1
|
Al-Ghabkari A, Carlson DA, Haystead TAJ, MacDonald JA. Cooperative involvement of zipper-interacting protein kinase (ZIPK) and the dual-specificity cell-division cycle 14A phosphatase (CDC14A) in vascular smooth muscle cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583600. [PMID: 38496458 PMCID: PMC10942413 DOI: 10.1101/2024.03.06.583600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Zipper-interacting protein kinase (ZIPK) is a Ser/Thr protein kinase with regulatory involvement in vascular smooth muscle cell (VSMC) actin polymerization and focal adhesion assembly dynamics. ZIPK silencing can induce cytoskeletal remodeling with disassembly of actin stress fiber networks and coincident loss of focal adhesion kinase (FAK)-pY397 phosphorylation. The link between ZIPK inhibition and FAK phosphorylation is unknown, and critical interactor(s) and regulator(s) are not yet defined. In this study, we further analyzed the ZIPK-FAK relationship in VSMCs. The application of HS38, a selective ZIPK inhibitor, to coronary artery vascular smooth muscle cells (CASMCs) suppressed cell migration, myosin light chain phosphorylation (pT18&pS19) and FAK-pY397 phosphorylation as well. This was associated with the translocation of cytoplasmic FAK to the nucleus. ZIPK inhibition with HS38 was consistently found to suppress the activation of FAK and attenuate the phosphorylation of other focal adhesion protein components (i.e., pCas130, paxillin, ERK). In addition, our study showed a decrease in human cell-division cycle 14A phosphatase (CDC14A) levels with ZIPK-siRNA treatment and increased CDC14A with transient transfection of ZIPK. Proximity ligation assays (PLA) revealed CDC14A localized with ZIPK and FAK. Silencing CDC14A showed an increase of FAK-pY397 phosphorylation. Ultimately, the data presented herein strongly support a regulatory mechanism of FAK in CASMCs by a ZIPK-CDC14A partnership; ZIPK may act as a key signal integrator to control CDC14A and FAK during VSMC migration.
Collapse
|
2
|
Zhang W, Wu Y, J Gunst S. Membrane adhesion junctions regulate airway smooth muscle phenotype and function. Physiol Rev 2023; 103:2321-2347. [PMID: 36796098 PMCID: PMC10243546 DOI: 10.1152/physrev.00020.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Zhang EY, Bartman CM, Prakash YS, Pabelick CM, Vogel ER. Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease. Front Med (Lausanne) 2023; 10:1214108. [PMID: 37404808 PMCID: PMC10315587 DOI: 10.3389/fmed.2023.1214108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.
Collapse
Affiliation(s)
- Emily Y. Zhang
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Colleen M. Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Christina M. Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Elizabeth R. Vogel
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Muhl L, Mocci G, Pietilä R, Liu J, He L, Genové G, Leptidis S, Gustafsson S, Buyandelger B, Raschperger E, Hansson EM, Björkegren JL, Vanlandewijck M, Lendahl U, Betsholtz C. A single-cell transcriptomic inventory of murine smooth muscle cells. Dev Cell 2022; 57:2426-2443.e6. [DOI: 10.1016/j.devcel.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022]
|
6
|
Lv J, Li X, Wu H, Li J, Luan B, Li Y, Li Y, Yang D, Wen H. Icariside II Restores Vascular Smooth Muscle Cell Contractile Phenotype by Enhancing the Focal Adhesion Signaling Pathway in the Rat Vascular Remodeling Model. Front Pharmacol 2022; 13:897615. [PMID: 35770073 PMCID: PMC9234455 DOI: 10.3389/fphar.2022.897615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic transition represents the fundamental pathophysiological alteration in the vascular remodeling process during the initiation and progression of cardiovascular diseases. Recent studies have revealed that Icariside II (ICS-II), a flavonol glycoside derived from the traditional Chinese medicine Herba Epimedii, exhibited therapeutic effects in various cardiovascular diseases. However, the therapeutic efficacy and underlying mechanisms of ICS-II regarding VSMC phenotypic transition were unknown. In this study, we investigated the therapeutic effects of ICS-Ⅱ on vascular remodeling with a rat’s balloon injury model in vivo. The label-free proteomic analysis was further implemented to identify the differentially expressed proteins (DEPs) after ICS-II intervention. Gene ontology and the pathway enrichment analysis were performed based on DEPs. Moreover, platelet-derived growth factor (PDGF-BB)-induced primary rat VSMC was implemented to verify the restoration effects of ICS-II on the VSMC contractile phenotype. Results showed that ICS-II could effectively attenuate the vascular remodeling process, promote SMA-α protein expression, and inhibit OPN expression in vivo. The proteomic analysis identified 145 differentially expressed proteins after ICS-II intervention. Further, the bioinformatics analysis indicated that the focal adhesion signaling pathway was enriched in the ICS-II group. In vitro studies showed that ICS-II suppressed VSMC proliferation and migration, and promoted VSMC contractile phenotype by modulating the focal adhesion signaling pathway. Taken together, our results suggest that ICS-II attenuates the vascular remodeling process and restores the VSMC contractile phenotype by promoting the focal adhesion pathway.
Collapse
Affiliation(s)
- Junyuan Lv
- Breast and Thyroid Surgery, Department of General Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xintong Li
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongyu Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jiayang Li
- Drug Clinical Trial Institution, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Boyang Luan
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiqi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yeli Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Danli Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hao Wen
- Department of Trauma Center, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Hao Wen,
| |
Collapse
|
7
|
Functional Remodeling of the Contractile Smooth Muscle Cell Cortex, a Provocative Concept, Supported by Direct Visualization of Cortical Remodeling. BIOLOGY 2022; 11:biology11050662. [PMID: 35625390 PMCID: PMC9138025 DOI: 10.3390/biology11050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary As a key element of the smooth muscle cell contractile apparatus, the actin cytoskeleton participates in the development of force by acting as a molecular track for the myosin cross bridge motor. At the same time, the actin cytoskeleton must transmit the force developed during contraction to the extracellular matrix and, thus, to neighboring cells. This propagation of force to the cell periphery and beyond is initiated in part on specifically localized cellular cortical actin filaments also involved in mechano-chemical transduction. During the contractile process itself and in response to extracellular structural and chemical alterations, the smooth muscle actin cytoskeletal remodels. This indicates that the cytoskeleton is a dynamic cellular organelle that adapts to the changes in cell shape and chemical cues. Current evidence connecting contractile function and mechano-transduction mechanisms to the plasticity of the vascular smooth muscle actin cytoskeleton is reviewed; we then describe new evidence for cytoskeletal remodeling in vascular smooth muscle cells. Here, using immunoelectron microscopy, we visualize the actin binding proteins filamin A, zyxin and talin in these cells and show that they participate in the cortical cell cytoskeletal alteration, thus supporting the premise that smooth muscle cell remodeling occurs during contraction. Abstract Considerable controversy has surrounded the functional anatomy of the cytoskeleton of the contractile vascular smooth muscle cell. Recent studies have suggested a dynamic nature of the cortical cytoskeleton of these cells, but direct proof has been lacking. Here, we review past studies in this area suggesting a plasticity of smooth muscle cells. We also present images testing these suggestions by using the technique of immunoelectron microscopy of metal replicas to directly visualize the cortical actin cytoskeleton of the contractile smooth muscle cell along with interactions by representative cytoskeletal binding proteins. We find the cortical cytoskeletal matrix to be a branched, interconnected network of linear actin bundles. Here, the focal adhesion proteins talin and zyxin were localized with nanometer accuracy. Talin is reported in past studies to span the integrin–cytoplasm distance in fibroblasts and zyxin is known to be an adaptor protein between alpha-actinin and VASP. In response to activation of signal transduction with the alpha-agonist phenylephrine, we found that no movement of talin was detectable but that the zyxin-zyxin spacing was statistically significantly decreased in the smooth muscle cells examined. Contractile smooth muscle is often assumed to have a fixed cytoskeletal structure. Thus, the results included here are important in that they directly support the concept at the electron microscopic level that the focal adhesion of the contractile smooth muscle cell has a dynamic nature and that the protein–protein interfaces showing plasticity are protein-specific.
