1
|
Han H, Peng X, Huang M, Zhao W, Yang S, Lan Z, Cai S, Zhao H. PM2.5 Exposure Aggravates Inflammatory Response and Mucus Production in 16HBE Cells through Inducing Oxidative Stress and RAGE Expression. Cell Biochem Biophys 2024:10.1007/s12013-024-01526-z. [PMID: 39294419 DOI: 10.1007/s12013-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
Particulate matter 2.5 (PM2.5)-induced oxidative stress has been extensively proposed as a pivotal event in lung diseases. Receptor for advanced glycation end-products (RAGE) is a receptor of pro-inflammatory ligands that has been supported to be implied in the progression of multiple lung diseases. This study attempts to delineate the specific effects of PM2.5 on human bronchial epithelial 16HBE cells in vitro and figure out whether PM2.5 functions via mediating oxidative stress and RAGE. In PM2.5-challenged 16HBE cells, MTT assay detected cell viability. ELISA estimated inflammatory levels. Flow cytometry analysis measured ROS activity and related assay kits examined oxidative stress levels. Western blot tested nuclear factor E2-related factor 2 (Nrf2), RAGE, β-catenin, and mucin 5AC (MUC5AC) expression. Immunofluorescence staining evaluated nuclear translocation of β-catenin. It was noticed that PM2.5 exposure exacerbated inflammatory response, oxidative stress, and mucus production. Additionally, PM2.5 elevated RAGE expression while declined Nrf2 expression as well as stimulated the nuclear translocation of β-catenin. Furthermore, RAGE inhibition or nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor VAS2870 mitigated inflammatory response, oxidative stress, and mucus generation in PM2.5-exposed 16HBE cells. In addition, RAGE inhibition or VAS2870 raised Nrf2 expression, reduced RAGE expression, and hampered β-catenin nuclear translocation. Briefly, PM2.5 might act as a leading driver of inflammatory response and mucus production in lung injury, the mechanism of which might be related to the activation of oxidative stress and the up-regulation of RAGE.
Collapse
Affiliation(s)
- Huishan Han
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of General Practice, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xianru Peng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minyu Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuluan Yang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihan Lan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
He L, Norris C, Palaguachi-Lopez K, Barkjohn K, Li Z, Li F, Zhang Y, Black M, Bergin MH, Zhang JJ. Nasal oxidative stress mediating the effects of colder temperature exposure on pediatric asthma symptoms. Pediatr Res 2024; 96:1045-1051. [PMID: 38605092 DOI: 10.1038/s41390-024-03196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Colder temperature exposure is a known trigger for pediatric asthma exacerbation. The induction of oxidative stress is a known pathophysiologic pathway for asthma exacerbation. However, the role of oxidative stress in linking colder temperature exposure and worsened pediatric asthma symptoms is poorly understood. METHODS In a panel study involving 43 children with asthma, aged 5-13 years old, each child was visited 4 times with a 2-week interval. At each visit, nasal fluid, urine, and saliva samples were obtained and measured for biomarkers of oxidative stress in the nasal cavity (nasal malondialdehyde [MDA]), the circulatory system (urinary MDA), and the oral cavity (salivary MDA). Childhood Asthma-Control Test (CACT) was used to assess asthma symptoms. RESULTS When ambient daily-average temperature ranged from 7 to 18 °C, a 2 °C decrement in personal temperature exposures were significantly associated with higher nasal MDA and urinary MDA concentrations by 47-77% and 6-14%, respectively. We estimated that, of the decrease in child-reported CACT scores (indicating worsened asthma symptoms and asthma control) associated with colder temperature exposure, 14-57% were mediated by nasal MDA. CONCLUSION These results suggest a plausible pathway that colder temperature exposure worsens pediatric asthma symptoms partly via inducing nasal oxidative stress. IMPACT The role of oxidative stress in linking colder temperature exposure and worsened asthma symptoms is still poorly understood. Lower temperature exposure in a colder season was associated with higher nasal and systemic oxidative stress in children with asthma. Nasal MDA, a biomarker of nasal oxidative stress, mediated the associations between colder temperature exposures and pediatric asthma symptoms. The results firstly suggest a plausible pathway that colder temperature exposure worsens pediatric asthma symptoms partly via inducing oxidative stress in the nasal cavity.
Collapse
Affiliation(s)
- Linchen He
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, PA, USA.
| | - Christina Norris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberly Palaguachi-Lopez
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, PA, USA
| | - Karoline Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
- Current Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Duke Kunshan University, Kunshan, Jiangsu, China.
| |
Collapse
|
3
|
Vaghasiya J, Jha A, Basu S, Bagan A, Jengsuksavat SK, Ravandi A, Pascoe CD, Halayko AJ. Neutralizing Oxidized Phosphatidylcholine Reduces Airway Inflammation and Hyperreactivity in a Murine Model of Allergic Asthma. BIOLOGY 2024; 13:627. [PMID: 39194564 DOI: 10.3390/biology13080627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Oxidative stress is associated with asthma pathobiology. We reported that oxidized phosphatidylcholines (OxPCs) are mediators of oxidative stress and accumulate in the lung in response to allergen challenge. The current study begins to unravel mechanisms for OxPC accumulation in the lung, providing the first insights about how OxPCs underpin allergic airway pathophysiology, and pre-clinical testing of selective neutralization of OxPCs in a murine model of allergic asthma. We hypothesized that intranasal delivery of E06, a natural IgM antibody that neutralizes the biological activity of OxPCs, can ameliorate allergen-induced airway inflammation and airway hyperresponsiveness. Adult BALB/c mice were intranasally (i.n.) challenged with house dust mite (HDM) (25 μg/mouse, 2 weeks). Some animals also received E06 monoclonal antibody (mAb) (10 µg) i.n. 1 hr before each HDM challenge. HDM challenge reduced mRNA for anti-oxidant genes (SOD1, SOD2, HO-1, and NFE2L2) in the lung by several orders of magnitude (p < 0.05). Concomitantly, total immune cell number in bronchoalveolar lavage fluid (BALF) increased significantly (p < 0.001). E06 mAb treatment prevented allergen-induced BALF immune cell number by 43% (p < 0.01). This included a significant blockade of eosinophils (by 48%, p < 0.001), neutrophils (by 80%, p < 0.001), macrophages (by 80%, p < 0.05), and CD4 (by 30%, p < 0.05) and CD8 (by 42%, p < 0.01) lymphocytes. E06 effects correlated with a significant reduction in TNF (by 64%, p < 0.001) and IL-1β (by 75%, p < 0.05) and a trend to diminish accumulation of other cytokines (e.g., IL-4, -10, and -33, and IFN-γ). E06 mAb treatment also inhibited HDM exposure-induced increases in total respiratory resistance and small airway resistance by 24% and 26%, respectively. In conclusion, prophylactic treatment with an OxPC-neutralizing antibody significantly limits allergen-induced airway inflammation and airway hyperresponsiveness, suggesting that OxPCs are important mediators of oxidative stress-associated allergic lung pathophysiology.
Collapse
Affiliation(s)
- Jignesh Vaghasiya
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Alaina Bagan
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Siwon K Jengsuksavat
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Biology of Breathing Group, Children's Research Hospital of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
4
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
5
|
Lilien TA, Brinkman P, Fenn DW, van Woensel JBM, Bos LDJ, Bem RA. Breath Markers of Oxidative Stress in Children with Severe Viral Lower Respiratory Tract Infection. Am J Respir Cell Mol Biol 2024; 70:392-399. [PMID: 38315815 DOI: 10.1165/rcmb.2023-0349oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation, and volatile organic compounds (VOCs) were analyzed using gas chromatography and mass spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. In addition, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, whereas six VOCs showed a poor to strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | | | | | - Job B M van Woensel
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| | - Lieuwe D J Bos
- Department of Pulmonology, and
- Department of Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; and
| | - Reinout A Bem
- Department of Pediatric Intensive Care Medicine, Emma Children's Hospital
- Amsterdam Reproduction and Development Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Gutierrez MJ, Nino G, Restrepo-Gualteros S, Mondell E, Chorvinsky E, Bhattacharya S, Bera BS, Welham A, Hong X, Wang X. Purine degradation pathway metabolites at birth and the risk of lower respiratory tract infections in infancy. ERJ Open Res 2024; 10:00693-2023. [PMID: 38410704 PMCID: PMC10895431 DOI: 10.1183/23120541.00693-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 02/28/2024] Open
Abstract
Background Lower respiratory tract infections (LRTIs) are the leading cause of infant morbidity and mortality worldwide, and altered metabolite production is recognised as a critical factor in LRTI pathogenesis. Methods This study aimed to identify prenatal metabolic changes associated with LRTI risk in infancy, using liquid chromatography-mass spectrometry unbiased metabolomics analysis on cord blood from 810 full-term newborns. Results We identified 22 compounds linked to LRTIs in infancy, enriched for purine degradation pathway (PDP) metabolites. High cord blood PDP metabolites, including xanthine, hypoxanthine, xanthosine and inosine, were linked to reduced LRTI risk during infancy. Notably, a low xanthine to uric acid ratio at birth predicted a four-fold increased LRTI risk. Conclusion This study is the first to reveal that high cord blood PDP metabolites identify newborns at lower LRTI risk, stratifying disease risk at birth. Moreover, our results prompt further study on PDP enzymes as pharmacological targets to decrease LRTI morbidity and mortality for at-risk newborns.
