1
|
Liu F, Zhang Y, Shi Y, Xiong K, Wang F, Yang J. Ceramide induces pyroptosis through TXNIP/NLRP3/GSDMD pathway in HUVECs. BMC Mol Cell Biol 2022; 23:54. [DOI: 10.1186/s12860-022-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Pyroptosis of endothelial cells is a new cause of endothelial dysfunction in multiple diseases. Ceramide acts as a potential bioactive mediator of inflammation and increases vascular endothelial permeability in many diseases, whether it can aggravate vascular endothelial injury by inducing cell pyroptosis remains unknown. This study was established to explore the effects of C8-ceramide (C8-Cer) on human umbilical vein vascular endothelial cells (HUVECs) and its possible underlying mechanism.
Methods
HUVECs were exposed to various concentrations of C8-Cer for 12 h, 24 h, 48 h. The cell survival rate was measured using the cell counting kit-8 assay. Western blotting and Real-time polymerase chain reaction (RT-PCR) were used to detect the pyroptosis-releated protein and mRNA expressions, respectively. Caspase-1 activity assay was used to detect caspase-1 activity. Hoechst 33342/propidium iodide double staining and flow cytometry were adopted to measure positive staining of cells. Lactate dehydrogenase release assay and enzyme-linked immunosorbent assay were adopted to measure leakage of cellular contents. FITC method was used to detect the permeability of endothelial cells. ROS fluorescence intensity were detected by flow cytometry.
Results
The viability of HUVECs decreased gradually with the increase in ceramide concentration and time. Ceramide upregulated the expression of thioredoxin interacting protein (TXNIP), NLRP3, GSDMD, GSDMD-NT, caspase-1 and Casp1 p20 at the protein and mRNA level in a dose-dependent manner. It also enhanced the PI uptake in HUVECs and upregulated caspase-1 activity. Moreover, it promoted the release of lactate dehydrogenase, interleukin-1β, and interleukin-18. Meanwhile, we found that ceramide led to increased vascular permeability. The inhibitor of NLRP3 inflammasome assembly, MCC950, was able to disrupt the aforementioned positive loop, thus alleviating vascular endothelial cell damage. Interestingly, inhibition of TXNIP either chemically using verapamil or genetically using small interfering RNA (siRNA) can effectively inhibit ceramide-induced pyroptosis and improved cell permeability. In addition, ceramide stimulated reactive oxygen species (ROS) generation. The pretreatment of antioxidant N-acetylcysteine (NAC), ROS scavenger, blocked the expression of pyroptosis markers induced by C8-cer in HUVECs.
Conclusion
The current study demonstrated that C8-Cer could aggravate vascular endothelial cell damage and increased cell permeability by inducing cell pyroptosis. The results documented that the ROS-dependent TXNIP/NLRP3/GSDMD signalling pathway plays an essential role in the ceramide-induced pyroptosis in HUVECs.
Collapse
|
2
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
3
|
Khodadoust MM. Inferring a causal relationship between ceramide levels and COVID-19 respiratory distress. Sci Rep 2021; 11:20866. [PMID: 34675292 PMCID: PMC8531370 DOI: 10.1038/s41598-021-00286-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
A causal relationship between plasma ceramide concentration and respiratory distress symptoms in COVID-19 patients is inferred. In this study, plasma samples of 52 individuals infected with COVID-19 were utilized in a lipidomic analysis. Lipids belonging to the ceramide class exhibited a 400-fold increase in total plasma concentration in infected patients. Further analysis led to the demonstration of concentration dependency for severe COVID-19 respiratory symptoms in a subclass of ceramides. The subclasses Cer(d18:0/24:1), Cer(d18:1/24:1), and Cer(d18:1/22:0) were shown to be increased by 48-, 40-, and 33-fold, respectively, in infected plasma samples and to 116-, 91- and 50-fold, respectively, in plasma samples with respiratory distress. Hence, monitoring plasma ceramide concentration, can be a valuable tool for measuring effects of therapies on COVID-19 respiratory distress patients.
Collapse
|
4
|
Regulation of cell growth, survival and migration by ceramide 1-phosphate - implications in lung cancer progression and inflammation. Cell Signal 2021; 83:109980. [PMID: 33727076 DOI: 10.1016/j.cellsig.2021.109980] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ceramide 1-phosphate (C1P) is a bioactive sphingolipid that is implicated in the regulation of vital cellular functions and plays key roles in a number of inflammation-associated pathologies. C1P was first described as mitogenic for fibroblasts and macrophages and was later found to promote cell survival in different cell types. The mechanisms involved in the mitogenic actions of C1P include activation of MEK/ERK1-2, PI3K/Akt/mTOR, or PKC-α, whereas promotion of cell survival required a substantial reduction of ceramide levels through inhibition of serine palmitoyl transferase or sphingomyelinase activities. C1P and ceramide kinase (CerK), the enzyme responsible for its biosynthesis in mammalian cells, play key roles in tumor promotion and dissemination. CerK-derived C1P can be secreted to the extracellular milieu by different cell types and is also present in extracellular vesicles. In this context, whilst cell proliferation is regulated by intracellularly generated C1P, stimulation of cell migration/invasion requires the intervention of exogenous C1P. Regarding inflammation, C1P was first described as pro-inflammatory in a variety of cell types. However, cigarette smoke- or lipopolysaccharide-induced lung inflammation in mouse or human cells was overcome by pretreatment with natural or synthetic C1P analogs. Both acute and chronic lung inflammation, and the development of lung emphysema were substantially reduced by exogenous C1P applications, pointing to an anti-inflammatory action of C1P in the lungs. The molecular mechanisms involved in the regulation of cell growth, survival and migration with especial emphasis in the control of lung cancer biology are discussed.