Collapse
|
8
|
Han YS, Delmotte P, Sieck GC. Effects of TNFα on Dynamic Cytosolic Ca 2 + and Force Responses to Muscarinic Stimulation in Airway Smooth Muscle. Front Physiol 2021; 12:730333. [PMID: 34393833 PMCID: PMC8363307 DOI: 10.3389/fphys.2021.730333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
Previously, we reported that in airway smooth muscle (ASM), the cytosolic Ca2+ ([Ca2+]cyt) and force response induced by acetyl choline (ACh) are increased by exposure to the pro-inflammatory cytokine tumor necrosis factor α (TNFα). The increase in ASM force induced by TNFα was not associated with an increase in regulatory myosin light chain (rMLC20) phosphorylation but was associated with an increase in contractile protein (actin and myosin) concentration and an enhancement of Ca2+ dependent actin polymerization. The sensitivity of ASM force generation to elevated [Ca2+]cyt (Ca2+ sensitivity) is dynamic involving both the shorter-term canonical calmodulin-myosin light chain kinase (MLCK) signaling cascade that regulates rMLC20 phosphorylation and cross-bridge recruitment as well as the longer-term regulation of actin polymerization that regulates contractile unit recruitment and actin tethering to the cortical cytoskeleton. In this study, we simultaneously measured [Ca2+]cyt and force responses to ACh and explored the impact of 24-h TNFα on the dynamic relationship between [Ca2+]cyt and force responses. The temporal delay between the onset of [Ca2+]cyt and force responses was not affected by TNFα. Similarly, the rates of rise of [Ca2+]cyt and force responses were not affected by TNFα. The absence of an impact of TNFα on the short delay relationships between [Ca2+]cyt and force was consistent with the absence of an effect of [Ca2+]cyt and force on rMLC20 phosphorylation. However, the integral of the phase-loop plot of [Ca2+]cyt and force increased with TNFα, consistent with an impact on actin polymerization and, contractile unit recruitment and actin tethering to the cortical cytoskeleton.
Collapse
Affiliation(s)
- Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Jo MH, Kim BC, Sung K, Panettieri RA, An SS, Liu J, Ha T. Molecular Nanomechanical Mapping of Histamine-Induced Smooth Muscle Cell Contraction and Shortening. ACS NANO 2021; 15:11585-11596. [PMID: 34197709 PMCID: PMC10144385 DOI: 10.1021/acsnano.1c01782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical response to external stimuli is a conserved feature of many cell types. For example, neurotransmitters (e.g., histamine) trigger calcium signals that induce actomyosin-regulated contraction of airway smooth muscle (ASM); the resulting cell shortening causes airway narrowing, the excess of which can cause asthma. Despite intensive studies, however, it remains unclear how physical forces are propagated through focal adhesion (FA)-the major force-transmission machinery of the cell-during ASM shortening. We provide a nanomechanical platform to directly image single molecule forces during ASM cell shortening by repurposing DNA tension sensors. Surprisingly, cell shortening and FA disassembly that immediately precedes it occurred long after histamine-evoked increases in intracellular calcium levels ([Ca2+]i). Our mathematical model that fully integrates cell edge protrusion and retraction with contractile forces acting on FA predicted that (1) stabilization of FA impedes cell shortening and (2) the disruption of FAs is preceded by their strengthening through actomyosin-activated molecular tension. We confirmed these predictions via real-time imaging and molecular force measurements. Together, our work highlights a key role of FA dynamics in regulating ASM contraction induced by an allergen with potential therapeutic implications.
Collapse
Affiliation(s)
- Myung Hyun Jo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Byoung Choul Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Nano-Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, The State University of New Jersey, New Brunswick, NJ 08901, USA
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jian Liu
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 20205, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
LIMK2 is required for membrane cytoskeleton reorganization of contracting airway smooth muscle. J Genet Genomics 2021; 48:452-462. [PMID: 34353741 DOI: 10.1016/j.jgg.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022]
Abstract
Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.
Collapse
|
11
|
Delmotte P, Han Y, Sieck GC. Cytoskeletal remodeling slows cross-bridge cycling and ATP hydrolysis rates in airway smooth muscle. Physiol Rep 2020; 8:e14561. [PMID: 32812390 PMCID: PMC7435030 DOI: 10.14814/phy2.14561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
During isometric activation of airway smooth muscle (ASM), cross-bridge cycling and ATP hydrolysis rates decline across time even though isometric force is sustained. Thus, tension cost (i.e., ATP hydrolysis rate per unit of force during activation) decreases with time. The "latch-state" hypothesis attributes the dynamic change in cross-bridge cycling and ATP hydrolysis rates to changes in phosphorylation of the regulatory myosin light chain (rMLC20 ). However, we previously showed that in ASM, the extent of rMLC20 phosphorylation remains unchanged during sustained isometric force. As an alternative, we hypothesized that cytoskeletal remodeling within ASM cells results in increased internal loading of contractile proteins that slows cross-bridge cycling and ATP hydrolysis rates. To test this hypothesis, we simultaneously measured isometric force and ATP hydrolysis rate in permeabilized porcine ASM strips activated by Ca2+ (pCa 4.0). The extent of rMLC20 phosphorylation remained unchanged during isometric activation, even though ATP hydrolysis rate (tension cost) declined with time. The effect of cytoskeletal remodeling was assessed by inhibiting actin polymerization using Cytochalasin D (Cyto-D). In Cyto-D treated ASM, isometric force was reduced while ATP hydrolysis rate increased compared to untreated ASM strips. These results indicate that external transmission of force, cross-bridge cycling and ATP hydrolysis rates are affected by internal loading of contractile proteins.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Young‐soo Han
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
12
|
Cairncross A, Jones RL, Elliot JG, McFawn PK, James AL, Noble PB. Airway narrowing and response to simulated deep inspiration in bronchial segments from subjects with fixed airflow obstruction. J Appl Physiol (1985) 2020; 128:757-767. [PMID: 32105523 DOI: 10.1152/japplphysiol.00439.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The volume fraction of extracellular matrix (ECM) within the layer of airway smooth muscle (ASM) is increased in subjects with fixed airflow obstruction. We postulated that changes in ECM within the ASM layer will impact force transmission during induced contraction and/or in response to externally applied stresses like a deep inspiration (DI). Subjects were patients undergoing lung resection surgery who were categorized as unobstructed (n = 12) or "fixed" obstructed (n = 6) on the basis of preoperative spirometry. The response to a DI, assessed by the ratio of isovolumic flows from maximal and partial inspirations (M/P), was also measured preoperatively. M/P was reduced in the obstructed group (P = 0.02). Postoperatively, bronchial segments were obtained from resected tissue, and luminal narrowing to acetylcholine and bronchodilation to simulated DI were assessed in vitro. Airway wall dimensions and the volume fraction of ECM within the ASM were quantified. Maximal airway narrowing to acetylcholine (P = 0.01) and the volume fraction of ECM within the ASM layer (P = 0.02) were increased in the obstructed group, without a change in ASM thickness. Whereas bronchodilation to simulated DI in vitro was not different between obstructed and unobstructed groups, it was correlated with increased M/P (bronchodilation/less bronchoconstriction) in vivo (P = 0.03). The volume fraction of ECM was inversely related to forced expiratory volume in 1 s FEV1 %predicted (P = 0.04) and M/P (P = 0.01). Results show that in subjects with fixed airflow obstruction the mechanical behavior of the airway wall is altered and there is a contemporaneous shift in the structural composition of the ASM layer.NEW & NOTEWORTHY Cartilaginous airways from subjects with fixed airflow obstruction have an increase in the volume fraction of extracellular matrix within the airway smooth muscle layer. These airways are also intrinsically more reactive to a contractile stimulus, which is expected to contribute to airway hyperresponsiveness in this population, often attributed to geometric mechanisms. In view of these results, we speculate on how changes in extracellular matrix may impact airway mechanics.