Collapse
Affiliation(s)
- Maria J Gutierrez
- Division of Pediatric Allergy, Immunology and Rheumatology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- These authors contributed equally
| | - Gustavo Nino
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University, Washington, DC, USA
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
- These authors contributed equally
| | - Sonia Restrepo-Gualteros
- Department of Pediatrics, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Division of Pediatric Pulmonology, Fundación Hospital Pediátrico La Misericordia (HOMI), Bogotá, Colombia
| | - Ethan Mondell
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Chorvinsky
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Surajit Bhattacharya
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Bethlehem Solomon Bera
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Allison Welham
- Center for Genetic Medicine Research, Children's Research Institute, Washington, DC, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of General Pediatrics and Adolescent Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Huang W, Yu C, Wu H, Liang S, Kang J, Zhou Z, Liu A, Liu L. Cbx4 governs HIF-1α to involve in Th9 cell differentiation promoting asthma by its SUMO E3 ligase activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119524. [PMID: 37348765 DOI: 10.1016/j.bbamcr.2023.119524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The potential role of polycomb chromobox 4 (Cbx4), as a small ubiquitin-like ligase (SUMO) E3 ligase, in the development and exacerbation of asthma remains unclear. Hypoxia inducible factor-1 (HIF-1) is a key transcription factor in the cellular response to hypoxia and contributes to the pathogenesis and progression of a range of diseases, including asthma. Here, we aimed to investigate the interaction of Cbx4 with Hypoxia inducible factor-1α (HIF-1α) and the potent mechanism of action in asthma progression. In present study, in vitro and ex vivo results demonstrated that Cbx4 interacts with HIF-1α protein through its SUMO E3 ligase activity and enhances the sumoylation, which increases HIF-1 transactivation through Cbx4 and promotes the differentiation of Th9 cells, then in turn promotes the process of asthma. Treatment of inhibitors targeting SUMO E3 ligase activity of Cbx4 or HIF-1α can effectively reduce HIF-1α activation and differentiation of Th9 cells, which further attenuates the asthma in mouse model. Current results collectively demonstrated Cbx4 can govern HIF-1α to involve in Th9 cell differentiation promoting asthma by its SUMO E3 ligase activity, providing a new direction for clinical treatment of asthma.
Collapse
Affiliation(s)
- Wufeng Huang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China; People's Hospital of Huazhou City. Huazhou 525100, Guangdong Province, China.
| | - Changhui Yu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Hong Wu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Shixiu Liang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Kang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zili Zhou
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Aihua Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Laiyu Liu
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
8
|
Kim HR, Ingram JL, Que LG. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J Asthma Allergy 2023; 16:481-499. [PMID: 37181453 PMCID: PMC10171222 DOI: 10.2147/jaa.s402340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
20 million adults and 4.2 million children in the United States have asthma, a disease resulting in inflammation and airway obstruction in response to various factors, including allergens and pollutants and nonallergic triggers. Obesity, another highly prevalent disease in the US, is a major risk factor for asthma and a significant cause of oxidative stress throughout the body. People with asthma and comorbid obesity are susceptible to developing severe asthma that cannot be sufficiently controlled with current treatments. More research is needed to understand how asthma pathobiology is affected when the patient has comorbid obesity. Because the airway epithelium directly interacts with the outside environment and interacts closely with the immune system, understanding how the airway epithelium of patients with asthma and comorbid obesity is altered compared to that of lean asthma patients will be crucial for developing more effective treatments. In this review, we discuss how oxidative stress plays a role in two chronic inflammatory diseases, obesity and asthma, and propose a mechanism for how these conditions may compromise the airway epithelium.
Collapse
Affiliation(s)
- Haein R Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L Ingram
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Loretta G Que
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Lu C, Liu Q, Deng M, Liao H, Yang X, Ma P. Interaction of high temperature and NO 2 exposure on asthma risk: In vivo experimental evidence of inflammation and oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161760. [PMID: 36702287 DOI: 10.1016/j.scitotenv.2023.161760] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Allergic asthma is a complicated respiratory disease with many concerns. Mounting epidemiological evidence linked temperature (T) and NO2 with allergic asthma, yet toxicological studies remain scarce. We conducted an in vivo study to explore toxicological evidence in T-NO2 interaction on allergic asthma, to investigate underlying toxicological mechanisms. 90 male Balb/c mice were randomly and equally divided into 6 groups including saline control, ovalbumin (OVA)-sensitized, OVA + 35 °C, OVA + NO2, OVA + 35 °C + NO2, and OVA + 35 °C + NO2 + capsazepine (CZP), adopting treatment for 38 days. We measured pulmonary functions of inspiratory resistance (Ri), expiratory resistance (Re) and airway compliance (Cldyn), serum protein biomarkers, indexes of pulmonary inflammation, histopathological changes and protective effects of CZP. Airway hyperresponsiveness (AHR) was aggravated by high T (35 °C) and NO2 (5 ppm) co-exposure with a series of aggravating asthmatic symptoms including airway wall thickening, lumen stenosis, goblet cell proliferation, mucus hypersecretion, and subepithelial fibrotic hyperplasia, providing evidence in the toxicological impact of high T-NO2 interaction. The biomarkers of serum immune functions (Total-IgE, OVA-sIgE and IL-4), pro-inflammation (IL-6 and TNF-α), oxidative stress cytokines (8-OHdG, ROS and MDA), airway resistance (Ri and Re), and TRPV1 expression significantly increased, while IFN-γ, GSH and airway compliance (Cldyn) significantly decreased with co-exposure to high T and NO2. We observed that CZP addition significantly ameliorated these toxicological effects and biomarker levels induced by heat-NO2 interaction. Our results suggest a toxicity of heat-NO2 interaction on asthma with clear mechanisms, which can be ameliorated by CZP, indicating that both oxidative stress and TRPV1 expression may be primarily responsible for asthma of heat-NO2-induced toxicity.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410078, China.
| | - Qin Liu
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Miaomiao Deng
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Hongsen Liao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Xu Yang
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| | - Ping Ma
- School of Public Health, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
10
|
Fenn D, Lilien TA, Hagens LA, Smit MR, Heijnen NF, Tuip-de Boer AM, Neerincx AH, Golebski K, Bergmans DC, Schnabel RM, Schultz MJ, Maitland-van der Zee AH, Brinkman P, Bos LD. Validation of volatile metabolites of pulmonary oxidative injury: a bench to bedside study. ERJ Open Res 2023; 9:00427-2022. [PMID: 36949963 PMCID: PMC10026006 DOI: 10.1183/23120541.00427-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background Changes in exhaled volatile organic compounds (VOCs) can be used to discriminate between respiratory diseases, and increased concentrations of hydrocarbons are commonly linked to oxidative stress. However, the VOCs identified are inconsistent between studies, and translational studies are lacking. Methods In this bench to bedside study, we captured VOCs in the headspace of A549 epithelial cells after exposure to hydrogen peroxide (H2O2), to induce oxidative stress, using high-capacity polydimethylsiloxane sorbent fibres. Exposed and unexposed cells were compared using targeted and untargeted analysis. Breath samples of invasively ventilated intensive care unit patients (n=489) were collected on sorbent tubes and associated with the inspiratory oxygen fraction (F IO2 ) to reflect pulmonary oxidative stress. Headspace samples and breath samples were analysed using gas chromatography and mass spectrometry. Results In the cell, headspace octane concentration was decreased after oxidative stress (p=0.0013), while the other VOCs were not affected. 2-ethyl-1-hexanol showed an increased concentration in the headspace of cells undergoing oxidative stress in untargeted analysis (p=0.00014). None of the VOCs that were linked to oxidative stress showed a significant correlation with F IO2 (Rs range: -0.015 to -0.065) or discriminated between patients with F IO2 ≥0.6 or below (area under the curve range: 0.48 to 0.55). Conclusion Despite a comprehensive translational approach, validation of known and novel volatile biomarkers of oxidative stress was not possible in patients at risk of pulmonary oxidative injury. The inconsistencies observed highlight the difficulties faced in VOC biomarker validation, and that caution is warranted in the interpretation of the pathophysiological origin of discovered exhaled breath biomarkers.
Collapse
Affiliation(s)
- Dominic Fenn
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Corresponding author: Dominic Fenn ()
| | - Thijs A. Lilien
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Paediatric Intensive Care, Amsterdam, Netherlands
| | - Laura A. Hagens
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Marry R. Smit
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Nanon F.L. Heijnen
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Anita M. Tuip-de Boer
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
| | - Anne H. Neerincx
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Korneliusz Golebski
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, Netherlands
| | - Dennis C.J.J. Bergmans
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ronny M. Schnabel
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marcus J. Schultz
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Lieuwe D.J. Bos
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| |
Collapse
|
11
|
Oxidative stress stimulation leads to cell-specific oxidant and antioxidant responses in airway resident and inflammatory cells. Life Sci 2023; 315:121358. [PMID: 36596408 DOI: 10.1016/j.lfs.2022.121358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
AIMS The imbalance between reactive oxygen species (ROS) and the antioxidant response has been linked to various airway diseases, including asthma. However, knowledge on cell-specific responses of the airway resident and inflammatory cells against increased oxidant stress is very limited. We aim to better understand the cell-specific antioxidant response that contributes to the pathophysiology of lung disease in response to oxidative stress. MATERIALS AND METHODS The human cell lines of epithelial, fibroblast, endothelial, monocyte, eosinophil and neutrophil were incubated with tert-butyl hydroperoxide (tBHP) or cigarette smoke condensate (CSC). Following stimulation, cell viability, total oxidant and antioxidant activity were assessed in both residential and inflammatory cells. Human Oxidative Stress Plus RT2 Profiler PCR array was used to determine 84 gene expression differences in oxidant and antioxidant pathways following oxidant stimulus in all cells. KEY FINDINGS We showed that various cell types respond differently to oxidative stress inducers, with distinct gene expression and oxidant-antioxidant generation. Most importantly, eosinophils increased the activity of all main antioxidant enzymes in response to both oxidants. Monocytes, on the other hand, showed no change in response to each stimulation, whereas neutrophils only increased their CAT activity in response to both stimuli. The increase in NRF2-regulated genes HSPA1A, HMOX1 and DUSP1 after both tBHP and CSC in epithelial cells and fibroblasts indicates Nfr2 pathway activation. SIGNIFICANCE This study advances our knowledge of the molecular and cellular mechanisms of cell-specific antioxidant response upon exposure to oxidative stress. Additionally, our observations imply that the eosinophils' distinct biological response may be utilized for endotype-based cell-targeted antioxidant therapy.
Collapse
|
12
|
Tai J, Shin JM, Park J, Han M, Kim TH. Oxidative Stress and Antioxidants in Chronic Rhinosinusitis with Nasal Polyps. Antioxidants (Basel) 2023; 12:antiox12010195. [PMID: 36671057 PMCID: PMC9854928 DOI: 10.3390/antiox12010195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Oxidative stress results from an imbalance between the production of reactive oxygen species and the body's antioxidant defense system. It plays an important role in the regulation of the immune response and can be a pathogenic factor in various diseases. Chronic rhinosinusitis (CRS) is a complex and heterogeneous disease with various phenotypes and endotypes. Recently, an increasing number of studies have proposed that oxidative stress (caused by both environmental and intrinsic stimuli) plays an important role in the pathogenesis and persistence of CRS. This has attracted the attention of several researchers. The relationship between the presence of reactive oxygen species composed of free radicals and nasal polyp pathology is a key topic receiving attention. This article reviews the role of oxidative stress in respiratory diseases, particularly CRS, and introduces potential therapeutic antioxidants that may offer targeted treatment for CRS.