Collapse
|
5
|
Liu D, Meister M, Zhang S, Vong CI, Wang S, Fang R, Li L, Wang PG, Massion P, Ji X. Identification of lipid biomarker from serum in patients with chronic obstructive pulmonary disease. Respir Res 2020; 21:242. [PMID: 32957957 PMCID: PMC7507726 DOI: 10.1186/s12931-020-01507-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the United States with no effective treatment. The current diagnostic method, spirometry, does not accurately reflect the severity of COPD disease status. Therefore, there is a pressing unmet medical need to develop noninvasive methods and reliable biomarkers to detect early stages of COPD. Lipids are the fundamental components of cell membranes, and dysregulation of lipids was proven to be associated with COPD. Lipidomics is a comprehensive approach to all the pathways and networks of cellular lipids in biological systems. It is widely used for disease diagnosis, biomarker identification, and pathology disorders detection relating to lipid metabolism. METHODS In the current study, a total of 25 serum samples were collected from 5 normal control subjects and 20 patients with different stages of COPD according to the global initiative for chronic obstructive lung disease (GOLD) (GOLD stages I ~ IV, 5 patients per group). After metabolite extraction, lipidomic analysis was performed using electrospray ionization mass spectrometry (ESI-MS) to detect the serum lipid species. Later, the comparisons of individual lipids were performed between controls and patients with COPD. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) and receiver operating characteristic (ROC) analysis were utilized to test the potential biomarkers. Finally, correlations between the validated lipidomic biomarkers and disease stages, age, FEV1% pack years and BMI were evaluated. RESULTS Our results indicate that a panel of 50 lipid metabolites including phospholipids, sphingolipids, glycerolipids, and cholesterol esters can be used to differentiate the presence of COPD. Among them, 10 individual lipid species showed significance (p < 0.05) with a two-fold change. In addition, lipid ratios between every two lipid species were also evaluated as potential biomarkers. Further multivariate data analysis and receiver operating characteristic (ROC: 0.83 ~ 0.99) analysis suggest that four lipid species (AUC:0.86 ~ 0.95) and ten lipid ratios could be potential biomarkers for COPD (AUC:0.94 ~ 1) with higher sensitivity and specificity. Further correlation analyses indicate these potential biomarkers were not affected age, BMI, stages and FEV1%, but were associated with smoking pack years. CONCLUSION Using lipidomics and statistical methods, we identified unique lipid signatures as potential biomarkers for diagnosis of COPD. Further validation studies of these potential biomarkers with large population may elucidate their roles in the development of COPD.
Collapse
Affiliation(s)
- Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Maureen Meister
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
- Department of Nutrition, Georgia State University, Atlanta, 30302, USA
| | - Shiying Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Chi-In Vong
- Department of Nutrition, Georgia State University, Atlanta, 30302, USA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ruixie Fang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, 30302, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Pierre Massion
- Cancer Early Detection and Prevention Initiative, Vanderbilt Ingram Cancer Center; Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Xiangming Ji
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Nutrition, Georgia State University, Atlanta, 30302, USA.
| |
Collapse
|
6
|
Podbielska M, Szulc ZM, Ariga T, Pokryszko-Dragan A, Fortuna W, Bilinska M, Podemski R, Jaskiewicz E, Kurowska E, Yu RK, Hogan EL. Distinctive sphingolipid patterns in chronic multiple sclerosis lesions. J Lipid Res 2020; 61:1464-1479. [PMID: 32769146 PMCID: PMC7604719 DOI: 10.1194/jlr.ra120001022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a CNS disease characterized by immune-mediated demyelination and progressive axonal loss. MS-related CNS damage and its clinical course have two main phases: active and inactive/progressive. Reliable biomarkers are being sought to allow identification of MS pathomechanisms and prediction of its course. The purpose of this study was to identify sphingolipid (SL) species as candidate biomarkers of inflammatory and neurodegenerative processes underlying MS pathology. We performed sphingolipidomic analysis by HPLC-tandem mass spectrometry to determine the lipid profiles in post mortem specimens from the normal-appearing white matter (NAWM) of the normal CNS (nCNS) from subjects with chronic MS (active and inactive lesions) as well as from patients with other neurological diseases. Distinctive SL modification patterns occurred in specimens from MS patients with chronic inactive plaques with respect to NAWM from the nCNS and active MS (Ac-MS) lesions. Chronic inactive MS (In-MS) lesions were characterized by decreased levels of dihydroceramide (dhCer), ceramide (Cer), and SM subspecies, whereas levels of hexosylceramide and Cer 1-phosphate (C1P) subspecies were significantly increased in comparison to NAWM of the nCNS as well as Ac-MS plaques. In contrast, Ac-MS lesions were characterized by a significant increase of major dhCer subspecies in comparison to NAWM of the nCNS. These results suggest the existence of different SL metabolic pathways in the active versus inactive phase within progressive stages of MS. Moreover, they suggest that C1P could be a new biomarker of the In-MS progressive phase, and its detection may help to develop future prognostic and therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.,Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | | | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Wroclaw, Poland.,Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | - Ryszard Podemski
- Department of Neurology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Jaskiewicz
- Laboratory of Glycobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Ewa Kurowska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Augusta University, Medical College of Georgia, Augusta, GA 30912, USA
| | - Edward L Hogan
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Sudhadevi T, Ha AW, Ebenezer DL, Fu P, Putherickal V, Natarajan V, Harijith A. Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158685. [PMID: 32169655 PMCID: PMC7206974 DOI: 10.1016/j.bbalip.2020.158685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America; Department of Pharmacology, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
8
|
Presa N, Gomez-Larrauri A, Dominguez-Herrera A, Trueba M, Gomez-Muñoz A. Novel signaling aspects of ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158630. [PMID: 31958571 DOI: 10.1016/j.bbalip.2020.158630] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates key physiologic cell functions and is implicated in a number of metabolic alterations and pathological processes. Initial studies using different types of fibroblasts and monocytes/macrophages revealed that C1P was mitogenic and that it promoted cell survival through inhibition of apoptosis. Subsequent studies implicated C1P in inflammatory responses with a specific role as pro-inflammatory agent. Specifically, C1P potently stimulated cytosolic phospholipase A2 (cPLA2) resulting in elevation of arachidonic acid and pro-inflammatory eicosanoid levels. However, increasing experimental evidence suggests that C1P can also exert anti-inflammatory actions in some cell types and tissues. Specifically, it has been demonstrated that C1P inhibits the release of pro-inflammatory cytokines and blocks activation of the pro-inflammatory transcription factor NF-κB in some cell types. Moreover, C1P was shown to increase the release of anti-inflammatory interleukin-10 in macrophages, and to overcome airway inflammation and reduce lung emphysema in vivo. Noteworthy, C1P stimulated cell migration, an action that is associated with diverse physiological cell functions, as well as with inflammatory responses and tumor dissemination. More recently, ceramide kinase (CerK), the enzyme that produces C1P in mammalian cells, has been shown to be upregulated during differentiation of pre-adipocytes into mature adipocytes, and that exogenous C1P, acting through a putative Gi protein-coupled receptor, negatively regulates adipogenesis. Although the latter actions seem to be contradictory, it is plausible that exogenous C1P may balance the adipogenic effects of intracellularly generated (CerK-derived) C1P in adipose tissue. The present review highlights novel signaling aspects of C1P and its impact in the regulation of cell growth and survival, inflammation and tumor dissemination.