Collapse
Affiliation(s)
- Alvenia Cairncross
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Robyn L Jones
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Peter K McFawn
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
13
|
Rampadarath AK, Donovan GM. An in silico study examining the role of airway smooth muscle dynamics and airway compliance on the rate of airway re-narrowing after deep inspiration. Respir Physiol Neurobiol 2019; 271:103257. [PMID: 31542658 DOI: 10.1016/j.resp.2019.103257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/15/2022]
Abstract
Deep inspirations are a widely studied topic due to their varied effectiveness as a bronchodilator in asthmatic and non-asthmatic patients. Specifically, they are known to be effective at reversing bronchoconstriction in non-asthmatic patients but may fail to prevent bronchoconstriction in asthmatic patients. Inspired by a recent study on the effect of deep inspirations on the rate of re-narrowing of an isolated airway, we investigate whether the latch-bridge dynamics of smooth muscle cross-bridge theory, coupled with non-linear compliance of the airway wall, can account for the reported results: namely that only the rate of renarrowing after DI is sensitive to the interval between deep inspirations, while other measures are unaffected. We develop and present length- and pressure-controlled protocols which mimic both the experiments performed in the study, as well as simulate in vivo conditions respectively. Both protocols are simulated and show qualitative agreement with the results reported by the experiments, suggesting that latch-bridge dynamics coupled with airway wall non-compliance may be sufficient to explain these results. Moreover pressure- and length-controlled protocols show important differences which should be considered when designing in vitro experiments to mimic in vivo conditions.
Collapse
Affiliation(s)
- A K Rampadarath
- Department of Mathematics, University of Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, New Zealand
| | - G M Donovan
- Department of Mathematics, University of Auckland, New Zealand
| |
Collapse
|
14
|
Pan S, Shah SD, Panettieri RA, Deshpande DA. Bnip3 regulates airway smooth muscle cell focal adhesion and proliferation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L758-L767. [PMID: 31509440 DOI: 10.1152/ajplung.00224.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Increased airway smooth muscle (ASM) mass is a key contributor to airway narrowing and airway hyperresponsiveness in asthma. Besides conventional pathways and regulators of ASM proliferation, recent studies suggest that changes in mitochondrial morphology and function play a role in airway remodeling in asthma. In this study, we aimed at determining the role of mitochondrial Bcl-2 adenovirus E1B 19 kDa-interacting protein, Bnip3, in the regulation of ASM proliferation. Bnip3 is a member of the Bcl-2 family of proteins critical for mitochondrial health, mitophagy, and cell survival/death. We found that Bnip3 expression is upregulated in ASM cells from asthmatic donors compared with that in ASM cells from healthy donors and transient downregulation of Bnip3 expression in primary human ASM cells using an siRNA approach decreased cell adhesion, migration, and proliferation. Furthermore, Bnip3 downregulation altered the structure (electron density) and function (cellular ATP levels, membrane potential, and reacitve oxygen species generation) of mitochondria and decreased expression of cytoskeleton proteins vinculin, paxillin, and actinin. These findings suggest that Bnip3 via regulation of mitochondria functions and expression of adhesion proteins regulates ASM adhesion, migration, and proliferation. This study reveals a novel role for Bnip3 in ASM functions and establishes Bnip3 as a potential target in mitigating ASM remodeling in asthma.
Collapse
Affiliation(s)
- Shi Pan
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, Child Health Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Deepak A Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Sieck GC, Dogan M, Young‐Soo H, Osorio Valencia S, Delmotte P. Mechanisms underlying TNFα-induced enhancement of force generation in airway smooth muscle. Physiol Rep 2019; 7:e14220. [PMID: 31512410 PMCID: PMC6739507 DOI: 10.14814/phy2.14220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Airway diseases such as asthma are triggered by inflammation and mediated by proinflammatory cytokines such as tumor necrosis factor alpha (TNFα). Our goal was to systematically examine the potential mechanisms underlying the effect of TNFα on airway smooth muscle (ASM) contractility. Porcine ASM strips were incubated for 24 h with and without TNFα. Exposure to TNFα increased maximum ASM force in response to acetylcholine (Ach), with an increase in ACh sensitivity (hyperreactivity), as reflected by a leftward shift in the dose-response curve (EC50 ). At the EC50 , the [Ca2+ ]cyt response to ACh was similar between TNFα and control ASM, while force increased; thus, Ca2+ sensitivity appeared to increase. Exposure to TNFα increased the basal level of regulatory myosin light chain (rMLC) phosphorylation in ASM; however, the ACh-dependent increase in rMLC phosphorylation was blunted by TNFα with no difference in the extent of rMLC phosphorylation at the EC50 ACh concentration. In TNFα-treated ASM, total actin and myosin heavy chain concentrations increased. TNFα exposure also enhanced the ACh-dependent polymerization of G- to F-actin. The results of this study confirm TNFα-induced hyperreactivity to ACh in porcine ASM. We conclude that the TNFα-induced increase in ASM force, cannot be attributed to an enhanced [Ca2+ ]cyt response or to an increase in rMLC phosphorylation. Instead, TNFα increases Ca2+ sensitivity of ASM force generation due to increased contractile protein content (greater number of contractile units) and enhanced cytoskeletal remodeling (actin polymerization) resulting in increased tethering of contractile elements to the cortical cytoskeleton and force translation to the extracellular matrix.
Collapse
Affiliation(s)
- Gary C. Sieck
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Murat Dogan
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Han Young‐Soo
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Sara Osorio Valencia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesota
| |
Collapse
|
16
|
Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil 2019; 40:197-209. [PMID: 31214894 PMCID: PMC6726830 DOI: 10.1007/s10974-019-09529-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022]
Abstract
The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.
Collapse
Affiliation(s)
- Brian Sit
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Daniel Gutmann
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, Queen Mary University of London, London, UK.
| |
Collapse
|
17
|
Irons L, Owen MR, O'Dea RD, Brook BS. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions. Biophys J 2019; 114:2679-2690. [PMID: 29874617 DOI: 10.1016/j.bpj.2018.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects.