Collapse
Affiliation(s)
- Junhu Tai
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Min Shin
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jaehyung Park
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Munsoo Han
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology—Head & Neck Surgery, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Mucosal Immunology Institute, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-02-920-5486
| |
Collapse
|
13
|
Xu Z, Xue Y, Wen H, Chen C. Association of oxidative balance score and lung health from the National Health and Nutrition Examination Survey 2007-2012. Front Nutr 2023; 9:961950. [PMID: 36698460 PMCID: PMC9869685 DOI: 10.3389/fnut.2022.961950] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oxidative stress is associated with outcomes of chronic lung disease. The oxidative stress-related exposures of diet and lifestyle can be evaluated by the oxidative balance score (OBS), and higher OBS scores indicate more significant antioxidant exposures. But the relationship between OBS and lung health is unknown. Purpose The aim of this study was to explore the association between OBS and lung health (respiratory symptoms, chronic lung disease, and lung function). Methods A series of models, including weighted linear models, weighted logistic regression, and weighted multinomial logistic regression, were performed to assess the associations of OBS with respiratory symptoms, chronic lung disease, and lung function. The models adjusted by age, race/ethnicity, gender, educational background, poverty-to-income ratio, and dietary energy were also performed. Results Cross-sectional data of 5,214 participants from the National Health and Nutrition Examination Survey for the years 2007-2012 were analyzed. For every one-unit increase in OBS, the odds of wheezing/chronic bronchitis decreased by 6%. Increased OBS was associated with higher percent-predicted forced expiratory volume in one second (FEV1) (adjusted mean difference (MD), 0.21%; 95% CI: 0.10-0.32) and percent-predicted forced vital capacity (FVC) (adjusted MD, 0.15%; 95% CI: 0.07-0.24). A significantly lower risk of wheezing/chronic bronchitis was found in participants in the second/third/fourth OBS quartile compared to those in the first OBS quartile (all P for trend < 0.05). Moreover, higher percent-predicted FEV1 and FVC were also found in the third quartile and fourth quartile (all P for trend < 0.05). Furthermore, both dietary and lifestyle components were tightly related to pulmonary outcomes. Many associations were maintained after stratified by sex or after sensitivity analyses. Conclusion Oxidative balance score was negatively correlated with the diagnosis of chronic bronchitis/wheezing/restrictive spirometry pattern and positively correlated with percent-predicted FVC and FEV1. It seems that the higher the OBS score, the better the pulmonary outcomes. The findings highlight the importance of adherence to an antioxidant diet and lifestyle and that it contributes to lung health.
Collapse
Affiliation(s)
- Zhixiao Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yincong Xue
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China
| | - Hezhi Wen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Interventional Pulmonology of Zhejiang Province, Wenzhou, China.,The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
14
|
Goretzki A, Zimmermann J, Rainer H, Lin YJ, Schülke S. Immune Metabolism in TH2 Responses: New Opportunities to Improve Allergy Treatment - Disease-Specific Findings (Part 1). Curr Allergy Asthma Rep 2023; 23:29-40. [PMID: 36441389 PMCID: PMC9832111 DOI: 10.1007/s11882-022-01057-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Recent high-level publications have shown an intricate connection between immune effector function and the metabolic state of the respective cells. In the last years, studies have begun analyzing the metabolic changes associated with allergies. As the first part of a two-article series, this review will briefly summarize the basics of immune metabolism and then focus on the recently published studies on metabolic changes observed in allergic patients. RECENT FINDINGS In the last 3 years, immune-metabolic research in allergology had a clear focus on asthma with some studies also reporting findings in food allergy and atopic dermatitis. Current results suggest asthma to be associated with a shift in cellular metabolism towards increased aerobic glycolysis (Warburg metabolism), while also displaying substantial changes in fatty acid- and amino acid metabolism (depending on investigated patient collective, asthma phenotype, and disease severity). Understanding immune-metabolic changes in allergies will allow us to (I) better understand allergic disease pathology and (II) modulate immune-metabolic pathways to improve allergy treatment.
Collapse
Affiliation(s)
- A. Goretzki
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - J. Zimmermann
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - H. Rainer
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Y.-J. Lin
- Vice President’s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Stefan Schülke
- Vice President's Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| |
Collapse
|
15
|
To T, Terebessy E, Zhu J, Zhang K, Lakey PS, Shiraiwa M, Hatzopoulou M, Minet L, Weichenthal S, Dell S, Stieb D. Does early life exposure to exogenous sources of reactive oxygen species (ROS) increase the risk of respiratory and allergic diseases in children? A longitudinal cohort study. Environ Health 2022; 21:90. [PMID: 36184638 PMCID: PMC9528154 DOI: 10.1186/s12940-022-00902-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/12/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Excess reactive oxygen species (ROS) can cause oxidative stress damaging cells and tissues, leading to adverse health effects in the respiratory tract. Yet, few human epidemiological studies have quantified the adverse effect of early life exposure to ROS on child health. Thus, this study aimed to examine the association of levels of ROS exposure at birth and the subsequent risk of developing common respiratory and allergic diseases in children. METHODS 1,284 Toronto Child Health Evaluation Questionnaire (T-CHEQ) participants were followed from birth (born between 1996 and 2000) until outcome, March 31, 2016 or loss-to-follow-up. Using ROS data from air monitoring campaigns and land use data in Toronto, ROS concentrations generated in the human respiratory tract in response to inhaled pollutants were estimated using a kinetic multi-layer model. These ROS values were assigned to participants' postal codes at birth. Cox proportional hazards regression models, adjusted for confounders, were then used to estimate hazard ratios (HR) with 95% confidence intervals (CI) per unit increase in interquartile range (IQR). RESULTS After adjusting for confounders, iron (Fe) and copper (Cu) were not significantly associated with the risk of asthma, allergic rhinitis, nor eczema. However, ROS, a measure of the combined impacts of Fe and Cu in PM2.5, was associated with an increased risk of asthma (HR = 1.11, 95% CI: 1.02-1.21, p < 0.02) per IQR. There were no statistically significant associations of ROS with allergic rhinitis (HR = 0.96, 95% CI: 0.88-1.04, p = 0.35) and eczema (HR = 1.03, 95% CI: 0.98-1.09, p = 0.24). CONCLUSION These findings showed that ROS exposure in early life significantly increased the childhood risk of asthma, but not allergic rhinitis and eczema.
Collapse
Affiliation(s)
- Teresa To
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada.
- ICES, Ontario, Canada.
| | - Emilie Terebessy
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Jingqin Zhu
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
- ICES, Ontario, Canada
| | - Kimball Zhang
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Canada
- ICES, Ontario, Canada
| | - Pascale Sj Lakey
- Department of Chemistry, University of California Irvine, Irvine, USA
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, USA
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Laura Minet
- Department of Civil Engineering, University of Victoria, Victoria, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
- Water and Air Quality Bureau, Health Canada, Ottawa, Canada
| | - Sharon Dell
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Pediatric Respiratory Medicine, Provincial Health Services Authority, BC Children's Hospital, Vancouver, Canada
| | - Dave Stieb
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
16
|
Dai X, Dharmage SC, Lodge CJ. Interactions between glutathione S-transferase genes and household air pollution on asthma and lung function. Front Mol Biosci 2022; 9:955193. [PMID: 36250015 PMCID: PMC9557149 DOI: 10.3389/fmolb.2022.955193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress is one of the main pathophysiological mechanisms for chronic respiratory disease. Glutathione S-transferase (GST) genes play important roles in antioxidant defences and may influence respiratory health. Although there is not consistent evidence that the three commonly studied genes of GSTM1, GSTT1 and GSTP1 are associated directly with respiratory outcomes, they seem to be related to disease susceptibility if exposure interactions are taken into account. Exposure to household air pollution may be particularly important in increasing lung oxidative stress. This review summarizes the relationships between GST genes, household air pollution and asthma and impaired lung function. Our findings support a role for GST polymorphisms in susceptibility to asthma and impaired lung function via oxidative stress pathways. Future research should additionally consider the role of gene-gene interactions, multiple environmental exposures, and gender in these complex associations, that are involved in maintaining antioxidant defences and lung health.
Collapse
|
17
|
Zhao X, Zhang Q, Zheng R. The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Front Physiol 2022; 13:1004275. [PMID: 36225291 PMCID: PMC9548529 DOI: 10.3389/fphys.2022.1004275] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is a highly conserved process that is indispensable for cell survival, embryonic development, and tissue homeostasis. Activation of autophagy protects cells against oxidative stress and is a major adaptive response to injury. When autophagy is dysregulated by factors such as smoking, environmental insults and aging, it can lead to enhanced formation of aggressors and production of reactive oxygen species (ROS), resulting in oxidative stress and oxidative damage to cells. ROS activates autophagy, which in turn promotes cell adaptation and reduces oxidative damage by degrading and circulating damaged macromolecules and dysfunctional cell organelles. The cellular response triggered by oxidative stress includes changes in signaling pathways that ultimately regulate autophagy. Chronic obstructive pulmonary disease (COPD) is the most common lung disease among the elderly worldwide, with a high mortality rate. As an induced response to oxidative stress, autophagy plays an important role in the pathogenesis of COPD. This review discusses the regulation of oxidative stress and autophagy in COPD, and aims to provide new avenues for future research on target-specific treatments for COPD.
