1
|
Popović A, Drljača Lero J, Miljković D, Popović M, Marinović J, Ljubković M, Andjelković Z, Čapo I. Karnozin EXTRA® causes changes in mitochondrial bioenergetics response in MCF-7 and MRC-5 cell lines. Biotech Histochem 2025; 100:50-62. [PMID: 39812443 DOI: 10.1080/10520295.2024.2448490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from Karnozin EXTRA® supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress. Treatment with Karnozin EXTRA® (concentration of L-carnosine were 2, 5 and 10 mM) for 24 hours gradually decreased the number of cells and changed their morphological features. In both cell lines, a dose-dependent reduction of cell viability was recorded compared to the control group. Also, experimental groups showed a concentration-dependent decrease in fluorescence intensity of SOD2 expressions in MCF-7, while in MRC-5 we noticed higher fluorescence intensity in Carnosine 2 mM group. Treated cells, in both cell lines, showed different intensity of iNOS cytoplasmic immunopositivity in a concentration-dependent manner. In all experimental groups, we noticed an increased expression of marker of oxidative stress-cytochrome P450 2E1 (CYP2E1). The effects of Karnozin EXTRA® capsule on mitochondrial respiration, assessed with the Clark-type electrode, were manifested as a reduction of: basal cell respiration, maximum capacity of electron transport chain and mitochondrial ATP-linked respiration. Also, significant decrease in the activity of complex I (NADH-ubiquinone oxidoreductase), complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) was observed in both cell lines. Bearing in mind that Karnozin EXTRA® is a potential regulator of energy metabolism of MCF-7 and MRC-5, these results provide a good basis for further preclinical and clinical research.
Collapse
Affiliation(s)
- Aleksandra Popović
- Faculty of Medicine Novi Sad, Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine Novi Sad, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Miljković
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Milan Popović
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Jasna Marinović
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Marko Ljubković
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Zlatibor Andjelković
- Institute of Histology and Embryology, Faculty of Medicine, University of Priština/Kosovska Mitrovica, Serbia
| | - Ivan Čapo
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Russo C, Santangelo R, Malaguarnera L, Valle MS. The "Sunshine Vitamin" and Its Antioxidant Benefits for Enhancing Muscle Function. Nutrients 2024; 16:2195. [PMID: 39064638 PMCID: PMC11279438 DOI: 10.3390/nu16142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia. The functionality of skeletal muscle is profoundly influenced by factors such as environmental, nutritional, physical, and genetic components. A well-balanced diet, rich in proteins and vitamins, alongside an active lifestyle, plays a crucial role in fortifying tissues and mitigating general weakness and pathological conditions. Vitamin D, exerting antioxidant effects, is essential for skeletal muscle. Epidemiological evidence underscores a global prevalence of vitamin D deficiency, which induces oxidative harm, mitochondrial dysfunction, reduced adenosine triphosphate production, and impaired muscle function. This review explores the intricate molecular mechanisms through which vitamin D modulates oxidative stress and its consequent effects on muscle function. The aim is to evaluate if vitamin D supplementation in conditions involving oxidative stress and inflammation could prevent decline and promote or maintain muscle function effectively.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Rosa Santangelo
- Department of Medicine and Health Sciences, University of Catania, Via Santa Sofia, 97, 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
3
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
4
|
4-oxoquinoline-3-carboxamide acyclonucleoside phosphonates hybrids: human MCF-7 breast cancer cell death induction by oxidative stress-promoting and in silico ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Zeng M, Zhang Y, Zhang X, Zhang W, Yu Q, Zeng W, Ma D, Gan J, Yang Z, Jiang X. Two birds with one stone: YQSSF regulates both proliferation and apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115028. [PMID: 35077825 DOI: 10.1016/j.jep.2022.115028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiqi Shengsui formula (YQSSF) is a commonly used formula to treat chemotherapy-induced myelosuppression, but little is known about its therapeutic mechanisms. AIM OF THIS STUDY This study aims to examine the effect of YQSSF in treating myelosuppression and explore its mechanism. MATERIALS AND METHODS A myelosuppression BALB/c mouse model was established by intraperitoneal (i.p.) injection of cyclophosphamide (CTX). The efficacy of YQSSF in alleviating chemotherapy-induced myelosuppression was evaluated by blood cell count, immune organ (thymus, spleen, liver) index, bone marrow nucleated cell (BMNC) count and histopathological analysis of bone marrow and spleen. Then, ultra-performance liquid chromatograph quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to analyze the ingredients of YQSSF extract. Key effects and potential mechanism of YQSSF extract in alleviating myelosuppression were predicted by network pharmacology method. Finally, cell cycle and TUNEL staining of bone marrow cells was detected to verify the key effects, and RT-qPCR or Western blotting were performed to measure the gene and protein expressions of the effect targets respectively to confirm the predicted mechanism of YQSSF for myelosuppression. RESULTS YQSSF up-regulated the number of peripheral blood leukocytes and BMNC, reduced spleen index and liver index, improved the pathological morphology of bone marrow and spleen. A total of 40 ingredients were isolated from YQSSF extract using UPLC-Q/TOF-MS analysis. Network pharmacology revealed that YQSSF regulated both proliferation and apoptosis to alleviate myelosuppression. Finally, YQSSF decreased G0/G1 ratio, increased the proportion of bone marrow cells in S phase and proliferation index (PI), and reduced apoptotic cells in femur bone marrow. RT-qPCR and Western blotting showed that YQSSF up-regulated the expression levels of CDK4, CDK6, CyclinB1, c-Myc and Bcl-2, as well as down-regulated the expression levels of Cyt-c, Fas, Caspase-8/3 and p53. CONCLUSIONS YQSSF promotes the proliferation and inhibits the apoptosis of bone marrow cells to relieve chemotherapy-induced myelosuppression.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Dongming Ma