Collapse
Affiliation(s)
- Linda Irons
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Markus R Owen
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Zhang W, Gunst SJ. Molecular Mechanisms for the Mechanical Modulation of Airway Responsiveness. ACTA ACUST UNITED AC 2019; 2. [PMID: 32270135 PMCID: PMC7141576 DOI: 10.1115/1.4042775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The smooth muscle of the airways is exposed to continuously changing mechanical
forces during normal breathing. The mechanical oscillations that occur during
breathing have profound effects on airway tone and airway responsiveness both in
experimental animals and humans in vivo and in isolated airway tissues in vitro.
Experimental evidence suggests that alterations in the contractile and
mechanical properties of airway smooth muscle tissues caused by mechanical
perturbations result from adaptive changes in the organization of the
cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a
dynamic structure that undergoes rapid reorganization in response to external
mechanical and pharmacologic stimuli. Contractile stimulation initiates the
assembly of cytoskeletal/extracellular matrix adhesion complex proteins into
large macromolecular signaling complexes (adhesomes) that undergo activation to
mediate the polymerization and reorganization of a submembranous network of
actin filaments at the cortex of the cell. Cortical actin polymerization is
catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the
Arp2/3 complex, which are activated by pathways regulated by paxillin and the
small GTPase, cdc42. These processes create a strong and rigid cytoskeletal
framework that may serve to strengthen the membrane for the transmission of
force generated by the contractile apparatus to the extracellular matrix, and to
enable the adaptation of smooth muscle cells to mechanical stresses. This model
for the regulation of airway smooth muscle function can provide novel
perspectives to explain the normal physiologic behavior of the airways and
pathophysiologic properties of the airways in asthma.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
19
|
Park H, Park MS, Ki CS, Cho J, Lee J, Kim J, Ahn K. A case of FLNAgene mutation with respiratory insufficiency and periventricular heterotopia. ALLERGY ASTHMA & RESPIRATORY DISEASE 2019. [DOI: 10.4168/aard.2019.7.3.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Hwanhee Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Seung Park
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joongbum Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jihyun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Jaslove JM, Nelson CM. Smooth muscle: a stiff sculptor of epithelial shapes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170318. [PMID: 30249770 PMCID: PMC6158200 DOI: 10.1098/rstb.2017.0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Jacob M Jaslove
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Contractility of Airway Smooth Muscle Cell in Response to Zinc Oxide Nanoparticles by Traction Force Microscopy. Ann Biomed Eng 2018; 46:2000-2011. [PMID: 30051243 DOI: 10.1007/s10439-018-2098-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 12/29/2022]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) have been widely used in engineering and biomedicine. However, their adverse pathological effects and mechanisms, especially the biomechanical effects on respiratory system where airway smooth muscle cell (ASMC) contractility regulates the airway response and lung function, are not fully understood. Herein, we used traction force microscopy (TFM) method to investigate whether ZnO-NPs of different concentrations (0.1-10 μg/mL) can alter ASMC contractility (basal and agonist-stimulated) after a short-term exposure and the potential mechanisms. We found that ZnO-NPs exposure led to a decrease of ASMC viability in a dose-dependent manner. Notably, basal contractility was enhanced when the concentration of ZnO-NPs was less than 0.1 μg/mL and decreased afterwards, while KCl-stimulated contractility was reduced in all cases of ZnO-NPs treated groups. Cytoskeleton structure was also found to be significantly altered in ASMC with the stimulation of ZnO-NPs. More importantly, it seems that ZnO-NPs with low concentration (< 0.1 μg/mL) would change ASMC contractility without any apparent cytotoxicity through disruption of the microtubule assembly. Moreover, our results also emerged that ASMC contractility responses were regulated by clathrin-mediated endocytosis and cytoskeleton remodeling. Together, these findings indicate the susceptibility of cell mechanics to NPs exposure, suggesting that cell mechanical testing will contribute to uncover the pathological mechanisms of NPs in respiratory diseases.
Collapse
|
22
|
Zhang W, Bhetwal BP, Gunst SJ. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J Physiol 2018; 596:3617-3635. [PMID: 29746010 DOI: 10.1113/jp275751] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/04/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASp). N-WASP transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. ABSTRACT Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase-inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We found that ROCK regulates airway smooth muscle contraction by mediating activation of p21-activated kinase (Pak), a serine-threonine kinase, to promote actin polymerization. Pak catalyses paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signalling module to paxillin, which activates the guanine nucleotide exchange factor (GEF) activity of βPIX towards Cdc42. Cdc42 is required for the activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp), which transmits signals from Cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and Cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bhupal P Bhetwal
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
Lockett AD, Wu Y, Gunst SJ. Elastase alters contractility and promotes an inflammatory synthetic phenotype in airway smooth muscle tissues. Am J Physiol Lung Cell Mol Physiol 2017; 314:L626-L634. [PMID: 29212803 DOI: 10.1152/ajplung.00334.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutrophil elastase is secreted by inflammatory cells during airway inflammation and can elicit airway hyperreactivity in vivo. Elastase can degrade multiple components of the extracellular matrix. We hypothesized that elastase might disrupt the connections between airway smooth muscle (ASM) cells and the extracellular matrix and that this might have direct effects on ASM tissue responsiveness and inflammation. The effect of elastase treatment on ASM contractility was assessed in vitro in isolated strips of canine tracheal smooth muscle by stimulation of tissues with cumulatively increasing concentrations of acetylcholine (ACh) and measurement of contractile force. Elastase treatment potentiated contractile responses to ACh at low concentrations but suppressed the maximal contractile force generated by the tissues without affecting the phosphorylation of myosin regulatory light chain (RLC). Elastase also promoted the secretion of eotaxin and the activation of Akt in ASM tissues and decreased expression of smooth muscle myosin heavy chain, consistent with promotion of a synthetic inflammatory phenotype. As the degradation of matrix proteins can alter integrin engagement, we evaluated the effect of elastase on the assembly and activation of integrin-associated adhesion junction complexes in ASM tissues. Elastase led to talin cleavage, reduced talin binding to vinculin, and suppressed activation of the adhesome proteins paxillin, focal adhesion kinase, and vinculin, indicating that elastase causes the disassembly of adhesion junction complexes and the inactivation of adhesome signaling proteins. We conclude that elastase promotes an inflammatory phenotype and increased sensitivity to ACh in ASM tissues by disrupting signaling pathways mediated by integrin-associated adhesion complexes.