Collapse
Affiliation(s)
| | | | - Rui Zheng
- *Correspondence: Qiang Zhang, ; Rui Zheng,
| |
Collapse
|
18
|
Emma R, Caruso M, Campagna D, Pulvirenti R, Li Volti G. The Impact of Tobacco Cigarettes, Vaping Products and Tobacco Heating Products on Oxidative Stress. Antioxidants (Basel) 2022; 11:1829. [PMID: 36139904 PMCID: PMC9495690 DOI: 10.3390/antiox11091829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cells constantly produce oxidizing species because of their metabolic activity, which is counteracted by the continuous production of antioxidant species to maintain the homeostasis of the redox balance. A deviation from the metabolic steady state leads to a condition of oxidative stress. The source of oxidative species can be endogenous or exogenous. A major exogenous source of these species is tobacco smoking. Oxidative damage can be induced in cells by chemical species contained in smoke through the generation of pro-inflammatory compounds and the modulation of intracellular pro-inflammatory pathways, resulting in a pathological condition. Cessation of smoking reduces the morbidity and mortality associated with cigarette use. Next-generation products (NGPs), as alternatives to combustible cigarettes, such as electronic cigarettes (e-cig) and tobacco heating products (THPs), have been proposed as a harm reduction strategy to reduce the deleterious impacts of cigarette smoking. In this review, we examine the impact of tobacco smoke and MRPs on oxidative stress in different pathologies, including respiratory and cardiovascular diseases and tumors. The impact of tobacco cigarette smoke on oxidative stress signaling in human health is well established, whereas the safety profile of MRPs seems to be higher than tobacco cigarettes, but further, well-conceived, studies are needed to better understand the oxidative effects of these products with long-term exposure.
Collapse
Affiliation(s)
- Rosalia Emma
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| | - Davide Campagna
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
- Department of Clinical and Experimental Medicine, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Roberta Pulvirenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95123 Catania, Italy
- Center of Excellence for the Acceleration of Harm Reduction (CoEHAR), University of Catania, Via S. Sofia, 89, 95123 Catania, Italy
| |
Collapse
|
19
|
Ibrahim MF, Hod R, Ahmad Tajudin MAB, Wan Mahiyuddin WR, Mohammed Nawi A, Sahani M. Children's exposure to air pollution in a natural gas industrial area and their risk of hospital admission for respiratory diseases. ENVIRONMENTAL RESEARCH 2022; 210:112966. [PMID: 35202623 DOI: 10.1016/j.envres.2022.112966] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The rapid expansion of the natural gas industry to meet the global demand have raised environmental health concerns. Few studies have found that areas with natural gas industrial activity have poor air quality. However, the negative health impacts of ambient air pollution in a natural gas industrial area remain unclear. This study aimed to explore the relationship between short-term exposure to air pollution and hospital admissions for respiratory diseases among children in a natural gas industrial area in Bintulu, Malaysia. Daily hospital admissions for respiratory diseases among children were collected from a hospital in Bintulu from 2010 to 2019. Data on six air pollutants (PM10, PM2.5, SO2, NO2, O3, and CO) in the study area were obtained from the Department of Environment Malaysia. Quasi-Poisson time series regressions with distributed lag non-linear models (DLNM) were applied to explore the associations between ambient air pollution and childhood hospitalisations for respiratory diseases. Stratification analyses were performed by gender and age group to identify the vulnerable populations. A 10 μg/m3 increased PM2.5 and SO2 was associated with hospital admissions for respiratory diseases among children with the greatest relative risk of RR 1.089 (95% CI 1.001-1.183) at cumulative lag 0-2 days and RR 1.229 (95% CI 1.073-1.409) at cumulative lag 0-6 days, respectively. There was no significant association between short-term exposure of PM10, NO2, CO, and O3 with childhood respiratory hospitalisation. The association between PM2.5 and SO2 exposure and hospital admissions for childhood respiratory diseases in the two pollutants model remained statistically significant. There were stronger associations in younger children aged 0-4 years and girls. This study reveals that short-term exposure to SO2 was associated with a higher risk of respiratory hospitalisations among children in Bintulu than PM2.5. Better air quality control is necessary for children's health living in the natural gas industrial area.
Collapse
Affiliation(s)
- Mohd Faiz Ibrahim
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| | | | - Wan Rozita Wan Mahiyuddin
- Institute for Medical Research, National Institutes of Health, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, 40170, Shah Alam, Selango, Shah Alam, Selangor, Malaysia
| | - Azmawati Mohammed Nawi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mazrura Sahani
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Multiscattering-enhanced absorbance to enable the sensitive analysis of extremely diluted biological samples: Determination of oxidative potential in exhaled air. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Bai KJ, Tung NT, Hsiao TC, Chen TL, Chung KF, Ho SC, Tsai CY, Chen JK, Lee CN, Lee KY, Chang CC, Chen TT, Feng PH, Chen KY, Su CL, Thao HNX, Dung HB, Thuy TPC, Lee YL, Chuang HC. Associations between lung-deposited dose of particulate matter and culture-positive pulmonary tuberculosis pleurisy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6140-6150. [PMID: 34448140 DOI: 10.1007/s11356-021-16008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies identified the relationship between air pollution and pulmonary tuberculosis. Effects of lung-deposited dose of particulate matter (PM) on culture-positive pulmonary tuberculosis remain unclear. This study investigates the association between lung-deposited dose of PM and pulmonary tuberculosis pleurisy. A case-control study of subjects undergoing pleural effusion drainage of pulmonary tuberculosis (case) and chronic heart failure (control) was conducted. Metals and biomarkers were quantified in the pleural effusion. The air pollution exposure was measured and PM deposition in the head, tracheobronchial, alveolar region, and total lung region was estimated by Multiple-path Particle Dosimetry (MPPD) Model. We performed multiple logistic regression to examine the associations of these factors with the risk of tuberculosis. We observed that 1-μg/m3 increase in PM10 was associated with 1.226-fold increased crude odds ratio (OR) of tuberculosis (95% confidence interval (CI): 1.023-1.469, p<0.05), 1-μg/m3 increase in PM2.5-10 was associated with 1.482-fold increased crude OR of tuberculosis (95% CI: 1.048-2.097, p < 0.05), 1-ppb increase in NO2 was associated with 1.218-fold increased crude OR of tuberculosis (95% CI: 1.025-1.447, p < 0.05), and 1-ppb increase in O3 was associated with 0.735-fold decreased crude OR of tuberculosis (95% CI: 0.542 0.995). We observed 1-μg/m3 increase in PM deposition in head and nasal region was associated with 1.699-fold increased crude OR of tuberculosis (95% CI: 1.065-2.711, p < 0.05), 1-μg/m3 increase in PM deposition in tracheobronchial region was associated with 1.592-fold increased crude OR of tuberculosis (95% CI: 1.095-2.313, p < 0.05), 1-μg/m3 increase in PM deposition in alveolar region was associated with 3.981-fold increased crude OR of tuberculosis (95% CI: 1.280-12.386, p < 0.05), and 1-μg/m3 increase in PM deposition in total lung was associated with 1.511-fold increased crude OR of tuberculosis (95% CI: 1.050-2.173, p < 0.05). The results indicate that particle deposition in alveolar region could cause higher risk of pulmonary tuberculosis pleurisy than deposition in other lung regions.
Collapse
Affiliation(s)
- Kuan-Jen Bai
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Thanh Tung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Tsai-Ling Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kian Fan Chung
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yu Tsai
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Jen-Kun Chen
- Institute of Biomedical Engineering & Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Life Sciences and School of Dentistry, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Nin Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Tao Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chien-Ling Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | | | - Hoang Ba Dung
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Phan Chung Thuy
- Otorhinolaryngology Department, Faculty of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Maharshi V, Kumar VL, Sarangi SC, Dutt Upadhyay A, Kumar A. Effect of ascorbic acid supplementation on pulmonary functions in healthy adults: a randomized controlled pilot study. J Basic Clin Physiol Pharmacol 2021; 33:625-632. [PMID: 34914338 DOI: 10.1515/jbcpp-2021-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The fact that oxidative stress plays an important role in the pathogenesis of various pulmonary diseases is supported by the beneficial effect of antioxidants. It is also well known that an altered oxidant-antioxidant balance after the age of 35 years increases the susceptibility to develop obstructive lung diseases later in life. Given this, the present study was designed to evaluate the effect of antioxidant supplementation on lung functions in healthy adults after the age of 35 years. METHODS Persons of age ≥35 years (n=45) were randomized into three arms (each comprising 15 participants) to receive either no intervention (NI arm), ascorbic acid 250 mg daily (AA250 arm), or ascorbic acid 500 mg daily (AA500 arm) for 6 weeks. Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), FEV1/FVC, and peak expiratory flow (PEF) were measured at baseline and 6 weeks. Persons of age group (20-30 years) were also enrolled in the study to compare their lung functions and cardiovascular parameters at baseline with those ≥35 years of age. All the adverse events experienced by participants were recorded. RESULTS Baseline pulmonary functions were found to be comparable among the three study arms and compared to ≥35 years age group, these parameters were found to be better in the younger age group (20-30 years). Most of the pulmonary functions were comparable among the three study arms at 6 weeks. A significant improvement in PEF and % predicted PEF was noted in AA250 arm when compared to baseline values (p=0.049 and 0.026, respectively) and in participants with normal pulmonary functions when compared to those with reduced functions at baseline (p=0.059 and p=0.037). CONCLUSIONS Although ascorbic acid did not affect most of the pulmonary functions in healthy adults, it improved PEF and % predicted PEF at a daily dose of 250 mg. In this regard, it was found effective in individuals with normal pulmonary indices at baseline.
Collapse
Affiliation(s)
- Vikas Maharshi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay L Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir C Sarangi
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Dutt Upadhyay
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi
| |
Collapse
|
23
|
Caldeira DDAF, Weiss DJ, Rocco PRM, Silva PL, Cruz FF. Mitochondria in Focus: From Function to Therapeutic Strategies in Chronic Lung Diseases. Front Immunol 2021; 12:782074. [PMID: 34887870 PMCID: PMC8649841 DOI: 10.3389/fimmu.2021.782074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/29/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondria are essential organelles for cell metabolism, growth, and function. Mitochondria in lung cells have important roles in regulating surfactant production, mucociliary function, mucus secretion, senescence, immunologic defense, and regeneration. Disruption in mitochondrial physiology can be the central point in several pathophysiologic pathways of chronic lung diseases such as chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and asthma. In this review, we summarize how mitochondria morphology, dynamics, redox signaling, mitophagy, and interaction with the endoplasmic reticulum are involved in chronic lung diseases and highlight strategies focused on mitochondrial therapy (mito-therapy) that could be tested as a potential therapeutic target for lung diseases.