Collapse
Affiliation(s)
- Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Ana Gomez-Larrauri
- Department of Pneumology, Cruces University Hospital, Barakaldo, Vizcaya, Spain
| | - Asier Dominguez-Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Vizcaya, Spain.
| |
Collapse
|
9
|
Bodas M, Pehote G, Silverberg D, Gulbins E, Vij N. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radic Biol Med 2019; 131:81-97. [PMID: 30500419 DOI: 10.1016/j.freeradbiomed.2018.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023]
Abstract
In this study, we aimed to investigate precise mechanism(s) of sphingolipid-imbalance and resulting ceramide-accumulation in COPD-emphysema. Where, human and murine emphysema lung tissues or human bronchial epithelial cells (Beas2b) were used for experimental analysis. We found that lungs of smokers and COPD-subjects with increasing emphysema severity demonstrate sphingolipid-imbalance, resulting in significant ceramide-accumulation and increased ceramide/sphingosine ratio, as compared to non-emphysema/non-smoker controls. Next, we found a substantial increase in emphysema chronicity-related ceramide-accumulation in murine (C57BL/6) lungs, while sphingosine levels only slightly increased. In accordance, the expression of the acid ceramidase decreased after CS-exposure. Moreover, CS-induced (sub-chronic) ceramide-accumulation was significantly (p < 0.05) reduced by treatment with TFEB/autophagy-inducing drug, gemfibrozil (GEM), suggesting that autophagy regulates CS-induced ceramide-accumulation. Next, we validated experimentally that autophagy/lipophagy-induction using an anti-oxidant, cysteamine, significantly (p < 0.05) reduces CS-extract (CSE)-mediated intracellular-ceramide-accumulation in p62 + aggresome-bodies. In addition to intracellular-accumulation, we found that CSE also induces membrane-ceramide-accumulation by ROS-dependent acid-sphingomyelinase (ASM) activation and plasma-membrane translocation, which was significantly controlled (p < 0.05) by cysteamine (an anti-oxidant) and amitriptyline (AMT, an inhibitor of ASM). Cysteamine-mediated and CSE-induced membrane-ceramide regulation was nullified by CFTR-inhibitor-172, demonstrating that CFTR controls redox impaired-autophagy dependent membrane-ceramide accumulation. In summary, our data shows that CS-mediated autophagy/lipophagy-dysfunction results in intracellular-ceramide-accumulation, while acquired CFTR-dysfunction-induced ASM causes membrane ceramide-accumulation. Thus, CS-exposure alters the sphingolipid-rheostat leading to the increased membrane- and intracellular- ceramide-accumulation inducing COPD-emphysema pathogenesis that is alleviated by treatment with cysteamine, a potent anti-oxidant with CFTR/autophagy-augmenting properties.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Garrett Pehote
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - David Silverberg
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Erich Gulbins
- Dept. of Molecular Biology, University of Duisburg-Essen, Germany and Dept. of Surgery, University of Cincinnati, OH, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA; The Johns Hopkins University SOM University, Baltimore, MD, USA; VIJ Biotech LLC, Baltimore, MD, USA and 4Dx Ltd, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Reinhold D, Pielke-Lombardo H, Jacobson S, Ghosh D, Kechris K. Pre-analytic Considerations for Mass Spectrometry-Based Untargeted Metabolomics Data. Methods Mol Biol 2019; 1978:323-340. [PMID: 31119672 PMCID: PMC7346099 DOI: 10.1007/978-1-4939-9236-2_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolomics is the science of characterizing and quantifying small molecule metabolites in biological systems. These metabolites give organisms their biochemical characteristics, providing a link between genotype, environment, and phenotype. With these opportunities also come data challenges, such as compound annotation, missing values, and batch effects. We present the steps of a general pipeline to process untargeted mass spectrometry data to alleviate the latter two challenges. We assume to have a matrix with metabolite abundances, with metabolites in rows and samples in columns. The steps in the pipeline include summarizing technical replicates (if available), filtering, imputing, transforming, and normalizing the data. In each of these steps, a method and parameters should be chosen based on assumptions one is willing to make, the question of interest, and diagnostic tools. Besides giving a general pipeline that can be adapted by the reader, our goal is to review diagnostic tools and criteria that are helpful when making decisions in each step of the pipeline and assessing the effectiveness of normalization and batch correction. We conclude by giving a list of useful packages and discuss some alternative approaches that might be more appropriate for the reader's data.
Collapse
Affiliation(s)
| | - Harrison Pielke-Lombardo
- Computational Bioscience Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean Jacobson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
11
|
De Benedetto F, Pastorelli R, Ferrario M, de Blasio F, Marinari S, Brunelli L, Wouters EFM, Polverino F, Celli BR. Supplementation with Qter ® and Creatine improves functional performance in COPD patients on long term oxygen therapy. Respir Med 2018; 142:86-93. [PMID: 30170808 DOI: 10.1016/j.rmed.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/01/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Skeletal muscle dysfunction and poor functional capacity are important extra-pulmonary manifestations of chronic obstructive pulmonary disease (COPD), especially in COPD patients on long-term O2 therapy (LTOT). Beside the role of pulmonary rehabilitation, the effect of nutritional interventions is still controversial, and there are knowledge gaps on the effective role of nutraceutical supplementation on hard endpoints. The aim of this study was to investigate the effects of nutritional supplementation with Coenzyme Q10 (QTer®) - a powerful antioxidant with the potential to reduce oxidative stress and improve mitochondrial function - and Creatine on functional, nutritional, and metabolomic profile in COPD patients on long-term O2 therapy. METHODS One-hundred and eight patients with COPD from 9 Italian hospitals were enrolled in this double-blinded randomized placebo-controlled clinical study. At baseline and after 2 months of therapy, the patients underwent spirometry, 6-minute walk test (6MWT), bioelectrical impedance analysis, and activities of daily living questionnaire (ADL). Also, dyspnea scores and BODE index were calculated. At both time points, plasma concentration of CoQ10 and metabolomic profiling were measured. FINDINGS Ninety patients, who randomly received supplementation with QTer® and Creatine or placebo, completed the study. Compared with placebo, supplemented patients showed improvements in 6MWT (51 ± 69 versus 15 ± 91 m, p < 0.05), body cell mass and phase angle, sodium/potassium ratio, dyspnea indices and ADL score. The CoQ10 plasma concentration increased in the supplementation group whereas it did not change in the placebo group. The metabolomics profile also differed between groups. Adverse events were similar in both groups. INTERPRETATION These results show that in patients with COPD, dietary supplementation with CoQ10 and Creatine improves functional performance, body composition and perception of dyspnea. A systemic increase in some anti-inflammatory metabolites supports a pathobiological mechanism as a reason for these benefits. Further trials should help clarifying the role of QTer® and Creatine supplementation in patients with COPD.
Collapse
Affiliation(s)
| | - Roberta Pastorelli
- Department of Environmental Health Science, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Manuela Ferrario
- Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | | | | | - Laura Brunelli
- Department of Environmental Health Science, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Bartolome R Celli
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
12
|
Pou A, Abad JL, Ordóñez YF, Garrido M, Casas J, Fabriàs G, Delgado A. From the configurational preference of dihydroceramide desaturase-1 towards Δ 6-unsaturated substrates to the discovery of a new inhibitor. Chem Commun (Camb) 2018; 53:4394-4397. [PMID: 28379228 DOI: 10.1039/c6cc08268h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dihydroceramide desaturase 1 (Des1) catalyzes the last step of ceramide synthesis de novo, thus regulating the physiologically relevant balance between dihydrosphingolipids and sphingolipids. Here we report on the configurational preference of Des1 towards isomeric Δ6-unsaturated dihydroceramide analogs and the discovery of a potent Des1 inhibitor.