Collapse
Affiliation(s)
- Angelia D Lockett
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Yidi Wu
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
24
|
Young BM, Shankar K, Allen BP, Pouliot RA, Schneck MB, Mikhaiel NS, Heise RL. Electrospun Decellularized Lung Matrix Scaffold for Airway Smooth Muscle Culture. ACS Biomater Sci Eng 2017; 3:3480-3492. [DOI: 10.1021/acsbiomaterials.7b00384] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bethany M. Young
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Keerthana Shankar
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Brittany P. Allen
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Robert A. Pouliot
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Matthew B. Schneck
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Nabil S. Mikhaiel
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
| | - Rebecca L. Heise
- Department
of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh
Street, Room 1071, Richmond, Virginia 23219, United States
- Department
of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall Street, Richmond, Virginia 23298, United States
| |
Collapse
|
25
|
Mikami M, Zhang Y, Danielsson J, Joell T, Yong HM, Townsend E, Khurana S, An SS, Emala CW. Impaired Relaxation of Airway Smooth Muscle in Mice Lacking the Actin-Binding Protein Gelsolin. Am J Respir Cell Mol Biol 2017; 56:628-636. [PMID: 28118027 DOI: 10.1165/rcmb.2016-0292oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Diverse classes of ligands have recently been discovered that relax airway smooth muscle (ASM) despite a transient increase in intracellular calcium concentrations ([Ca2+]i). However, the cellular mechanisms are not well understood. Gelsolin is a calcium-activated actin-severing and -capping protein found in many cell types, including ASM cells. Gelsolin also binds to phosphatidylinositol 4,5-bisphosphate, making this substrate less available for phospholipase Cβ-mediated hydrolysis to inositol triphosphate and diacylglycerol. We hypothesized that gelsolin plays a critical role in ASM relaxation and mechanistically accounts for relaxation by ligands that transiently increase [Ca2+]i. Isolated tracheal rings from gelsolin knockout (KO) mice showed impaired relaxation to both a β-agonist and chloroquine, a bitter taste receptor agonist, which relaxes ASM, despite inducing transiently increased [Ca2+]i. A single inhalation of methacholine increased lung resistance to a similar extent in wild-type and gelsolin KO mice, but the subsequent spontaneous relaxation was less in gelsolin KO mice. In ASM cells derived from gelsolin KO mice, serotonin-induced Gq-coupled activation increased both [Ca2+]i and inositol triphosphate synthesis to a greater extent compared to cells from wild-type mice, possibly due to the absence of gelsolin binding to phosphatidylinositol 4,5-bisphosphate. Single-cell analysis showed higher filamentous:globular actin ratio at baseline and slower cytoskeletal remodeling dynamics in gelsolin KO cells. Gelsolin KO ASM cells also showed an attenuated decrease in cell stiffness to chloroquine and flufenamic acid. These findings suggest that gelsolin plays a critical role in ASM relaxation and that activation of gelsolin may contribute to relaxation induced by ligands that relax ASM despite a transient increase in [Ca2+]i.
Collapse
Affiliation(s)
- Maya Mikami
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Yi Zhang
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jennifer Danielsson
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Tiarra Joell
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Hwan Mee Yong
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth Townsend
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Seema Khurana
- 3 Department of Biology and Biochemistry, University of Houston, Baylor College of Medicine, Houston, Texas; and
| | - Steven S An
- 2 Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,4 Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Charles W Emala
- 1 Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
26
|
Dogan M, Han YS, Delmotte P, Sieck GC. TNFα enhances force generation in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2017; 312:L994-L1002. [PMID: 28385814 PMCID: PMC5495949 DOI: 10.1152/ajplung.00550.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 11/22/2022] Open
Abstract
Airway inflammation is a hallmark of asthma, triggering airway smooth muscle (ASM) hyperreactivity and airway remodeling. TNFα increases both agonist-induced cytosolic Ca2+ concentration ([Ca2+]cyt) and force in ASM. The effects of TNFα on ASM force may also be due to an increase in Ca2+ sensitivity, cytoskeletal remodeling, and/or changes in contractile protein content. We hypothesized that 24 h of exposure to TNFα increases ASM force by changing actin and myosin heavy chain (MyHC) content and/or polymerization. Porcine ASM strips were permeabilized with 10% Triton X-100, and force was measured in response to increasing concentrations of Ca2+ (pCa 9.0 to 4.0) in control and TNFα-treated groups. Relative phosphorylation of the regulatory myosin light chain (p-MLC) and total actin, MLC, and MyHC concentrations were quantified at pCa 9.0, 6.1, and 4.0. Actin polymerization was quantified by the ratio of filamentous to globular actin at pCa 9.0 and 4.0. For determination of total cross-bridge formation, isometric ATP hydrolysis rate at pCa 4.0 was measured using an enzyme-coupled NADH-linked fluorometric technique. Exposure to TNFα significantly increased force across the range of Ca2+ activation but did not affect the intrinsic Ca2+ sensitivity of force generation. The TNFα-induced increase in ASM force was associated with an increase in total actin, MLC, and MyHC content, as well as an increase in actin polymerization and an increase in maximum isometric ATP hydrolysis rate. The results of this study support our hypothesis that TNFα increases force generation in ASM by increasing the number of contractile units (actin-myosin content) contributing to force generation.
Collapse
Affiliation(s)
- Murat Dogan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Young-Soo Han
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
27
|
Zhang W, Gunst SJ. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction. J Physiol 2017; 595:4279-4300. [PMID: 28303576 DOI: 10.1113/jp273906] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/14/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Non-muscle (NM) and smooth muscle (SM) myosin II are both expressed in smooth muscle tissues, however the role of NM myosin in SM contraction is unknown. Contractile stimulation of tracheal smooth muscle tissues stimulates phosphorylation of the NM myosin heavy chain on Ser1943 and causes NM myosin filament assembly at the SM cell cortex. Expression of a non-phosphorylatable NM myosin mutant, NM myosin S1943A, in SM tissues inhibits ACh-induced NM myosin filament assembly and SM contraction, and also inhibits the assembly of membrane adhesome complexes during contractile stimulation. NM myosin regulatory light chain (RLC) phosphorylation but not SM myosin RLC phosphorylation is regulated by RhoA GTPase during ACh stimulation, and NM RLC phosphorylation is required for NM myosin filament assembly and SM contraction. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin. ABSTRACT The molecular function of non-muscle (NM) isoforms of myosin II in smooth muscle (SM) tissues and their possible role in contraction are largely unknown. We evaluated the function of NM myosin during contractile stimulation of canine tracheal SM tissues. Stimulation with ACh caused NM myosin filament assembly, as assessed by a Triton solubility assay and a proximity ligation assay aiming to measure interactions between NM myosin monomers. ACh stimulated the phosphorylation of NM myosin heavy chain on Ser1943 in tracheal SM tissues, which can regulate NM myosin IIA filament assembly in vitro. Expression of the non-phosphorylatable mutant NM myosin S1943A in SM tissues inhibited ACh-induced endogenous NM myosin Ser1943 phosphorylation, NM myosin filament formation, the assembly of membrane adhesome complexes and tension development. The NM myosin cross-bridge cycling inhibitor blebbistatin suppressed adhesome complex assembly and SM contraction without inhibiting NM myosin Ser1943 phosphorylation or NM myosin filament assembly. RhoA inactivation selectively inhibited phosphorylation of the NM myosin regulatory light chain (RLC), NM myosin filament assembly and contraction, although it did not inhibit SM RLC phosphorylation. We conclude that the assembly and activation of NM myosin II is regulated during contractile stimulation of airway SM tissues by RhoA-mediated NM myosin RLC phosphorylation and by NM myosin heavy chain Ser1943 phosphorylation. NM myosin II actomyosin cross-bridge cycling regulates the assembly of membrane adhesome complexes that mediate the cytoskeletal processes required for tension generation. NM myosin II plays a critical role in airway SM contraction that is independent and distinct from the function of SM myosin.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan J Gunst
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
28
|
Mailhot-Larouche S, Lortie K, Marsolais D, Flamand N, Bossé Y. An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respir Physiol Neurobiol 2017; 243:13-19. [PMID: 28487171 DOI: 10.1016/j.resp.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
The factors altering the bronchodilatory response to a deep inspiration (DI) in asthma are important to decipher. In this in vitro study, we investigated the effect of changing the duration between DIs on the rate of force recovery post-DI in guinea pig bronchi. The airway smooth muscle (ASM) within the main bronchi were submitted to length oscillation that simulated tidal breathing in different contractile states during 2, 5, 10 or 30min prior to a larger length excursion that simulated a DI. The contractile states of ASM were determined by adding either methacholine or isoproterenol. Irrespective of the contractile state, the duration between DIs neither affected the measured force during length oscillation nor the bronchodilator effect of DI. Contrastingly, the rate of force recovery post-DI in contracted state increased as the duration between DIs decreased. Similar results were obtained with contracted parenchymal strips. These findings suggest that changing the duration between DIs may alter the rate of ASM force recovery post-DI and thereby affect the rate of renarrowing and the duration of the respiratory relief afforded by DI.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
29
|
Le Guen M, Grassin-Delyle S, Naline E, Buenestado A, Brollo M, Longchampt E, Kleinmann P, Devillier P, Faisy C. The impact of low-frequency, low-force cyclic stretching of human bronchi on airway responsiveness. Respir Res 2016; 17:151. [PMID: 27842540 PMCID: PMC5109770 DOI: 10.1186/s12931-016-0464-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. METHODS After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. RESULTS The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved in the response; cyclic stretching up-regulated the early mRNA expression of MMP9 only, and was not associated with changes in organ bath levels of pro-inflammatory mediators. CONCLUSION Low-frequency, low-force cyclic stretching of whole human bronchi induced a myogenic response rather than activation of the pro-inflammatory signaling pathways mediated by mechanotransduction.