Collapse
Affiliation(s)
- Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, United States
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Abboud MM, Al-Rawashde FA, Al-Zayadneh EM. Alterations of serum and saliva oxidative markers in patients with bronchial asthma. J Asthma 2021; 59:2154-2161. [PMID: 34855555 DOI: 10.1080/02770903.2021.2008426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUNDS The development of asthma is highly affected by exposure to exogenous and endogenous oxidative molecules, but the impact of this exposure on the pathophysiology of asthma has received little attention. OBJECTIVES Evaluating group of selective oxidative stress markers as a tool in the management of asthma disease. METHODS In comparison with matched healthy controls, levels of the oxidant and antioxidant markers: lipid peroxidation malondialdehyde (MDA), Total glutathione (tGSH), Uric acid (UA), Glutathione peroxidase (GPx), Catalase (CAT) superoxide dismutase (SOD), and Total antioxidant capacity (TAC) were assessed in serum and saliva of different asthma groups. RESULTS All oxidative markers in serum and saliva of asthma patients showed significant alterations from normal healthy controls (P < 0.05), except the salivary SOD (P = 0.441). Their levels in serum were significantly correlated with asthma severity (P < 0.05), and the distinguishing between childhood and adult asthma was significantly accomplished by GPx, SOD, TAC markers (P < 0.05). However, in patients with childhood asthma no significant differences were detected between the levels of GPx, CAT, UA, MDA in serum and saliva samples (P > 0.05). CONCLUSION Determination of the oxidative markers GPx, CAT, UA in serum or saliva can distinguish asthma from healthy states. The serum levels of UA and TAC are highly effective in monitoring asthma severity, while the salivary GPx, CAT, UA, MDA are beneficial in the management of childhood asthma. Discrimination of the age factor between asthma groups can be achieved by testing GPx, SOD, TAC in serum.
Collapse
Affiliation(s)
- Muayad M Abboud
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zerga, Jordan
| | - Futoon A Al-Rawashde
- School of Biomedicine, Faculty of Health Sciences, University Sultan Zainal Abidin (UniSZA), Terengganu, Malaysia
| | - Enas M Al-Zayadneh
- Department of Pediatrics, School of Biomedicine, University of Jordan, Amman, Jordan
| |
Collapse
|
25
|
Ramasubramanian R, Kalhan R, Jacobs DR, Washko GR, Hou L, Gross MD, Guan W, Thyagarajan B. Gene expression of oxidative stress markers and lung function: A CARDIA lung study. Mol Genet Genomic Med 2021; 9:e1832. [PMID: 34800009 PMCID: PMC8683624 DOI: 10.1002/mgg3.1832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/14/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Circulating markers of oxidative stress have been associated with lower lung function. Our objective was to study the association of gene expression levels of oxidative stress pathway genes (ALOX12, ALOX15, ARG2, GSTT1, LPO, MPO, NDUFB3, PLA2G7, and SOD3) and lung function forced expiratory volume in one second (FEV1 ), forced vital capacity (FVC) in Coronary Artery Risk Development in Young Adults study. METHODS Lung function was measured using spirometry and the Nanostring platform was used to estimate gene expression levels. Linear regression models were used to study association of lung function measured at year 30, 10-year decline in lung function and gene expression after adjustment for center, smoking, and BMI, measured at year 25. RESULTS The 10-year decline of FEV1 was faster in highest NDUFB3 quartile compared to the lowest (difference = -2.09%; p = 0.001) after adjustment for multiple comparisons. The 10-year decline in FEV1 and FVC was nominally slower in highest versus lowest quartile of PLA2G7 (difference = 1.14%; p = 0.02, and difference = 1.06%; p = 0.005, respectively). The other genes in the study were not associated with FEV1 or FVC. CONCLUSION Higher gene expression levels in oxidative stress pathway genes are associated with faster 10-year FEV1 decline.
Collapse
Affiliation(s)
- Ramya Ramasubramanian
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Ravi Kalhan
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Myron D Gross
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Department of Biostatistics, University of Minnesota School of Public Health, Minneapolis, Minnesota, USA
| | - Bharat Thyagarajan
- Department of Pathology and Laboratory Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Tomlinson KL, Prince AS, Wong Fok Lung T. Immunometabolites Drive Bacterial Adaptation to the Airway. Front Immunol 2021; 12:790574. [PMID: 34899759 PMCID: PMC8656696 DOI: 10.3389/fimmu.2021.790574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.
Collapse
Affiliation(s)
| | | | - Tania Wong Fok Lung
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
27
|
Different Tidal Volumes May Jeopardize Pulmonary Redox and Inflammatory Status in Healthy Rats Undergoing Mechanical Ventilation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5196896. [PMID: 34745417 PMCID: PMC8570858 DOI: 10.1155/2021/5196896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.
Collapse
|
28
|
Fois SS, Canu S, Fois AG. The Role of Oxidative Stress in Sarcoidosis. Int J Mol Sci 2021; 22:ijms222111712. [PMID: 34769145 PMCID: PMC8584035 DOI: 10.3390/ijms222111712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2023] Open
Abstract
Sarcoidosis is a rare, systemic inflammatory disease whose diagnosis and management can pose a challenge for clinicians and specialists. Scientific knowledge on the molecular pathways that drive its development is still lacking, with no standardized therapies available and insufficient strategies to predict patient outcome. In recent years, oxidative stress has been highlighted as an important factor in the pathogenesis of sarcoidosis, involving several enzymes and molecules in the mechanism of the disease. This review presents current data on the role of oxidative stress in sarcoidosis and its interaction with inflammation, as well as the application of antioxidative therapy in the disease.
Collapse
Affiliation(s)
- Sara Solveig Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
- Correspondence:
| | - Sara Canu
- Respiratory Diseases Operative Unit, University Hospital of Sassari, 07100 Sassari, Italy;
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy;
| |
Collapse
|
29
|
Soares VEM, do Carmo TIT, Dos Anjos F, Wruck J, de Oliveira Maciel SFV, Bagatini MD, de Resende E Silva DT. Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy. Mol Cell Biochem 2021; 477:39-51. [PMID: 34529223 DOI: 10.1007/s11010-021-04263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.
Collapse
Affiliation(s)
- Victor Emanuel Miranda Soares
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Fernanda Dos Anjos
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jonatha Wruck
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
30
|
Ricci F, Bassi M, McGeough CM, Jellema GL, Govoni M. A Novel Processing-Free Method for RNAseq Analysis of Spontaneous Sputum in Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:704969. [PMID: 34489698 PMCID: PMC8417251 DOI: 10.3389/fphar.2021.704969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Assessments of airways inflammation in patients with chronic obstructive pulmonary disease (COPD) require semi-invasive procedures and specialized sample processing know-how. In this study we aimed to set up and validate a novel non-invasive processing-free method for RNA sequencing (RNAseq) of spontaneous sputum samples collected from COPD patients. Methods: Spontaneous sputum samples were collected and stabilized, with or without selection of plugs and with or without the use of a stabilizer specifically formulated for downstream diagnostic testing (PrimeStore® Molecular Transport Medium). After 8 days storage at ambient temperature RNA was isolated according to an optimized RNAzol® method. An average percentage of fragments longer than 200 nucleotides (DV200) >30% and an individual yield >50 ng were required for progression of samples to sequencing. Finally, to assess if the transcriptome generated would reflect a true endotype of COPD inflammation, the outcome of single-sample gene-set enrichment analysis (ssGSEA) was validated using an independent set of processed induced sputum samples. Results: RNA extracted from spontaneous sputum using a stabilizer showed an average DV200 higher than 30%. 70% of the samples had a yield >50 ng and were submitted to downstream analysis. There was a straightforward correlation in terms of gene expression between samples handled with or without separation of plugs. This was also confirmed by principal component analysis and ssGSEA. The top ten enriched pathways resulting from spontaneous sputum ssGSEA were associated to features of COPD, namely, inflammation, immune responses and oxidative stress; up to 70% of these were in common within the top ten enriched pathways resulting from induced sputum ssGSEA. Conclusion: This analysis confirmed that the typical COPD endotype was represented within spontaneous sputum and supported the current method as a non-invasive processing-free procedure to assess the level of sputum cell inflammation in COPD patients by RNAseq analysis.
Collapse
Affiliation(s)
- Francesca Ricci
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Michele Bassi
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| | - Cathy M McGeough
- Almac Diagnostic Services, Craigavon, Northern Ireland, United Kingdom
| | - Gera L Jellema
- Almac Diagnostic Services, Craigavon, Northern Ireland, United Kingdom
| | - Mirco Govoni
- Global Clinical Development, Personalised Medicine and Biomarkers, Chiesi, Parma, Italy
| |
Collapse
|
31
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
32
|
PM 2.5 Exacerbates Oxidative Stress and Inflammatory Response through the Nrf2/NF-κB Signaling Pathway in OVA-Induced Allergic Rhinitis Mouse Model. Int J Mol Sci 2021; 22:ijms22158173. [PMID: 34360939 PMCID: PMC8348225 DOI: 10.3390/ijms22158173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Air pollution-related particulate matter (PM) exposure reportedly enhances allergic airway inflammation. Some studies have shown an association between PM exposure and a risk for allergic rhinitis (AR). However, the effect of PM for AR is not fully understood. An AR mouse model was developed by intranasal administration of 100 μg/mouse PM with a less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) solution, and then by intraperitoneal injection of ovalbumin (OVA) with alum and intranasal challenging with 10 mg/mL OVA. The effects of PM2.5 on oxidative stress and inflammatory response via the Nrf2/NF-κB signaling pathway in mice with or without AR indicating by histological, serum, and protein analyses were examined. PM2.5 administration enhanced allergic inflammatory cell expression in the nasal mucosa through increasing the expression of inflammatory cytokine and reducing the release of Treg cytokine in OVA-induced AR mice, although PM2.5 exposure itself induced neither allergic responses nor damage to nasal and lung tissues. Notably, repeated OVA-immunization markedly impaired the nasal mucosa in the septum region. Moreover, AR with PM2.5 exposure reinforced this impairment in OVA-induced AR mice. Long-term PM2.5 exposure strengthened allergic reactions by inducing the oxidative through malondialdehyde production. The present study also provided evidence, for the first time, that activity of the Nrf2 signaling pathway is inhibited in PM2.5 exposed AR mice. Furthermore, PM2.5 exposure increased the histopathological changes of nasal and lung tissues and related the inflammatory cytokine, and clearly enhanced PM2.5 phagocytosis by alveolar macrophages via activating the NF-κB signaling pathway. These obtained results suggest that AR patients may experience exacerbation of allergic responses in areas with prolonged PM2.5 exposure.