Collapse
Affiliation(s)
- Ana Pou
- Spanish National Research Council (CSIC), Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Department of Biomedicinal Chemistry, Jordi Girona 18-26, 08034-Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Long L, Qiu H, Cai B, Chen N, Lu X, Zheng S, Ye X, Li Y. Hyperglycemia induced testicular damage in type 2 diabetes mellitus rats exhibiting microcirculation impairments associated with vascular endothelial growth factor decreased via PI3K/Akt pathway. Oncotarget 2018; 9:5321-5336. [PMID: 29435181 PMCID: PMC5797052 DOI: 10.18632/oncotarget.23915] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022] Open
Abstract
As an endocrine disease, type 2 diabetes mellitus (T2DM) can cause testicular damage which induces male infertility. However, the underlying mechanism is still not clear. We prove that T2DM induced testicular microcirculation impairment involves the decrease of VEGF and these actions are regulated by PI3K/Akt pathway. In our study, rats were divided into three groups (n=8): control group, diabetes group and diabetes + VEGF group. Intraperitoneal injection of streptozotocin (STZ, 65mg/Kg, at 9th week) and daily high-fat diet were used to establish T2DM rat model. Serum glucose in diabetes group and diabetes + VEGF group obviously exceeded 13mmol/L after STZ injection. Immunohistochemical studies indicated that VEGF level in diabetes group significantly decreased. In diabetes group, testicular blood velocity and vascular area reduced evaluated by Doppler and FITC. Furthermore, atrophic testicular morphology and increasing apoptosis cells were evaluated by haematoxylin and eosin staining and TUNEL assay. In diabetes + VEGF group, the administration of VEGF (intraperitoneally, 10mg/kg) can significantly alleviated hyperglycemia-induced impairment of testes in above aspects. Finally, we used Western blot to analyze the mechanism of hyperglycemia-induced testicular VEGF decrease. The results indicated that hyperglycemia-induced VEGF decreased is regulated by PI3K/Akt pathway in Rats testicular sertoli cells (RTSCs). Together, we demonstrate that T2DM can reduce testicular VEGF expression, which results in testicular microcirculation impairment, and then induces testicular morphological disarrangement and functional disorder. These actions are triggered by PI3K/Akt pathway. Our findings provide solid evidence for VEGF becoming a therapeutic target in T2DM related male infertility.
Collapse
Affiliation(s)
- Lingli Long
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Han Qiu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Cai
- The Reproductive Center of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ningning Chen
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuhui Zheng
- Translation Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoxin Ye
- University of New South Wales, Sydney, Australia
| | - Yubin Li
- The Reproductive Center of the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Vetterkind S, Lin QQ, Morgan KG. A novel mechanism of ERK1/2 regulation in smooth muscle involving acetylation of the ERK1/2 scaffold IQGAP1. Sci Rep 2017; 7:9302. [PMID: 28839270 PMCID: PMC5571205 DOI: 10.1038/s41598-017-09434-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Ceramide, a bioactive lipid and signaling molecule associated with cardiovascular disease, is known to activate extracellular signal regulated kinases 1 and 2 (ERK1/2). Here, we determined that the effect of ceramide on ERK1/2 is mediated by ceramide signaling on an ERK scaffold protein, IQ motif containing GTPase activating protein 1 (IQGAP1). Experiments were performed with aortic smooth muscle cells using inhibitor screening, small interfering RNA (siRNA), immunoprecipitation (IP), immunoblots and bioinformatics. We report here that C6 ceramide increases serum-stimulated ERK1/2 activation in a manner dependent on the ERK1/2 scaffold IQGAP1. C6 ceramide increases IQGAP1 protein levels by preventing its cleavage. Bioinformatic analysis of the IQGAP1 amino acid sequence revealed potential cleavage sites for proteases of the proprotein convertase family that match the cleavage products. These potential cleavage sites overlap with known motifs for lysine acetylation. Deacetylase inhibitor treatment increased IQGAP1 acetylation and reduced IQGAP1 cleavage. These data are consistent with a model in which IQGAP1 cleavage is regulated by acetylation of the cleavage sites. Activation of ERK1/2 by ceramide, known to increase lysine acetylation, appears to be mediated by acetylation-dependent stabilization of IQGAP1. This novel mechanism could open new possibilities for therapeutic intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Susanne Vetterkind
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA
| | - Qian Qian Lin
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, 02215, USA.
| |
Collapse
|
15
|
Lo Cascio CM, Quante M, Hoffman EA, Bertoni AG, Aaron CP, Schwartz JE, Avdalovic MV, Fan VS, Lovasi GS, Kawut SM, Austin JHM, Redline S, Barr RG. Percent Emphysema and Daily Motor Activity Levels in the General Population: Multi-Ethnic Study of Atherosclerosis. Chest 2017; 151:1039-1050. [PMID: 27940190 PMCID: PMC5472515 DOI: 10.1016/j.chest.2016.11.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/14/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND COPD is associated with reduced physical capacity. However, it is unclear whether pulmonary emphysema, which can occur without COPD, is associated with reduced physical activity in daily life, particularly among people without COPD and never smokers. We hypothesized that greater percentage of emphysema-like lung on CT scan is associated with reduced physical activity assessed by actigraphy and self-report. METHODS The Multi-Ethnic Study of Atherosclerosis (MESA) enrolled participants free of clinical cardiovascular disease from the general population. Percent emphysema was defined as percentage of voxels < -950 Hounsfield units on full-lung CT scans. Physical activity was measured by wrist actigraphy over 7 days and a questionnaire. Multivariable linear regression was used to adjust for age, sex, race/ethnicity, height, weight, education, smoking, pack-years, and lung function. RESULTS Among 1,435 participants with actigraphy and lung measures, 47% had never smoked, and 8% had COPD. Percent emphysema was associated with lower activity levels on actigraphy (P = .001), corresponding to 1.5 hour less per week of moderately paced walking for the average participant in quintile 2 vs 4 of percent emphysema. This association was significant among participants without COPD (P = .004) and among ever (P = .01) and never smokers (P = .03). It was also independent of coronary artery calcium and left ventricular ejection fraction. There was no evidence that percent emphysema was associated with self-reported activity levels. CONCLUSIONS Percent emphysema was associated with decreased physical activity in daily life objectively assessed by actigraphy in the general population, among participants without COPD, and nonsmokers.
