of the Hyp-Duk/Y mice at P35 were significantly upregulated, compared to those of the controls. Higher expression levels of TLR2, TLR4, NF-κB and TNF-α in the middle ears were demonstrated by immunohistochemistry (IHC). However, the OM in the mice was not prevented by azithromycin administration from gestational day 18 to P35. Further study showed that, in contrast to the low mRNA levels of Phex gene in the ears of the Hyp-Duk/Y mice, the mRNA level of Fgf23 was significantly elevated at P9, P14, P21 and P35. Meanwhile, mRNA levels of EP2 (PGE2 receptor), which expressed in the middle ear epithelia as demonstrated by IHC, were already increased at P14 even before the occurrence of OM, indicating that PGE2, an inflammatory mediator, is involved in the OM development in the mutants. Taking together, Phex mutation primarily up-regulates gene expression levels in FGF23 mediated pathways in the middle ears, resulting in cell proliferation and defence impairment at the mucosae and subsequently bacterial infection. The Hyp-Duk/Y mouse is a new genetic mouse model of OM.
Collapse
Affiliation(s)
- Fengchan Han
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Heping Yu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ping Li
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Jiangping Zhang
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Cong Tian
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hongbo Li
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Qing Yin Zheng
- The Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|