Collapse
|
33
|
Manuel AM, van de Wetering C, MacPherson M, Erickson C, Murray C, Aboushousha R, van der Velden J, Dixon AE, Poynter ME, Irvin CG, Taatjes DJ, van der Vliet A, Anathy V, Janssen-Heininger YMW. Dysregulation of Pyruvate Kinase M2 Promotes Inflammation in a Mouse Model of Obese Allergic Asthma. Am J Respir Cell Mol Biol 2021; 64:709-721. [PMID: 33662229 PMCID: PMC8456891 DOI: 10.1165/rcmb.2020-0512oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/07/2021] [Indexed: 01/17/2023] Open
Abstract
Obesity is a risk factor for the development of asthma and represents a difficult-to-treat disease phenotype. Aerobic glycolysis is emerging as a key feature of asthma, and changes in glucose metabolism are linked to leukocyte activation and adaptation to oxidative stress. Dysregulation of PKM2 (pyruvate kinase M2), the enzyme that catalyzes the last step of glycolysis, contributes to house dust mite (HDM)-induced airway inflammation and remodeling in lean mice. It remains unclear whether glycolytic reprogramming and dysregulation of PKM2 also contribute to obese asthma. The goal of the present study was to elucidate the functional role of PKM2 in a murine model of obese allergic asthma. We evaluated the small molecule activator of PKM2, TEPP46, and assessed the role of PKM2 using conditional ablation of the Pkm2 allele from airway epithelial cells. In obese C57BL/6NJ mice, parameters indicative of glycolytic reprogramming remained unchanged in the absence of stimulation with HDM. Obese mice that were subjected to HDM showed evidence of glycolytic reprogramming, and treatment with TEPP46 diminished airway inflammation, whereas parameters of airway remodeling were unaffected. Epithelial ablation of Pkm2 decreased central airway resistance in both lean and obese allergic mice in addition to decreasing inflammatory cytokines in the lung tissue. Lastly, we highlight a novel role for PKM2 in the regulation of glutathione-dependent protein oxidation in the lung tissue of obese allergic mice via a putative IFN-γ-glutaredoxin1 pathway. Overall, targeting metabolism and protein oxidation may be a novel treatment strategy for obese allergic asthma.
Collapse
Affiliation(s)
| | | | | | - Cuixia Erickson
- Department of Pathology and Department of Laboratory Medicine, and
| | - Caliann Murray
- Department of Pathology and Department of Laboratory Medicine, and
| | - Reem Aboushousha
- Department of Pathology and Department of Laboratory Medicine, and
| | | | - Anne E. Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Matthew E. Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Charles G. Irvin
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | | | | | - Vikas Anathy
- Department of Pathology and Department of Laboratory Medicine, and
| | | |
Collapse
|
34
|
Nakada EM, Sun R, Fujii U, Martin JG. The Impact of Endoplasmic Reticulum-Associated Protein Modifications, Folding and Degradation on Lung Structure and Function. Front Physiol 2021; 12:665622. [PMID: 34122136 PMCID: PMC8188853 DOI: 10.3389/fphys.2021.665622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and induces the unfolded protein response (UPR) and other mechanisms to restore ER homeostasis, including translational shutdown, increased targeting of mRNAs for degradation by the IRE1-dependent decay pathway, selective translation of proteins that contribute to the protein folding capacity of the ER, and activation of the ER-associated degradation machinery. When ER stress is excessive or prolonged and these mechanisms fail to restore proteostasis, the UPR triggers the cell to undergo apoptosis. This review also examines the overlooked role of post-translational modifications and their roles in protein processing and effects on ER stress and the UPR. Finally, these effects are examined in the context of lung structure, function, and disease.
Collapse
Affiliation(s)
- Emily M. Nakada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - Utako Fujii
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| | - James G. Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre (RI-MUHC), McGill University, Montreal, QC, Canada
- McGill University, Montreal, QC, Canada
| |
Collapse
|
35
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|
36
|
Papamichael MM, Katsardis C, Tsoukalas D, Lambert K, Erbas B, Itsiopoulos C. Potential role of folate status on pulmonary function in pediatric asthma. Nutrition 2021; 90:111267. [PMID: 33979761 DOI: 10.1016/j.nut.2021.111267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The aim of this study was to explore the relationship between plasma folate status and measures of airway disease (as reflected by spirometry) in children with asthma on a traditional Mediterranean diet. We hypothesized that folate deficiency is associated with lung function impairment in this group of children. METHODS This cross-sectional study included 64 children with mild asthma (52% boys, mean age 8 ± 2 y) residing in Athens, Greece. Clinical assessments included spirometry and fractional exhaled nitric oxide (FeNO). Plasma 5-methyltetrahydrofolate (5-MTHF) was analyzed using high performance-liquid chromatography assay and examined in participants using quartiles (Q1-Q4). RESULTS Of the 64 children, 45.3% were folate deficient (5-MTHF <10 nmol/L). A positive relationship was observed between 5-MTHF and forced vital capacity (FVC; β = 0.79, 95% confidence interval (CI), 0.14-1.44; adjusted P = 0.019), forced expiratory volume in 1s (FEV1) (β = 0.78; 95% CI, 0.01-1.55; adjusted P = 0.046), and peak expiratory flow (PEF; β = 1.64; 95% CI, 0.14-3.15; adjusted P = 0.033) in girls only, adjusting for body mass index and regular exercise. Girls with low plasma folate concentrations (Q1), compared with girls with high concentrations (Q4) had 8.64% lower FVC (β = -8.64; 95% CI, -16.18 to -1.09; adjusted P = 0.027), 10.35% FEV1 (β = -10.35; 95% CI, -18.82 to -1.89; adjusted P = 0.019), and 18.72% PEF (β = -18.72; 95% CI, -36.30 to -1.14; adjusted P = 0.038). CONCLUSION The findings of this study highlighted the potential negative effects of folate deficiency on pulmonary function in girls with asthma, the importance of monitoring folate status in children with asthma, and early prevention strategies.
Collapse
Affiliation(s)
- Maria Michelle Papamichael
- La Trobe University, School of Allied Health, Department of Dietetics, Nutrition & Sport, Melbourne, Australia; European Institute of Nutritional Medicine, Rome, Italy.
| | | | | | - Katrina Lambert
- La Trobe University, School of Psychology & Public Health, Department of Public Health, Melbourne, Australia
| | - Bircan Erbas
- La Trobe University, School of Psychology & Public Health, Department of Public Health, Melbourne, Australia; Universitas Airlangga, Faculty of Public Health, Surabaya, Indonesia
| | - Catherine Itsiopoulos
- La Trobe University, School of Allied Health, Department of Dietetics, Nutrition & Sport, Melbourne, Australia; RMIT University, School of Health and Biomedical Sciences, Melbourne, Australia
| |
Collapse
|
37
|
Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6692110. [PMID: 33763174 PMCID: PMC7952158 DOI: 10.1155/2021/6692110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways related to epithelial damage, bronchial hyperresponsiveness to contractile agents, tissue remodeling, and luminal narrowing. Currently, there are many data about the pathophysiology of asthma; however, a new aspect has emerged related to the influence of reactive oxygen and nitrogen species (ROS and RNS) on the origin of this disease. Several studies have shown that an imbalance between the production of ROS and RNS and the antioxidant enzymatic and nonenzymatic systems plays an important role in the pathogenesis of this disease. Considering this aspect, this study is aimed at gathering data from the scientific literature on the role of oxidative distress in the development of inflammatory airway and lung diseases, especially bronchial asthma. For that, articles related to these themes were selected from scientific databases, including human and animal studies. The main findings of this work showed that the respiratory system works as a highly propitious place for the formation of ROS and RNS, especially superoxide anion, hydrogen peroxide, and peroxynitrite, and the epithelial damage is reflected in an important loss of antioxidant defenses that, in turn, culminates in an imbalance and formation of inflammatory and contractile mediators, such as isoprostanes, changes in the activity of protein kinases, and activation of cell proliferation signalling pathways, such as the MAP kinase pathway. Thus, the oxidative imbalance appears as a promising path for future investigations as a therapeutic target for the treatment of asthmatic patients, especially those resistant to currently available therapies.