Collapse
Affiliation(s)
| | - Mirja Quante
- Department of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eric A Hoffman
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Alain G Bertoni
- Department of Epidemiology and Prevention, Wake Forest University, Winston-Salem, NC
| | - Carrie P Aaron
- Department of Medicine, Columbia University, New York, NY
| | - Joseph E Schwartz
- Department of Medicine, Columbia University, New York, NY; Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY
| | - Mark V Avdalovic
- Department of Internal Medicine, UC Davis School of Medicine, Sacramento, CA
| | - Vincent S Fan
- VA Puget Sound Health Care System, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | - Gina S Lovasi
- Department of Medicine, Columbia University, New York, NY
| | - Steven M Kawut
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Susan Redline
- Department of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - R Graham Barr
- Department of Medicine, Columbia University, New York, NY.
| |
Collapse
|
16
|
Kadioglu O, Cao J, Kosyakova N, Mrasek K, Liehr T, Efferth T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci Rep 2016; 6:36754. [PMID: 27824156 PMCID: PMC5099876 DOI: 10.1038/srep36754] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
We systematically characterised multifactorial multidrug resistance (MDR) in CEM/ADR5000 cells, a doxorubicin-resistant sub-line derived from drug-sensitive, parental CCRF-CEM cells developed in vitro. RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed. Chromosomal aberrations were identified by array-comparative genomic hybridisation (aCGH) and multicolour fluorescence in situ hybridisation (mFISH). Fifteen ATP-binding cassette transporters and numerous new genes were overexpressed in CEM/ADR5000 cells. The basic karyotype in CCRF-CEM cells consisted of 47, XX, der(5)t(5;14) (q35.33;q32.3), del(9) (p14.1), +20. CEM/ADR5000 cells acquired additional aberrations, including X-chromosome loss, 4q and 14q deletion, chromosome 7 inversion, balanced and unbalanced two and three way translocations: t(3;10), der(3)t(3;13), der(5)t(18;5;14), t(10;16), der(18)t(7;18), der(18)t(21;18;5), der(21;21;18;5) and der(22)t(9;22). CCRF-CEM consisted of two and CEM/ADR5000 of five major sub-clones, indicating genetic tumor heterogeneity. Loss of 3q27.1 in CEM/ADR5000 caused down-regulation of ABCC5 and ABCF3 expression, Xq28 loss down-regulated ABCD1 expression. ABCB1, the most well-known MDR gene, was 448-fold up-regulated due to 7q21.12 amplification. In addition to well-known drug resistance genes, numerous novel genes and genomic aberrations were identified. Transcriptomics and genetics in CEM/AD5000 cells unravelled a range of MDR mechanisms, which is much more complex than estimated thus far. This may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
17
|
Wang Y, Boerma M, Zhou D. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases. Radiat Res 2016; 186:153-61. [PMID: 27387862 DOI: 10.1667/rr14445.1] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells.
Collapse
Affiliation(s)
- Yingying Wang
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Marjan Boerma
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| | - Daohong Zhou
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
18
|
Signoretto E, Zierle J, Bhuyan AAM, Castagna M, Lang F. Ceranib-2-induced suicidal erythrocyte death. Cell Biochem Funct 2016; 34:359-66. [PMID: 27291470 DOI: 10.1002/cbf.3196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022]
Abstract
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca(2+) -activity ([Ca(2+) ]i ) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib-2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine-exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca(2+) ]i from Fluo3-fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib-2 significantly increased the percentage of annexin-V-binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib-2 significantly increased Fluo3-fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib-2 on annexin-V-binding was not significantly blunted by removal of extracellular Ca(2+) . Ceranib-2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca(2+) entry. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elena Signoretto
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Jens Zierle
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Florian Lang
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
19
|
Xie HH, Xu JY, Xie T, Meng X, Lin LL, He LL, Wu H, Shan JJ, Wang SC. Effects of Pinellia ternata (Thunb.) Berit. on the metabolomic profiles of placenta and amniotic fluid in pregnant rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 183:38-45. [PMID: 26923539 DOI: 10.1016/j.jep.2016.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/20/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia (BX) is the root of Pinellia ternata (Thunb.) Berit. Its processed products, such as Jiang Banxia (JBX), have been clinically used in traditional Chinese medicine to treat vomiting, coughing, and inflammation. However, data for their safety for pregnant women are contradictory and confusing. AIM OF THE STUDY To further explore the safety of BX, an ultra-performance liquid chromatography coupled with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) metabolomics approach was used to evaluate the metabolic perturbation in pregnant rats caused by BX and JBX. MATERIALS AND METHODS Placenta and amniotic fluid samples were collected from control Sprague-Dawley pregnant rats and exposed to BX suspension and JBX decoction (1.434g/kg/day). Samples were analyzed using LC-MS and GC-MS. The acquired MS data of above samples were further subjected to multivariate data analysis, and the significantly altered metabolites were identified. The associated pathways were constructed using MetaboAnalyst 3.0. RESULTS The weight and histopathology of the placenta from each group of rats had no definite difference. However, we found 20 differential endogenous metabolites that changed significantly in the placenta and amniotic fluid samples. The alterations of identified metabolites indicated a perturbation in glycerophospholipid metabolism, amino acid metabolism, and carbohydrate metabolism in pregnant rats exposed to BX and JBX. CONCLUSION In summary, this work suggested that oral administration of BX and JBX may induce disturbances in the intermediary metabolism in pregnant rats. This work contributes to further understanding the safety of BX and its processed products.
Collapse
Affiliation(s)
- Hui-Hui Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pediatrics, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310006, China
| | - Jian-Ya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Meng
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Li Lin
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li-Li He
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hao Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Jun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; NIH West Coast Metabolomics Center, Genome Center of UC Davis, Davis 95616, USA.
| | - Shou-Chuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
20
|
Presa N, Gomez-Larrauri A, Rivera IG, Ordoñez M, Trueba M, Gomez-Muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|
21
|
Ordóñez YF, González J, Bedia C, Casas J, Abad JL, Delgado A, Fabrias G. 3-Ketosphinganine provokes the accumulation of dihydroshingolipids and induces autophagy in cancer cells. MOLECULAR BIOSYSTEMS 2016; 12:1166-73. [PMID: 26928714 DOI: 10.1039/c5mb00852b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although several reports describe the metabolic fate of sphingoid bases and their analogs, as well as their action and that of their phosphates as regulators of sphingolipid metabolizing-enzymes, similar studies for 3-ketosphinganine (KSa), the product of the first committed step in de novo sphingolipid biosynthesis, have not been reported. In this article we show that 3-ketosphinganine (KSa) and its dideuterated analog at C4 (d2KSa) are metabolized to produce high levels of dihydrosphingolipids in HGC27, T98G and U87MG cancer cells. In contrast, either direct C1 O-phosphorylation or N-acylation of d2KSa to produce dideuterated ketodihydrosphingolipids does not occur. We also show that cells respond to d2KSa treatment with induction of autophagy. Time-course experiments agree with sphinganine, sphinganine 1-phosphate and dihydroceramides being the mediators of autophagy stimulated by d2KSa. Enzyme inhibition studies support that inhibition of Des1 by 3-ketobases is caused by their dihydroceramide metabolites. However, this effect contributes to increasing dihydrosphingolipid levels only at short incubation times, since cells respond to long time exposure to 3-ketobases with Des1 overexpression. The translation of these overall effects into cell fate is discussed.