Collapse
Affiliation(s)
- Morgan Le Guen
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France. .,Department of Anesthesiology, Hôpital Foch, Université Versailles - Saint-Quentin, Suresnes, France.
| | - Stanislas Grassin-Delyle
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | | | - Philippe Kleinmann
- Department of Thoracic Surgery, Centre Médico-Chirurgical du Val d'Or, Saint-Cloud, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| | - Christophe Faisy
- Laboratory of Research in Respiratory Pharmacology - UPRES EA220, Université Versailles - Saint-Quentin, 11 rue Guillaume Lenoir, F-92150, Suresnes, France
| |
Collapse
|
30
|
Zhang W, Huang Y, Gunst SJ. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization. J Physiol 2016; 594:4879-900. [PMID: 27038336 DOI: 10.1113/jp272132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. ABSTRACT The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-βPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| | - Youliang Huang
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| | - Susan J Gunst
- Department of Cellular and Integrative Physiology, Indiana University School Medicine, Indianapolis, IN, 46202-5120, USA
| |
Collapse
|
31
|
Bidan CM, Veldsink AC, Meurs H, Gosens R. Airway and Extracellular Matrix Mechanics in COPD. Front Physiol 2015; 6:346. [PMID: 26696894 PMCID: PMC4667091 DOI: 10.3389/fphys.2015.00346] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/06/2015] [Indexed: 12/28/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD.
Collapse
Affiliation(s)
- Cécile M Bidan
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands ; Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes Grenoble, France ; Centre National de la Recherche Scientifique, LIPhy Grenoble, France
| | - Annemiek C Veldsink
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen Groningen, Netherlands ; Groningen Research Institute for Asthma and COPD, University of Groningen Netherlands
| |
Collapse
|
32
|
Auger L, Mailhot-Larouche S, Tremblay F, Poirier M, Farah C, Bossé Y. The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness. Expert Rev Respir Med 2015; 10:19-27. [PMID: 26561333 DOI: 10.1586/17476348.2016.1111764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contractile capacity of airway smooth muscle is not fixed but modulated by an impressive number of extracellular inflammatory mediators. Targeting the transient component of airway hyperresponsiveness ascribed to this contractile lability of ASM is a quest of great promises in order to alleviate asthma symptoms during inflammatory flares. However, owing to the plethora of mediators putatively involved and the molecular heterogeneity of asthma, it is more likely that many mediators conspire to increase the contractile capacity of ASM, each of which contributing to a various extent and in a time-varying fashion in individuals suffering from asthma. The task of identifying a common mend for a tissue rendered hypercontractile by imponderable assortments of inflammatory mediators is puzzling.
Collapse
Affiliation(s)
- Laurence Auger
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Samuel Mailhot-Larouche
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Francis Tremblay
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Mathilde Poirier
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Claude Farah
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| | - Ynuk Bossé
- a Institut Universitaire de Cardiologie et de Pneumologie de Québec , Université Laval , Québec , Canada
| |
Collapse
|
33
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
34
|
Le Guen M, Naline E, Grassin-Delyle S, Devillier P, Faisy C. Effectiveness of a load-imposing device for cyclic stretching of isolated human bronchi: a validation study. PLoS One 2015; 10:e0127765. [PMID: 26011598 PMCID: PMC4444237 DOI: 10.1371/journal.pone.0127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/18/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mechanical ventilation may induce harmful effects in the airways of critically ill patients. Nevertheless, the effects of cyclic stretching caused by repetitive inflation-deflation of the bronchial compartment have not been well characterized in humans. The objective of the present study was to assess the effectiveness of a load-imposing device for the cyclic stretching of human bronchi. Methods Intact bronchial segments were removed from 128 thoracic surgery patients. After preparation and equilibration in an organ bath, bronchi were stretched repetitively and cyclically with a motorized transducer. The peak force imposed on the bronchi was set to 80% of each individual maximum contraction in response to acetylcholine and the minimal force corresponded to the initial basal tone before stretching. A 1-min cycle (stretching for 15 sec, relaxing for 15 sec and resting for 30 sec) was applied over a time period ranging from 5 to 60 min. The device's performance level was assessed and the properties of the stretched bronchi were compared with those of paired, non-stretched bronchi. Results Despite the intrinsic capacities of the device, the targets of the tension adjustments remained variable for minimal tension (156–178%) while the peak force set point was unchanged (87–115%). In the stretched bronchi, a time-dependent rise in basal tone (P <.05 vs. non-stretched) was apparent after as little as 5 min of cyclic stretching. The stretch-induced rise in basal tone continued to increase (P <.01) after the stretching had ended. Only 60 min of cyclic stretching was associated with a significant (P <.05) increase in responsiveness to acetylcholine, relative to non-stretched bronchi. Conclusions Low-frequency, low-force, cyclic loading of human bronchi is associated with elevated basal tone and acetylcholine responsiveness. The present experimental model is likely to be a useful tool for future investigations of the bronchial response to repetitive stress during mechanical ventilation.