Collapse
|
38
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
39
|
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, Nogueira B, Akrami KM, Andrade BB. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxid Redox Signal 2021; 34:471-485. [PMID: 32559410 PMCID: PMC8020551 DOI: 10.1089/ars.2020.8124] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations. Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe pathology, a number of studies have suggested that the inhibition of this augmented stress response by improving host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB. Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mechanisms associated with stress responses that contribute to the progression of TB. We also point out important host immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury. Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471-485.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Deivide Oliveira-de-Souza
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Betania Nogueira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Kevan M Akrami
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Division of Infectious Diseases and Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, California, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
40
|
Bhat TA, Kalathil SG, Bogner PN, Lehmann PV, Thatcher TH, Sime PJ, Thanavala Y. AT-RvD1 Mitigates Secondhand Smoke-Exacerbated Pulmonary Inflammation and Restores Secondhand Smoke-Suppressed Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:1348-1360. [PMID: 33558371 DOI: 10.4049/jimmunol.2001228] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is a potent proinflammatory trigger contributing to acute lung injury and the development of chronic lung diseases via mechanisms that include the impairment of inflammation resolution. We have previously demonstrated that secondhand smoke (SHS) exposure exacerbates bacterial infection-induced pulmonary inflammation and suppresses immune responses. It is now recognized that resolution of inflammation is a bioactive process mediated by lipid-derived specialized proresolving mediators that counterregulate proinflammatory signaling and promote resolution pathways. We therefore hypothesized that proresolving mediators could reduce the burden of inflammation due to chronic lung infection following SHS exposure and restore normal immune responses to respiratory pathogens. To address this question, we exposed mice to SHS followed by chronic infection with nontypeable Haemophilus influenzae (NTHI). Some groups of mice were treated with aspirin-triggered resolvin D1 (AT-RvD1) during the latter half of the smoke exposure period or during a period of smoking cessation and before infection. Treatment with AT-RvD1 markedly reduced the recruitment of neutrophils, macrophages, and T cells in lung tissue and bronchoalveolar lavage and levels of proinflammatory cytokines in the bronchoalveolar lavage. Additionally, treatment with AT-RvD1 improved Ab titers against the NTHI outer membrane lipoprotein Ag P6 following infection. Furthermore, treatment with AT-RvD1 prior to classically adjuvanted immunization with P6 increased Ag-specific Ab titers, resulting in rapid clearance of NTHI from the lungs after acute challenge. Collectively, we have demonstrated that AT-RvD1 potently reverses the detrimental effects of SHS on pulmonary inflammation and immunity and thus could be beneficial in reducing lung injury associated with smoke exposure and infection.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | | | - Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Patricia J Sime
- Department of Medicine, University of Rochester, Rochester, NY 14620; and.,Department of Environmental Medicine, University of Rochester, Rochester, NY 14620
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263;
| |
Collapse
|
41
|
Dai X, Bui DS, Perret JL, Lowe AJ, Frith PA, Bowatte G, Thomas PS, Giles GG, Hamilton GS, Tsimiklis H, Hui J, Burgess J, Win AK, Abramson MJ, Walters EH, Dharmage SC, Lodge CJ. Exposure to household air pollution over 10 years is related to asthma and lung function decline. Eur Respir J 2021; 57:13993003.00602-2020. [PMID: 32943407 DOI: 10.1183/13993003.00602-2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION We investigated if long-term household air pollution (HAP) is associated with asthma and lung function decline in middle-aged adults, and whether these associations were modified by glutathione S-transferase (GST) gene variants, ventilation and atopy. MATERIALS AND METHODS Prospective data on HAP (heating, cooking, mould and smoking) and asthma were collected in the Tasmanian Longitudinal Health Study (TAHS) at mean ages 43 and 53 years (n=3314). Subsamples had data on lung function (n=897) and GST gene polymorphisms (n=928). Latent class analysis was used to characterise longitudinal patterns of exposure. Regression models assessed associations and interactions. RESULTS We identified seven longitudinal HAP profiles. Of these, three were associated with persistent asthma, greater lung function decline and % reversibility by age 53 years compared with the "Least exposed" reference profile for those who used reverse-cycle air conditioning, electric cooking and no smoking. The "All gas" (OR 2.64, 95% CI 1.22-5.70), "Wood heating/smoking" (OR 2.71, 95% CI 1.21-6.05) and "Wood heating/gas cooking" (OR 2.60, 95% CI 1.11-6.11) profiles were associated with persistent asthma, as well as greater lung function decline and % reversibility. Participants with the GSTP1 Ile/Ile genotype were at a higher risk of asthma or greater lung function decline when exposed compared with other genotypes. Exhaust fan use and opening windows frequently may reduce the adverse effects of HAP produced by combustion heating and cooking on current asthma, presumably through increasing ventilation. CONCLUSIONS Exposures to wood heating, gas cooking and heating, and tobacco smoke over 10 years increased the risks of persistent asthma, lung function decline and % reversibility, with evidence of interaction by GST genes and ventilation.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Peter A Frith
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,National Institute of Fundamental Studies, Kandy, Sri Lanka.,Dept of Basic Sciences, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Paul S Thomas
- Inflammation and Infection Research, Faculty of Medicine, University of New South Wales, Randwick, Australia
| | - Graham G Giles
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | - Garun S Hamilton
- Dept of Lung and Sleep Medicine, Monash Health, Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Helen Tsimiklis
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Jennie Hui
- The PathWest Laboratory Medicine of West Australia, Perth, Australia
| | - John Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Aung K Win
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Australia.,Genetic Medicine, Royal Melbourne Hospital, Parkville, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - E Haydn Walters
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia .,Equal senior authors
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia.,Equal senior authors
| |
Collapse
|
42
|
Cui Y, Liu KWK, Ip MSM, Liang Y, Mak JCW. Protective effect of selegiline on cigarette smoke-induced oxidative stress and inflammation in rat lungs in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1418. [PMID: 33313163 PMCID: PMC7723576 DOI: 10.21037/atm-20-2426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Cigarette smoke (CS)-induced build-up of oxidative stress is the leading cause of chronic obstructive pulmonary disease (COPD). Monoamine oxidases (MAOs) are novel sources of reactive oxygen species (ROS) due to the production of hydrogen peroxide (H2O2). However, it remains unclear whether MAO signaling is involved in CS-induced oxidative stress in vivo. This study aimed at investigating the impact of selegiline, a selective MAO-B inhibitor, on CS-induced lung oxidative stress and inflammation in vivo and its underlying mechanism. Methods Sprague Dawley rats were randomly divided into four groups: saline plus sham air (Saline/air), saline plus cigarette smoke (Saline/CS), selegiline plus sham air (Slg/air) and selegiline plus cigarette smoke (Slg/CS). Rats from Saline/air and Saline/CS groups were intraperitoneally injected with saline (2 mL/kg body weight) while rats from Slg/air and Slg/CS groups were injected with selegiline (2 mg/kg body weight) about 30 min prior to exposure daily. The Saline/air and Slg/air groups were exposed to atmospheric air while the Saline/CS and Slg/CS groups were exposed to mainstream CS generated from the whole body inExpose smoking system (SCIREQ, Canada) for twice daily (each for 1 hour with 20 cigarettes). After 7 days, rats were sacrificed to collect bronchoalveolar lavage (BAL) and lung tissues for the measurement of oxidative/anti-oxidative and inflammatory/anti-inflammatory makers respectively. Results CS caused significant elevation of MAO-B activity, reduction of total antioxidant capacity (T-AOC) and rGSH/GSSG ratio, and enhancement of superoxide dismutase (SOD) activity in rat lung. Selegiline significantly only reversed CS-induced elevation of MAO-B activity and reduction of rGSH/GSSG ratio. The CS-induced elevation of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) expression via nuclear factor erythroid 2-related factor 2 (Nrf2) was also reversed by selegiline. Despite of CS-induced increase in total cell counts, especially the number of macrophages, selegiline had no effect. Selegiline attenuated CS-induced elevation of pro-inflammatory mediators (CINC-1, MCP-1 and IL-6) and restored CS-induced reduction of anti-inflammatory mediator IL-10 in BAL, which was driven through MAPK and NF-κB. Conclusions Inhibition of MAO-B may provide a promising therapeutic strategy for CS-mediated oxidative stress and inflammation in acute CS-exposed rat lungs.
Collapse
Affiliation(s)
- Yuting Cui
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth W K Liu
- Department of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Mary S M Ip
- Department of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China
| | - Yingmin Liang
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Judith C W Mak
- Department of Medicine, The University of Hong Kong, Hong Kong, China.,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.,Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
43
|
Bao A, Ma A, Zhang H, Qiao L, Ben S, Zhou X, Zhang M. Inducible expression of heat shock protein 20 protects airway epithelial cells against oxidative injury involving the Nrf2-NQO-1 pathway. Cell Biosci 2020; 10:120. [PMID: 33088476 PMCID: PMC7574176 DOI: 10.1186/s13578-020-00483-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Heat shock protein (HSP) 20 is a molecular chaperone that exerts multiple protective functions in various kinds of tissues. However, the expression of HSP20 and its specific functions in airway epithelial cells (AECs) remain elusive. RESULTS In current study, we first confirmed the inducible expression of HSP20 in mouse AECs and in a human bronchial epithelial cell line BEAS-2B cells, under different oxidant stressors. Then by establishing a HSP20-abundant mouse model with repeated low-level-ozone exposures and stimulating this model with a single high-level ozone exposure, we found that the HSP20 abundance along with its enhanced phosphorylation potentially contributed to the alleviation of oxidative injuries, evidenced by the decreases in the bodyweight reduction, the BAL neutrophil accumulation, the AECs shedding, and the BAL concentrations of albumin and E-cadherin. The biological function of HSP20 and its molecular mechanisms were further investigated in BEAS-2B cells that were transfected with HSP20-, unphosphorylatable HSP20(Ala) or empty vector plasmids prior to the stimulation of H2O2, of which its oxidant capacity has been proved to be similar with those of ozone in an air-liquid culture system. We found that the H2O2-induced intracellular ROS level and the early cell apoptosis were attenuated in the HSP20- but not HSP20(Ala)- transfected cells. The intracellular expression of NQO-1 (mRNA and protein) and the intranuclear content of Nrf2 were significantly increased in the HSP20- transfected cells but not in the HSP20(Ala)- and empty vector-transfected cells after the stimulation of H2O2. CONCLUSIONS The inducible expression of HSP20 in AECs by oxidative stress exerts protective roles against oxidative damages, which may involve the activation of the Nrf2-NQO-1 pathway.
Collapse
Affiliation(s)
- Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 China
| | - Aying Ma
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Lihua Qiao
- Department of Gynecology, The Fourth People’s Hospital of Shanghai, Tong Ji University, Shanghai, China
| | - Suqin Ben
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 China
| | - Xin Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
44
|
Quimbar ME, Davis SQ, Al-Farra ST, Hayes A, Jovic V, Masuda M, Lippert AR. Chemiluminescent Measurement of Hydrogen Peroxide in the Exhaled Breath Condensate of Healthy and Asthmatic Adults. Anal Chem 2020; 92:14594-14600. [PMID: 33064450 DOI: 10.1021/acs.analchem.0c02929] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reactive oxygen species are centrally involved in the pathophysiology of airway diseases such as asthma and chronic obstructive pulmonary disease. This study reports the development of a chemiluminescence assay and a device for measuring hydrogen peroxide in the exhaled breath condensate of asthma patients and healthy participants. A stand-alone photon detection device was constructed for use with an optimized chemiluminescence assay. Calibrations using a catalase control to scavenge residual hydrogen peroxide in calibrant solutions provided analytically sensitive and specific measurements. We evaluated exhaled breath condensate hydrogen peroxide in 60 patients (ages 20-83; 30 healthy patients and 30 asthma patients) recruited from the John Peter Smith Hospital Network. The exhaled breath condensate hydrogen peroxide concentrations trended toward higher values in asthma patients compared to healthy participants (mean 142.5 vs 115.5 nM; p = 0.32). Asthma patients who had not used an albuterol rescue inhaler in the past week were compared to those who had and showed a trend toward higher hydrogen peroxide levels (mean 172.8 vs 115.9 nM; p = 0.25), and these patients also trended toward higher hydrogen peroxide than healthy participants (mean 172.8 vs 115.5 nM; p = 0.14). This pilot study demonstrates the ability of the newly developed assay and device to measure exhaled breath condensate hydrogen peroxide in asthma patients and healthy participants. The trends observed in this study are in agreement with previous literature and warrant further investigation of using this system to measure exhaled breath condensate hydrogen peroxide for monitoring oxidative stress in asthma.