Collapse
Affiliation(s)
- Yadira F Ordóñez
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gomez-Larrauri A, Trueba M, Gomez-Muñoz A. Potential of ceramide 1-phosphate as a novel therapeutic agent in pulmonary inflammation. Expert Rev Clin Pharmacol 2016; 9:629-31. [DOI: 10.1586/17512433.2016.1152181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Jernigan PL, Makley AT, Hoehn RS, Edwards MJ, Pritts TA. The role of sphingolipids in endothelial barrier function. Biol Chem 2016; 396:681-91. [PMID: 25867999 DOI: 10.1515/hsz-2014-0305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Sphingolipids are a ubiquitous family of essential lipids with an increasingly understood role as biologically active mediators in numerous physiologic and pathologic processes. Two particular sphingolipid species, sphingosine-1-phosphate and ceramide, and their metabolites interact both directly and indirectly with endothelial cells to regulate vascular permeability. Sphingosine-1-phosphate generally augments endothelial integrity while ceramide tends to promote vascular leak, and a tight balance between the two is necessary to maintain normal physiologic function. The mechanisms by which sphingolipids regulate endothelial barrier function are complex and occur through multiple different pathways, and disruptions or imbalances in these pathways have been implicated in a number of specific disease processes. With improved understanding of sphingolipid biology, endothelial function, and the interactions between the two, several targets for therapeutic intervention have emerged and there is immense potential for further advancement in this field.
Collapse
|
24
|
Gomez-Muñoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordoñez M. Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 2015; 61:51-62. [PMID: 26703189 DOI: 10.1016/j.plipres.2015.09.002] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/04/2023]
Abstract
Inflammation is a network of complex processes involving a variety of metabolic and signaling pathways aiming at healing and repairing damage tissue, or fighting infection. However, inflammation can be detrimental when it becomes out of control. Inflammatory mediators involve cytokines, bioactive lipids and lipid-derived metabolites. In particular, the simple sphingolipids ceramides, sphingosine 1-phosphate, and ceramide 1-phosphate have been widely implicated in inflammation. However, although ceramide 1-phosphate was first described as pro-inflammatory, recent studies show that it has anti-inflammatory properties when produced in specific cell types or tissues. The biological functions of ceramides and sphingosine 1-phosphate have been extensively studied. These sphingolipids have opposing effects with ceramides being potent inducers of cell cycle arrest and apoptosis, and sphingosine 1-phosphate promoting cell growth and survival. However, the biological actions of ceramide 1-phosphate have only been partially described. Ceramide 1-phosphate is mitogenic and anti-apoptotic, and more recently, it has been demonstrated to be key regulator of cell migration. Both sphingosine 1-phosphate and ceramide 1-phosphate are also implicated in tumor growth and dissemination. The present review highlights new aspects on the control of inflammation and cell migration by simple sphingolipids, with special emphasis to the role played by ceramide 1-phosphate in controlling these actions.
Collapse
Affiliation(s)
- Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Natalia Presa
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Ana Gomez-Larrauri
- Department of Pneumology, University Hospital of Alava (Osakidetza), Vitoria-Gasteiz, Spain.
| | - Io-Guané Rivera
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Miguel Trueba
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| | - Marta Ordoñez
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain.
| |
Collapse
|
25
|
Three plasma metabolite signatures for diagnosing high altitude pulmonary edema. Sci Rep 2015; 5:15126. [PMID: 26459926 PMCID: PMC4602305 DOI: 10.1038/srep15126] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/17/2015] [Indexed: 01/12/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition, occurring at altitudes greater than 3,000 m and affecting rapidly ascending, non-acclimatized healthy individuals. However, the lack of biomarkers for this disease still constitutes a bottleneck in the clinical diagnosis. Here, ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied to study plasma metabolite profiling from 57 HAPE and 57 control subjects. 14 differential plasma metabolites responsible for the discrimination between the two groups from discovery set (35 HAPE subjects and 35 healthy controls) were identified. Furthermore, 3 of the 14 metabolites (C8-ceramide, sphingosine and glutamine) were selected as candidate diagnostic biomarkers for HAPE using metabolic pathway impact analysis. The feasibility of using the combination of these three biomarkers for HAPE was evaluated, where the area under the receiver operating characteristic curve (AUC) was 0.981 and 0.942 in the discovery set and the validation set (22 HAPE subjects and 22 healthy controls), respectively. Taken together, these results suggested that this composite plasma metabolite signature may be used in HAPE diagnosis, especially after further investigation and verification with larger samples.
Collapse
|
26
|
Abstract
Sphingolipids are a diverse class of signaling molecules implicated in many important aspects of cellular biology, including growth, differentiation, apoptosis, and autophagy. Autophagy and apoptosis are fundamental physiological processes essential for the maintenance of cellular and tissue homeostasis. There is great interest into the investigation of sphingolipids and their roles in regulating these key physiological processes as well as the manifestation of several disease states. With what is known to date, the entire scope of sphingolipid signaling is too broad, and a single review would hardly scratch the surface. Therefore, this review attempts to highlight the significance of sphingolipids in determining cell fate (e.g. apoptosis, autophagy, cell survival) in the context of the healthy lung, as well as various respiratory diseases including acute lung injury, acute respiratory distress syndrome, bronchopulmonary dysplasia, asthma, chronic obstructive pulmonary disease, emphysema, and cystic fibrosis. We present an overview of the latest findings related to sphingolipids and their metabolites, provide a short introduction to autophagy and apoptosis, and then briefly highlight the regulatory roles of sphingolipid metabolites in switching between cell survival and cell death. Finally, we describe functions of sphingolipids in autophagy and apoptosis in lung homeostasis, especially in the context of the aforementioned diseases.
Collapse
Affiliation(s)
- Joyce Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Behzad Yeganeh
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
| | - Leonardo Ermini
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
| | - Martin Post
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
27
|
Lee JH, Cho MH, Hersh CP, McDonald MLN, Wells JM, Dransfield MT, Bowler RP, Lynch DA, Lomas DA, Crapo JD, Silverman EK. IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2015; 52:365-76. [PMID: 25101718 DOI: 10.1165/rcmb.2014-0210oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension is associated with advanced chronic obstructive pulmonary disease (COPD), although pulmonary vascular changes occur early in the course of the disease. Pulmonary artery (PA) enlargement (PAE) measured by computed tomography correlates with pulmonary hypertension and COPD exacerbation frequency. Genome-wide association studies of PAE in subjects with COPD have not been reported. To investigate whether genetic variants are associated with PAE within subjects with COPD, we investigated data from current and former smokers from the COPDGene Study and the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study. The ratio of the diameter of the PA to the diameter of the aorta (A) was measured using computed tomography. PAE was defined as PA/A greater than 1. A genome-wide association study for COPD with PAE was performed using subjects with COPD without PAE (PA/A ≤ 1) as a control group. A secondary analysis used smokers with normal spirometry as a control group. Genotyping was performed on Illumina platforms. The results were summarized using fixed-effect meta-analysis. Both meta-analyses revealed a genome-wide significant locus on chromosome 15q25.1 in IREB2 (COPD with versus without PAE, rs7181486; odds ratio [OR] = 1.32; P = 2.10 × 10(-8); versus smoking control subjects, rs2009746; OR = 1.42; P = 1.32 × 10(-9)). PAE was also associated with a region on 14q31.3 near the GALC gene (rs7140285; OR = 1.55; P = 3.75 × 10(-8)). Genetic variants near IREB2 and GALC likely contribute to genetic susceptibility to PAE associated with COPD. This study provides evidence for genetic heterogeneity associated with a clinically important COPD vascular subtype.