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Nitric Oxide-Releasing NO–Curcumin Hybrid Inhibits Colon Cancer Cell Proliferation and Induces Cell Death In Vitro. Processes (Basel) 2022. [DOI: 10.3390/pr10050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cancer is a leading cause of death worldwide, and most of the currently available drugs for cancer treatment have limited potential. Natural products and their relatives continue to represent a very high percentage of the drugs used for cancer treatment. Curcumin is one of several natural drugs that has recently attracted much attention due to its putative cancer-preventive and anticancer properties. As well, Nitric Oxide (NO) holds a great potential for NO-based treatments for a wide variety of diseases. Here, for the first time, we tested the anti-cancer activities of an NO–Curcumin hybrid, hypothesizing that by joining the effects of curcumin and NO in one compound, the hybrid compound would be more potent than curcumin alone in treating colon cancer. To compare the anti-cancer activities of curcumin and NO–curcumin, we treated different colon cancer cell lines with either curcumin or NO–curcumin and tested their effects on cell proliferation and death. Our results show that NO–curcumin is more effective in reducing cell proliferation and increasing cell death when compared to curcumin. In addition, NO–curcumin has a lower IC50 compared to curcumin. Altogether, our results demonstrate for the first time that an NO–curcumin hybrid has more potent anti-cancer activity compared to curcumin alone, making it a potential future treatment for cancer and perhaps other diseases.
Collapse
|
7
|
Russo C, Valle MS, Casabona A, Spicuzza L, Sambataro G, Malaguarnera L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines 2022; 10:biomedicines10040898. [PMID: 35453648 PMCID: PMC9026965 DOI: 10.3390/biomedicines10040898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle dysfunction is frequently associated with chronic obstructive pulmonary disease (COPD), which is characterized by a permanent airflow limitation, with a worsening respiratory disorder during disease evolution. In COPD, the pathophysiological changes related to the chronic inflammatory state affect oxidant–antioxidant balance, which is one of the main mechanisms accompanying extra-pulmonary comorbidity such as muscle wasting. Muscle impairment is characterized by alterations on muscle fiber architecture, contractile protein integrity, and mitochondrial dysfunction. Exogenous and endogenous sources of reactive oxygen species (ROS) are present in COPD pathology. One of the endogenous sources of ROS is represented by mitochondria. Evidence demonstrated that vitamin D plays a crucial role for the maintenance of skeletal muscle health. Vitamin D deficiency affects oxidative stress and mitochondrial function influencing disease course through an effect on muscle function in COPD patients. This review will focus on vitamin-D-linked mechanisms that could modulate and ameliorate the damage response to free radicals in muscle fibers, evaluating vitamin D supplementation with enough potent effect to contrast mitochondrial impairment, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Antonino Casabona
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
- Correspondence:
| |
Collapse
|
8
|
Debir B, Meaney C, Kohandel M, Unlu MB. The role of calcium oscillations in the phenotype selection in endothelial cells. Sci Rep 2021; 11:23781. [PMID: 34893636 PMCID: PMC8664853 DOI: 10.1038/s41598-021-02720-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/07/2021] [Indexed: 11/10/2022] Open
Abstract
Angiogenesis is an important process in the formation and maintenance of tissues which is driven by a complex system of intracellular and intercellular signaling mechanisms. Endothelial cells taking part in early angiogenesis must select their phenotype as either a tip cells (leading, migratory) or a stalk cells (following). Recent experiments have demonstrated that rapid calcium oscillations within active cells characterize this phenotype selection process and that these oscillations play a necessary role in governing phenotype selection and eventual vessel architecture. In this work, we develop a mathematical model capable of describing these oscillations and their role in phenotype selection then use it to improve our understanding of the biological mechanisms at play. We developed a model based on two previously published and experimentally validated mathematical models of calcium and angiogenesis then use our resulting model to simulate various multi-cell scenarios. We are able to capture essential calcium oscillation dynamics and intercellular communication between neighboring cells. The results of our model show that although the late DLL4 (a transmembrane protein that activates Notch pathway) levels of a cell are connected with its initial IP3 (Inositol 1,4,5-trisphosphate) level, cell-to-cell communication determines its eventual phenotype.