Collapse
Affiliation(s)
| | - Steven Q Davis
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Sherif T Al-Farra
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Amanda Hayes
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Valentina Jovic
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Maximillian Masuda
- John Peter Smith Hospital Network, Fort Worth, Texas 76104, United States
| | - Alexander R Lippert
- BioLum Sciences LLC, Dallas, Texas 75206, United States.,Department of Chemistry and Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
45
|
Oxidation specific epitopes in asthma: New possibilities for treatment. Int J Biochem Cell Biol 2020; 129:105864. [PMID: 33069787 DOI: 10.1016/j.biocel.2020.105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress is an important feature of asthma pathophysiology that is not currently targeted by any of our frontline treatments. Reactive oxygen species, generated during times of heightened oxidative stress, can damage cellular lipids causing the production of oxidation specific epitopes (OSE). OSEs are elevated in chronic inflammatory diseases and promoting their clearance by the body, through pattern recognition receptors and IgM antibodies, prevents and resolves inflammation and tissue damage in animal models. Current research on OSEs in asthma is limited. Although they are present in the lungs of people with asthma during periods of exacerbation or allergen exposure, we do not know if they are linked with disease pathobiology. This article reviews our current understanding of OSEs in asthma and explores whether targeting OSE clearance mechanisms may be a novel therapeutic intervention for asthma.
Collapse
|
46
|
Wang G, Zhang G, Gao X, Zhang Y, Fan W, Jiang J, An Z, Li J, Song J, Wu W. Oxidative stress-mediated epidermal growth factor receptor activation regulates PM2.5-induced over-secretion of pro-inflammatory mediators from human bronchial epithelial cells. Biochim Biophys Acta Gen Subj 2020; 1864:129672. [DOI: 10.1016/j.bbagen.2020.129672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/25/2022]
|
47
|
Rouadi PW, Idriss SA, Naclerio RM, Peden DB, Ansotegui IJ, Canonica GW, Gonzalez-Diaz SN, Rosario Filho NA, Ivancevich JC, Hellings PW, Murrieta-Aguttes M, Zaitoun FH, Irani C, Karam MR, Bousquet J. Immunopathological features of air pollution and its impact on inflammatory airway diseases (IAD). World Allergy Organ J 2020; 13:100467. [PMID: 33042360 PMCID: PMC7534666 DOI: 10.1016/j.waojou.2020.100467] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Air pollution causes significant morbidity and mortality in patients with inflammatory airway diseases (IAD) such as allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma, and chronic obstructive pulmonary disease (COPD). Oxidative stress in patients with IAD can induce eosinophilic inflammation in the airways, augment atopic allergic sensitization, and increase susceptibility to infection. We reviewed emerging data depicting the involvement of oxidative stress in IAD patients. We evaluated biomarkers, outcome measures and immunopathological alterations across the airway mucosal barrier following exposure, particularly when accentuated by an infectious insult.
Collapse
Key Words
- AR, Allergic rhinitis
- Air pollution
- Antioxidant
- COPD, Chronic obstructive pulmonary disease
- CRS, Chronic rhinosinusitis
- DEP, Diesel exhaust particles
- IAD, Inflammatory airway diseases
- IL, Interleukin
- ILC, Innate lymphoid cells
- Inflammatory airway disease
- NOx, Nitrogen oxides
- Oxidative stress biomarkers
- PAH, Polycyclic aromatic hydrocarbons
- PM, Particulate matter
- ROS, Reactive oxygen species
- TBS, Tobacco smoke
- TLR, Toll-like receptors
- Tobacco smoke
- Treg, Regulatory T cell
- VOCs, Volatile organic compounds
Collapse
Affiliation(s)
- Philip W. Rouadi
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Samar A. Idriss
- Department of Otolaryngology-Head and Neck Surgery, Eye and Ear University Hospital, Beirut, Lebanon
| | - Robert M. Naclerio
- Johns Hopkins University Department of Otolaryngology - Head and Neck Surgery, Baltimore, MD, USA
| | - David B. Peden
- UNC Center for Environmental Medicine, Asthma, and Lung Biology, Division of Allergy, Immunology and Rheumatology, Department of Pediatrics UNS School of Medicine, USA
| | - Ignacio J. Ansotegui
- Department of Allergy and Immunology, Hospital Quironsalud Bizkaia, Bilbao, Spain
| | | | - Sandra Nora Gonzalez-Diaz
- University Autonoma de Nuevo Leon Facultad de Medicina y Hospital Universitario U.A.N.L, Monterrey, NL, c.p. 64460, México
| | | | - Juan Carlos Ivancevich
- Faculty of Medicine, Universidad del Salvador, Buenos Aires, Argentina and Head of Allergy and Immunology at the Santa Isabel Clinic, Buenos Aires, Argentina
| | - Peter W. Hellings
- Department of Otorhinolaryngology, University Hospitals Leuven, Leuven, Belgium
- Department of Otorhinolaryngology, Academic Medical Center Amsterdam, The Netherlands - Department Otorhinolaryngology, University Hospital Ghent, Belgium
| | | | - Fares H. Zaitoun
- LAUMC Rizk Hospital, Otolaryngology-Allergy Department, Beirut, Lebanon
| | - Carla Irani
- Department of Internal Medicine and Infectious Diseases, St Joseph University, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Marilyn R. Karam
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Jean Bousquet
- INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological and Public Health Approaches, Villejuif, France
- University Versailles St-Quentin-en-Yvelines, France
- Allergy-Centre-Charité, Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
48
|
Li ZM, Xu SY, Feng YZ, Cheng YR, Xiong JB, Zhou Y, Guan CX. The role of NOX4 in pulmonary diseases. J Cell Physiol 2020; 236:1628-1637. [PMID: 32780450 DOI: 10.1002/jcp.30005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is a subtype of the NOX family, which is mainly expressed in the pulmonary vasculature and pulmonary endothelial cells in the respiratory system. NOX4 has unique characteristics, and is a constitutively active enzyme that primarily produces hydrogen peroxide. The signaling pathways associated with NOX4 are complicated. Negative and positive feedback play significant roles in regulating NOX4 expression. The role of NOX4 is controversial because NOX4 plays a protective or damaging role in different respiratory diseases. This review summarizes the structure, enzymatic properties, regulation, and signaling pathways of NOX4. This review then introduces the roles of NOX4 in different diseases in the respiratory system, such as acute respiratory distress syndrome, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Zi-Ming Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sheng-Ya Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi-Zhuo Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu-Rui Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Zheng W, Liu B, Hu W, Cui Y. Effects of transport stress on pathological injury and main heat shock protein expression in the respiratory system of goats. J Anim Physiol Anim Nutr (Berl) 2020; 105:1-13. [PMID: 32744367 DOI: 10.1111/jpn.13430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to investigate the pathological injury and the expression of heat shock proteins in the caprine lung, trachea and bronchus under transport stress. 12 healthy male goats were selected and randomly divided into three groups. The control group (non-transported group), 2 hr transport-treated group and 6 hr transport-treated group. Morphological changes as well as the expression of heat shock proteins (HSPs, mainly HSP27, HSP70 and HSP90) in three parts of the respiratory tract were examined. Our results showed swollen mucosa and congestive blood vessels in mucous layer and submucosa, inflammatory cell infiltration as well as degeneration and necrosis of mucosal epithelial cells in trachea and bronchus of the transport-treated groups. The epithelial cells were degenerated, and the exfoliated cells and debris could be seen in the alveolar cavity. The results of immunohistochemistry showed that HSP27 and HSP70 were strongly expressed in tracheal and bronchial epithelium, glandular epithelium, vascular endothelium and bronchiole epithelium. And the amount of positive inflammatory cells was increased in transport-treated groups. Western blot results indicated that the expression of all three proteins had no obvious difference among the three groups in bronchi (p > .05). In trachea, there was no significant difference in the expression of heat shock proteins among the three groups except that the expression of HSP70 which was obviously higher in the two transported groups than the control group (p < .05). The expression level of HSP70 in the 2 hr transport-treated group was significantly higher than the 6 hr group (p < .05) and control groups (p < .05). However, there was no significant difference in the expression level of HSP27 and HSP90 in three groups (p > .05). In conclusion, our data showed that transport stress could damage the caprine respiratory system.
Collapse
Affiliation(s)
- Wenya Zheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.,College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China.,Jiangxi Lvke Agriculture and Animal Husbandry Technology Co. Ltd, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
50
|
Post-transcriptional air pollution oxidation to the cholesterol biosynthesis pathway promotes pulmonary stress phenotypes. Commun Biol 2020; 3:392. [PMID: 32699268 PMCID: PMC7376215 DOI: 10.1038/s42003-020-01118-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The impact of environmentally-induced chemical changes in RNA has been fairly unexplored. Air pollution induces oxidative modifications such as 8-oxo-7,8-dihydroguanine (8-oxoG) in RNAs of lung cells, which could be associated with premature lung dysfunction. We develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. We find 42 oxidized transcripts in bronchial epithelial BEAS-2B cells exposed to two air pollution mixtures that recreate urban atmospheres. We show that the FDFT1 transcript in the cholesterol biosynthesis pathway is susceptible to air pollution-induced oxidation. This process leads to decreased transcript and protein expression of FDFT1, and reduced cholesterol synthesis in cells exposed to air pollution. Knockdown of FDFT1 replicates alterations seen in air pollution exposure such as transformed cell size and suppressed cytoskeleton organization. Our results argue of a possible novel biomarker and of an unseen mechanism by which air pollution selectively modifies key metabolic-related transcripts facilitating cell phenotypes in bronchial dysfunction. Gonzales-Rivera et al. develop a method for 8-oxoG profiling using immunocapturing and RNA sequencing. They show that the FDFT1 transcript is susceptible to air pollution-induced oxidation, after identifying 42 transcripts that are differentially oxidized in bronchial epithelial BEAS-2B cells under air pollution conditions relative to clean air. FDFT1 oxidation affects cholesterol synthesis pathway, leading to phenotypes associated with several lung diseases.
Collapse
|