Collapse
Affiliation(s)
- Jin Hwa Lee
- 1 Channing Division of Network Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bowler RP, Jacobson S, Cruickshank C, Hughes GJ, Siska C, Ory DS, Petrache I, Schaffer JE, Reisdorph N, Kechris K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am J Respir Crit Care Med 2015; 191:275-84. [PMID: 25494452 DOI: 10.1164/rccm.201410-1771oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) occurs in a minority of smokers and is characterized by intermittent exacerbations and clinical subphenotypes such as emphysema and chronic bronchitis. Although sphingolipids as a class are implicated in the pathogenesis of COPD, the particular sphingolipid species associated with COPD subphenotypes remain unknown. OBJECTIVES To use mass spectrometry to determine which plasma sphingolipids are associated with subphenotypes of COPD. METHODS One hundred twenty-nine current and former smokers from the COPDGene cohort had 69 distinct sphingolipid species detected in plasma by targeted mass spectrometry. Of these, 23 were also measured in 131 plasma samples (117 independent subjects) using an untargeted platform in an independent laboratory. Regression analysis with adjustment for clinical covariates, correction for false discovery rate, and metaanalysis were used to test associations between COPD subphenotypes and sphingolipids. Peripheral blood mononuclear cells were used to test associations between sphingolipid gene expression and plasma sphingolipids. MEASUREMENTS AND MAIN RESULTS Of the measured plasma sphingolipids, five sphingomyelins were associated with emphysema; four trihexosylceramides and three dihexosylceramides were associated with COPD exacerbations. Three sphingolipids were strongly associated with sphingolipid gene expression, and 15 sphingolipid gene/metabolite pairs were differentially regulated between COPD cases and control subjects. CONCLUSIONS There is evidence of systemic dysregulation of sphingolipid metabolism in patients with COPD. Subphenotyping suggests that sphingomyelins are strongly associated with emphysema and glycosphingolipids are associated with COPD exacerbations.
Collapse
|
29
|
Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature 2014; 510:58-67. [PMID: 24899305 DOI: 10.1038/nature13475] [Citation(s) in RCA: 953] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.
Collapse
Affiliation(s)
- Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| |
Collapse
|
30
|
Xuan LL, Shi J, Yao CS, Bai JY, Qu F, Zhang JL, Hou Q. Vam3, a resveratrol dimer, inhibits cigarette smoke-induced cell apoptosis in lungs by improving mitochondrial function. Acta Pharmacol Sin 2014; 35:779-91. [PMID: 24747163 PMCID: PMC4086386 DOI: 10.1038/aps.2014.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/20/2014] [Indexed: 12/29/2022] Open
Abstract
AIM To investigate the effects of Vam3 (a resveratrol dimer extracted from Vitis amurensis Rupr) on cigarette smoke (CS)-induced cell apoptosis in lungs in vitro and in vivo and the underlying mechanisms of action. METHODS Human bronchial epithelial cell line BEAS-2B was exposed to cigarette smoke condensate (CSC, 300 mg/L), and cell apoptosis was determined using flow cytometry and Hoechst staining. Mitochondrial membrane potential was examined with TMRE staining. ROS and ceramide levels were detected with DCFH-DA fluorescence and HPLC-MS/MS, respectively. Cytochrome c release was detected using immunofluorescence. Caspase-9 and neutral sphingomyelinase 2 expression was measured with Western blotting. The breast carcinoma cell line MCF7 stably expressing GFP-tagged Bax was used to elucidate the role of mitochondria in CS-induced apoptosis. For in vivo study, male mice were exposed to CS for 5 min twice a day for 4 weeks. The mice were orally administered Vam3 (50 mg·kg(-1)·d(-1)) or resveratrol (30 mg·kg(-1)·d(-1)) each day 1 h before the first CS exposure. RESULTS Pretreatment of BEAS-2B cells with Vam3 (5 μmol/L) or resveratrol (5 μmol/L) significantly suppressed CSC-induced apoptosis, and prevented CSC-induced Bax level increase in the mitochondria, mitochondrial membrane potential loss, cytochrome c release and caspase-9 activation. Furthermore, pretreatment of BEAS-2B cells with Vam3 or resveratrol significantly suppressed CSC-stimulated intracellular ceramide production, and CSC-induced upregulation of neutral sphingomyelinase 2, the enzyme responsible for ceramide production in bronchial epithelial cells. Similar results were obtained in C6-pyridinium ceramide-induced apoptosis of GFP-Bax-stable MCF7 cells in vitro, and in the lungs of CS-exposed mice that were treated with oral administration of Vam3 or resveratrol. CONCLUSION Vam3 protects bronchial epithelial cells from CS-induced apoptosis in vitro and in vivo by preventing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ling-ling Xuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ji Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Molecular Nuclear Medicine, Tianjin 300192, China
| | - Chun-suo Yao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-ye Bai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Qu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jin-lan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qi Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
31
|
Ahmed FS, Jiang XC, Schwartz JE, Hoffman EA, Yeboah J, Shea S, Burkart KM, Barr RG. Plasma sphingomyelin and longitudinal change in percent emphysema on CT. The MESA lung study. Biomarkers 2014; 19:207-13. [PMID: 24649875 PMCID: PMC4088962 DOI: 10.3109/1354750x.2014.896414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/17/2014] [Indexed: 12/23/2022]
Abstract
CONTEXT Ceramide causes endothelial apoptosis and emphysema-like changes in animal models. OBJECTIVES Test if plasma sphingomyelin, a major precursor of ceramide, would predict longitudinal increase in the percentage of emphysema-like lung on computed tomography (CT). MATERIALS AND METHODS 3840 participants had their plasma sphingomyelin measured at baseline examination and their pulmonary emphysema measured on cardiac CT scans at baseline and on follow-up visits. Mixed effects models were used to adjust for potential confounders. RESULTS One standard deviation increase in sphingomyelin predicted a 0.12% per year (95% CI: 0.02-0.22; p = 0.019) greater increase of percent emphysema. DISCUSSION AND CONCLUSION Higher plasma levels of sphingomyelin predicted greater annual increase in quantitatively measured percent emphysema.