Collapse
Affiliation(s)
- Morgan Le Guen
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
- Departement of Anesthesiology, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Emmanuel Naline
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Stanislas Grassin-Delyle
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Philippe Devillier
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
| | - Christophe Faisy
- Research Unit UPRES EA220, University Versailles Saint–Quentin, Hôpital Foch, 40 rue Worth, F-92150, Suresnes, France
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, University Sorbonne Paris Cité, 20 rue Leblanc, F-75908, Paris, Cedex 15, France
- * E-mail:
| |
Collapse
|
35
|
A fungal protease allergen provokes airway hyper-responsiveness in asthma. Nat Commun 2015; 6:6763. [PMID: 25865874 PMCID: PMC4396684 DOI: 10.1038/ncomms7763] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 02/19/2015] [Indexed: 01/26/2023] Open
Abstract
Asthma, a common disorder that affects more than 250 million people worldwide, is defined by exaggerated bronchoconstriction to inflammatory mediators including acetylcholine, bradykinin, and histamine—also termed airway hyper-responsiveness Nearly 10% of people with asthma have severe, treatment-resistant disease, which is frequently associated with IgE sensitization to ubiquitous fungi, typically Aspergillus fumigatus. Here we show that a major Aspergillus fumigatus allergen, Asp f13, which is a serine protease, alkaline protease 1 (Alp 1), promotes airway hyper-responsiveness by infiltrating the bronchial submucosa and disrupting airway smooth muscle cell-extracellular matrix interactions. Alp 1-mediated extracellular matrix degradation evokes pathophysiological RhoA-dependent Ca2+ sensitivity and bronchoconstriction. These findings support a pathogenic mechanism in asthma and other lung diseases associated with epithelial barrier impairment, whereby airway smooth muscle cells respond directly to inhaled environmental allergens to generate airway hyper-responsiveness.
Collapse
|
36
|
Wu Y, Gunst SJ. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism. J Biol Chem 2015; 290:11403-16. [PMID: 25759389 DOI: 10.1074/jbc.m115.645788] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 11/06/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser(157) phosphorylation by different kinases. Inhibition of VASP Ser(157) phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser(157) mediates its localization at the membrane, but that VASP Ser(157) phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.
Collapse
Affiliation(s)
- Yidi Wu
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | - Susan J Gunst
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| |
Collapse
|
37
|
Hong Z, Reeves KJ, Sun Z, Li Z, Brown NJ, Meininger GA. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 2015; 10:e0119533. [PMID: 25745858 PMCID: PMC4351978 DOI: 10.1371/journal.pone.0119533] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular matrix (ECM) proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction). AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin II (ANG-II; 10−6) significantly increased (p<0.05) VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10−4) significantly decreased (p<0.05) VSMC E-modulus and adhesion probability by approximately −33% and −17%, respectively. Similarly, the NO donor (PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Kimberley J. Reeves
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharmacol 2015; 93:185-94. [PMID: 25695400 DOI: 10.1139/cjpp-2014-0413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
39
|
Abstract
Imposed length changes of only a small percent produce transient reductions in active force in strips of airway smooth muscle (ASM) due to the temporary detachment of bound cross-bridges caused by the relative motion of the actin and myosin fibers. More dramatic and sustained reductions in active force occur following large changes in length. The Huxley two-state model of skeletal muscle originally proposed in 1957 and later adapted to include a four-state description of cross-bridge kinetics has been widely used to model the former phenomenon, but is unable to account for the latter unless modified to include mechanisms by which the contractile machinery in the ASM cell becomes appropriately rearranged. Even so, the Huxley model itself is based on the assumption that the contractile proteins are all aligned precisely in the direction of bulk force generation, which is not true for ASM. The present study derives a coarse-grained version of the Huxley model that is free of inherent assumptions about cross-bridge orientation. This simplified model recapitulates the key features observed in the force-length behavior of activated strips of ASM and, in addition, provides a mechanistically based way of accounting for the sustained force reductions that occur following large stretch.
Collapse
Affiliation(s)
- Jason H T Bates
- Vermont Lung Center, Department of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
40
|
Lan B, Norris BA, Liu JCY, Paré PD, Seow CY, Deng L. Development and maintenance of force and stiffness in airway smooth muscle. Can J Physiol Pharmacol 2014; 93:163-9. [PMID: 25615545 DOI: 10.1139/cjpp-2014-0404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.
Collapse
Affiliation(s)
- Bo Lan
- Bioengineering College, Chongqing University, Chongqing, China., Centre for Heart and Lung Innovation, St Paul's Hospital and University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Fediuk J, Sikarwar AS, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L877-87. [DOI: 10.1152/ajplung.00036.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms regulating thromboxane-mediated actin polymerization are potential targets for future PPHN pharmacotherapy.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag S. Sikarwar
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
42
|
Delmotte P, Sieck GC. Interaction between endoplasmic/sarcoplasmic reticulum stress (ER/SR stress), mitochondrial signaling and Ca(2+) regulation in airway smooth muscle (ASM). Can J Physiol Pharmacol 2014; 93:97-110. [PMID: 25506723 DOI: 10.1139/cjpp-2014-0361] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Airway inflammation is a key aspect of diseases such as asthma. Several inflammatory cytokines (e.g., TNFα and IL-13) increase cytosolic Ca(2+) ([Ca(2+)]cyt) responses to agonist stimulation and Ca(2+) sensitivity of force generation, thereby enhancing airway smooth muscle (ASM) contractility (hyper-reactive state). Inflammation also induces ASM proliferation and remodeling (synthetic state). In normal ASM, the transient elevation of [Ca(2+)]cyt induced by agonists leads to a transient increase in mitochondrial Ca(2+) ([Ca(2+)]mito) that may be important in matching ATP production with ATP consumption. In human ASM (hASM) exposed to TNFα and IL-13, the transient increase in [Ca(2+)]mito is blunted despite enhanced [Ca(2+)]cyt responses. We also found that TNFα and IL-13 induce reactive oxidant species (ROS) formation and endoplasmic/sarcoplasmic reticulum (ER/SR) stress (unfolded protein response) in hASM. ER/SR stress in hASM is associated with disruption of mitochondrial coupling with the ER/SR membrane, which relates to reduced mitofusin 2 (Mfn2) expression. Thus, in hASM it appears that TNFα and IL-13 result in ROS formation leading to ER/SR stress, reduced Mfn2 expression, disruption of mitochondrion-ER/SR coupling, decreased mitochondrial Ca(2+) buffering, mitochondrial fragmentation, and increased cell proliferation.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 4-184 West Joseph SMH, 200 First Street SW, Rochester, MN 55905, USA
| | | |
Collapse
|
43
|
Zhang W, Huang Y, Wu Y, Gunst SJ. A novel role for RhoA GTPase in the regulation of airway smooth muscle contraction. Can J Physiol Pharmacol 2014; 93:129-36. [PMID: 25531582 DOI: 10.1139/cjpp-2014-0388] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have demonstrated a novel molecular mechanism for the regulation of airway smooth muscle (ASM) contraction by RhoA GTPase. In ASM tissues, both myosin light chain (MLC) phosphorylation and actin polymerization are required for active tension generation. RhoA inactivation dramatically suppresses agonist-induced tension development and completely inhibits agonist-induced actin polymerization, but only slightly reduces MLC phosphorylation. The inhibition of MLC phosphatase does not reverse the effects of RhoA inactivation on contraction or actin polymerization. Thus, RhoA regulates ASM contraction through its effects on actin polymerization rather than MLC phosphorylation. Contractile stimulation of ASM induces the recruitment and assembly of paxillin, vinculin, and focal adhesion kinase (FAK) into membrane adhesion complexes (adhesomes) that regulate actin polymerization by catalyzing the activation of cdc42 GTPase by the G-protein-coupled receptor kinase-interacting target (GIT) - p21-activated kinase (PAK) - PAK-interacting exchange factor (PIX) complex. Cdc42 is a necessary and specific activator of the actin filament nucleation activator, N-WASp. The recruitment and activation of paxillin, vinculin, and FAK is prevented by RhoA inactivation, thus preventing cdc42 and N-WASp activation. We conclude that RhoA regulates ASM contraction by catalyzing the assembly and activation of membrane adhesome signaling modules that regulate actin polymerization, and that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to a contractile agonist.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
44
|
Integrins: therapeutic targets in airway hyperresponsiveness and remodelling? Trends Pharmacol Sci 2014; 35:567-74. [PMID: 25441775 DOI: 10.1016/j.tips.2014.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/25/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Integrins are a group of transmembrane heterodimeric proteins that mediate cell-cell and cell-extracellular matrix (ECM) interactions. Integrins have been under intense investigation for their role in inflammation in asthma. Clinical trials investigating integrin antagonists, however, have shown that these compounds are relatively ineffective. Airway remodelling is another pathological feature of asthma that is thought to make an important contribution to airway hyperresponsiveness (AHR) and lung function decline. Recent studies have identified integrins as important players in this process, with a particular role for β1 and αv integrins. Here we review the role of these integrins in airway remodelling and hyperresponsiveness in obstructive airway disease and their potential as pharmacological targets for future treatment.
Collapse
|
45
|
Gao YZ, Saphirstein RJ, Yamin R, Suki B, Morgan KG. Aging impairs smooth muscle-mediated regulation of aortic stiffness: a defect in shock absorption function? Am J Physiol Heart Circ Physiol 2014; 307:H1252-61. [PMID: 25128168 DOI: 10.1152/ajpheart.00392.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Increased aortic stiffness is an early and independent biomarker of cardiovascular disease. Here we tested the hypothesis that vascular smooth muscle cells (VSMCs) contribute significantly to aortic stiffness and investigated the mechanisms involved. The relative contributions of VSMCs, focal adhesions (FAs), and matrix to stiffness in mouse aorta preparations at optimal length and with confirmed VSMC viability were separated by the use of small-molecule inhibitors and activators. Using biomechanical methods designed for minimal perturbation of cellular function, we directly quantified changes with aging in aortic material stiffness. An alpha adrenoceptor agonist, in the presence of N(G)-nitro-l-arginine methyl ester (l-NAME) to remove interference of endothelial nitric oxide, increases stiffness by 90-200% from baseline in both young and old mice. Interestingly, increases are robustly suppressed by the Src kinase inhibitor PP2 in young but not old mice. Phosphotyrosine screening revealed, with aging, a biochemical signature of markedly impaired agonist-induced FA remodeling previously associated with Src signaling. Protein expression measurement confirmed a decrease in Src expression with aging. Thus we report here an additive model for the in vitro biomechanical components of the mouse aortic wall in which 1) VSMCs are a surprisingly large component of aortic stiffness at physiological lengths and 2) regulation of the VSMC component through FA signaling and hence plasticity is impaired with aging, diminishing the aorta's normal shock absorption function in response to stressors.
Collapse
Affiliation(s)
- Yuan Z Gao
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, Massachusetts; and Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Robert J Saphirstein
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Rina Yamin
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| | - Bela Suki
- Department of Biomedical Engineering, College of Engineering, Boston University, Boston, Massachusetts; and
| | - Kathleen G Morgan
- Department of Health Sciences, Sargent College, Boston University, Boston, Massachusetts
| |
Collapse
|
46
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
47
|
Bartolák-Suki E, LaPrad AS, Harvey BC, Suki B, Lutchen KR. Tidal stretches differently regulate the contractile and cytoskeletal elements in intact airways. PLoS One 2014; 9:e94828. [PMID: 24740101 PMCID: PMC3989249 DOI: 10.1371/journal.pone.0094828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK) structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constriction in isolated intact airways during 90 minutes of static transmural pressure (Ptm) of 7.5 cmH2O or dynamic variations between Ptm of 5 and 10 cmH20 mimicking breathing. Integrin and focal adhesion kinase activity increased during Ptm oscillations which was further amplified during constriction. While Ptm oscillations reduced β-actin and F-actin formation implying lower CSK stiffness, it did not affect tubulin. However, constriction was amplified when the microtubule structure was disassembled. Without constriction, α-smooth muscle actin (ASMA) level was higher and smooth muscle myosin heavy chain 2 was lower during Ptm oscillations. Alternatively, during constriction, overall molecular motor activity was enhanced by Ptm oscillations, but ASMA level became lower. Thus, ASMA and motor protein levels change in opposite directions due to stretch and contraction maintaining similar airway constriction levels during static and dynamic Ptm. We conclude that physiological Ptm variations affect cellular processes in intact airways with constriction determined by the balance among contractile and CSK molecules and structure.
Collapse
Affiliation(s)
- Erzsébet Bartolák-Suki
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Adam S. LaPrad
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Brian C. Harvey
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Béla Suki
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Kenneth R. Lutchen
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
48
|
Saphirstein RJ, Morgan KG. The contribution of vascular smooth muscle to aortic stiffness across length scales. Microcirculation 2014; 21:201-7. [PMID: 24635219 PMCID: PMC8588963 DOI: 10.1111/micc.12101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
Abstract
The operation of the cardiovascular system in health and disease is inherently mechanical. Clinically, aortic stiffness has proven to be of critical importance as an early biomarker for subsequent cardiovascular disease; however, the mechanisms involved in aortic stiffening are still unclear. The etiology of aortic stiffening with age has been thought to primarily involve changes in extracellular matrix protein composition and quantity, but recent studies suggest a significant involvement of the differentiated contractile vascular smooth muscle cells in the vessel wall. Here, we provide an overview of vascular physiology and biomechanics at different spatial scales. The processes involved in aortic stiffening are examined with particular attention given to recent discoveries regarding the role of vascular smooth muscle.
Collapse
|
49
|
Brook BS. Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways. J Appl Physiol (1985) 2014; 116:980-97. [PMID: 24481961 DOI: 10.1152/japplphysiol.01209.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of "force transmission pathways"; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior.
Collapse
Affiliation(s)
- Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
50
|
Hulme KM, Salome CM, Brown NJ, Berend N, Agus HM, Horlyck KR, King GG, Chapman DG. Deep inspiration volume and the impaired reversal of bronchoconstriction in asthma. Respir Physiol Neurobiol 2013; 189:506-12. [PMID: 23994826 DOI: 10.1016/j.resp.2013.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/26/2013] [Accepted: 08/21/2013] [Indexed: 01/08/2023]
Abstract
It is unclear whether the failure to reverse bronchoconstriction with deep inspiration (DI) in asthma is due to reduced maximal dilatation of the DI. We compared the effect of different DI volumes on maximal dilatation and reversal of bronchoconstriction in nine asthmatics and ten non-asthmatics. During bronchoconstriction, subjects took DI to 40%, 70% and 100% inspiratory capacity, on separate days. Maximal dilatation was measured as respiratory system resistance (Rrs) at end-inspiration and residual dilatation as Rrs at end-expiration, both expressed as percent of Rrs at end-tidal expiration prior to DI. DI volume was positively associated with maximal dilatation in non-asthmatics (ANOVA p=0.055) and asthmatics (p=0.023). DI volume was positively associated with residual dilatation in non-asthmatics (p=0.004) but not in asthmatics (p=0.53). The degree of maximal dilatation independently predicted residual dilatation in non-asthmatics but not asthmatics. These findings suggest that the failure to reverse bronchoconstriction with DI in asthma is not due to reduced maximal dilatation, but rather due to increased airway narrowing during expiration.
Collapse
|