Collapse
|
32
|
Wells JM, Dransfield MT. Pathophysiology and clinical implications of pulmonary arterial enlargement in COPD. Int J Chron Obstruct Pulmon Dis 2013; 8:509-21. [PMID: 24235822 PMCID: PMC3826513 DOI: 10.2147/copd.s52204] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex condition defined by progressive airflow limitation in response to noxious stimuli, inflammation, and vascular changes. COPD exacerbations are critical events in the natural history of the disease, accounting for the majority of disease burden, cost, and mortality. Pulmonary vascular disease is an important risk factor for disease progression and exacerbation risk. Relative pulmonary artery enlargement on computed tomography scan, defined by a pulmonary artery to aortic (PA:A) ratio >1, has been evaluated as a marker of pulmonary vascular disease. The PA:A ratio can be measured reliably independent of electrocardiographic gating or the use of contrast, and in healthy patients a PA:A ratio >0.9 is considered to be abnormal. The PA:A ratio has been compared with invasive hemodynamic parameters, primarily mean pulmonary artery pressure in various disease conditions and is more strongly correlated with mean pulmonary artery pressure in obstructive as compared with interstitial lung disease. In patients without known cardiac or pulmonary disease, the PA:A ratio is predictive of mortality, while in COPD, an elevated PA:A ratio is correlated with increased exacerbation risk, outperforming other well established predictors of these events. Future studies should be aimed at determining the stability of the metric over time and evaluating the utility of the PA:A ratio in guiding specific therapies.
Collapse
Affiliation(s)
- J Michael Wells
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Alabama Birmingham and the Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
| | | |
Collapse
|
33
|
Bahr TM, Hughes GJ, Armstrong M, Reisdorph R, Coldren CD, Edwards MG, Schnell C, Kedl R, LaFlamme DJ, Reisdorph N, Kechris KJ, Bowler RP. Peripheral blood mononuclear cell gene expression in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2013; 49:316-23. [PMID: 23590301 DOI: 10.1165/rcmb.2012-0230oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although most cases of chronic obstructive pulmonary disease (COPD) occur in smokers, only a fraction of smokers develop the disease. We hypothesized distinct molecular signatures for COPD and emphysema in the peripheral blood mononuclear cells (PBMCs) of current and former smokers. To test this hypothesis, we identified and validated PBMC gene expression profiles in smokers with and without COPD. We generated expression data on 136 subjects from the COPDGene study, using Affymetrix U133 2.0 microarrays (Affymetrix, Santa Clara, CA). Multiple linear regression with adjustment for covariates (gender, age, body mass index, family history, smoking status, and pack-years) was used to identify candidate genes, and ingenuity pathway analysis was used to identify candidate pathways. Candidate genes were validated in 149 subjects according to multiplex quantitative real-time polymerase chain reaction, which included 75 subjects not previously profiled. Pathways that were differentially expressed in subjects with COPD and emphysema included those that play a role in the immune system, inflammatory responses, and sphingolipid (ceramide) metabolism. Twenty-six of the 46 candidate genes (e.g., FOXP1, TCF7, and ASAH1) were validated in the independent cohort. Plasma metabolomics was used to identify a novel glycoceramide (galabiosylceramide) as a biomarker of emphysema, supporting the genomic association between acid ceramidase (ASAH1) and emphysema. COPD is a systemic disease whose gene expression signatures in PBMCs could serve as novel diagnostic or therapeutic targets.
Collapse
Affiliation(s)
- Timothy M Bahr
- Department of Biostatistics and Informatics, University of Colorado at Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Johannessen A, Skorge TD, Bottai M, Grydeland TB, Nilsen RM, Coxson H, Dirksen A, Omenaas E, Gulsvik A, Bakke P. Mortality by level of emphysema and airway wall thickness. Am J Respir Crit Care Med 2013; 187:602-8. [PMID: 23328525 DOI: 10.1164/rccm.201209-1722oc] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE There is limited knowledge of the prognostic value of quantitative computed tomography (CT) measures of emphysema and airway wall thickness (AWT) on mortality. OBJECTIVES To examine 8-year mortality in relation to CT-measured emphysema and AWT, and assess if potential impact of these predictors remained after adjustment for lung function. METHODS In the Norwegian GenKOLS study of 2003-2005, 947 ever-smokers (49% with COPD) aged 40-85 years performed spirometry and CT examination. Mortality data from 2003-2011 were gathered from the Norwegian Cause of Death Registry. CT emphysema % low-attenuation areas (%LAA) and standardized measure for AWT (AWT-Pi10) were main predictors. We performed Laplace regression for survival data, estimating survival time for specified population percentiles within each emphysema category. Models were adjusted for sex, FEV1, COPD status, age, body mass index, smoking, and inflation level. MEASUREMENTS AND MAIN RESULTS During 8-year follow-up all-cause mortality rate was 15%. Although 4% of the subjects with %LAA less than 3 died, 18% with %LAA 3-10 and 44% with %LAA greater than or equal to 10 died. After adjustment, the comparable percentile subjects with medium and high emphysema had 19 months shorter survival than subjects who died in the lowest emphysema category. Subjects with %LAA greater than or equal to 10 had 33 and 37 months shorter survival than the lowest emphysema category with regard to respiratory and cardiovascular mortality, respectively. No significant associations were found between %LAA and cancer and lung cancer mortality. AWT did not predict mortality independently, but a positive interaction with emphysema was observed. CONCLUSIONS AWT affected mortality with increasing degree of emphysema, whereas CT measure of emphysema was a strong independent mortality predictor.
Collapse
Affiliation(s)
- Ane Johannessen
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schuchman EH, Simonaro CM. The genetics of sphingolipid hydrolases and sphingolipid storage diseases. Handb Exp Pharmacol 2013:3-32. [PMID: 23579447 DOI: 10.1007/978-3-7091-1368-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The relationship of sphingolipids with human disease first arose from the study of sphingolipid storage diseases over 50 years ago. Most of these disorders are due to inherited deficiencies of specific sphingolipid hydrolases, although a small number also result from defects in sphingolipid transport or activator proteins. Due to the primary protein deficiencies sphingolipids and other macromolecules accumulate in cells and tissues of affected patients, leading to a diverse presentation of clinical abnormalities. Over 25 sphingolipid storage diseases have been described to date. Most of the genes have been isolated, disease-causing mutations have been identified, the recombinant proteins have been produced and characterized, and animal models exist for most of the human diseases. Since most sphingolipid hydrolases are enriched within the endosomal/lysosomal system, macromolecules first accumulate within these compartments. However, these abnormalities rapidly spread to other compartments and cause a wide range of cellular dysfunction. This review focuses on the genetics of sphingolipid storage diseases and related hydrolytic enzymes with an emphasis on the relationship between genetic mutations and human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|