Collapse
Affiliation(s)
- Birses Debir
- Department of Physics, Bogazici University, 34342, Istanbul, Turkey.
| | - Cameron Meaney
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Mohammad Kohandel
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - M Burcin Unlu
- Department of Physics, Bogazici University, 34342, Istanbul, Turkey
- Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Sapporo, 060-8648, Japan
| |
Collapse
|
9
|
Klimentova EA, Suchkov IA, Egorov AA, Kalinin RE. Apoptosis and Cell Proliferation Markers in Inflammatory-Fibroproliferative Diseases of the Vessel Wall (Review). Sovrem Tekhnologii Med 2021; 12:119-126. [PMID: 34795999 PMCID: PMC8596273 DOI: 10.17691/stm2020.12.4.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is the main feature of inflammatory-fibroproliferative disorders of the vessel wall. Studies in animal models have shown that smooth muscle cells (SMCs) cultured from endarterectomy specimens from the affected area proliferate more slowly and display higher apoptotic indices than SMCs derived from the normal vessel wall. Apoptotic cells were found in the destabilized atherosclerotic plaques, as well as in the samples with restenosis of the reconstruction area. Injury to the vessel wall causes two waves of apoptosis. The first wave is the rapid apoptosis in the media that occurs within a few hours after injury and leads to a marked reduction in the number of vascular wall cells. The second wave of apoptosis occurs much later (from several days to weeks) and is limited by the SMCs within the developing neointima. Up to 14% of the neointimal SMCs undergo apoptosis 20 days after balloon angioplasty. Ligation of the external carotid artery in a rabbit model led to a marked decrease in blood flow in the common carotid artery, which correlated with the increased apoptosis of endothelial cells and SMCs. Angioplasty-induced death of SMCs is regulated by a redox-sensitive signaling pathway, and topical administration of antioxidants can minimize vascular cell loss. On the whole, studies show that apoptosis is prevalent in vascular lesions, controlling the viability of both inflammatory and vascular cells, determining the cellular composition of the vessel wall. The main markers of apoptosis (Fas, Fas ligand, p53, Bcl-2, Bax) and cell proliferation (toll receptor) have been considered in the current review.
Collapse
Affiliation(s)
- E A Klimentova
- Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - I A Suchkov
- Professor, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - A A Egorov
- Doctoral Student, Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy; Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| | - R E Kalinin
- Professor, Head of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery, and Topographic Anatomy Ryazan State Medical University, 9 Vysokovoltnaya St., Ryazan, 390026, Russia
| |
Collapse
|
10
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
11
|
Lee J, Hlaing SP, Hasan N, Kwak D, Kim H, Cao J, Yoon IS, Yun H, Jung Y, Yoo JW. Tumor-Penetrable Nitric Oxide-Releasing Nanoparticles Potentiate Local Antimelanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30383-30396. [PMID: 34162207 DOI: 10.1021/acsami.1c07407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although nitric oxide (NO) has been emerging as a novel local anticancer agent because of its potent cytotoxic effects and lack of off-target side effects, its clinical applications remain a challenge because of the short effective diffusion distance of NO that limits its anticancer activity. In this study, we synthesized albumin-coated poly(lactic-co-glycolic acid) (PLGA)-conjugated linear polyethylenimine diazeniumdiolate (LP/NO) nanoparticles (Alb-PLP/NO NPs) that possess tumor-penetrating and NO-releasing properties for an effective local treatment of melanoma. Sufficient NO-loading and prolonged NO-releasing characteristics of Alb-PLP/NO NPs were acquired through PLGA-conjugated LP/NO copolymer (PLP/NO) synthesis, followed by nanoparticle fabrication. In addition, tumor penetration ability was rendered by the electrostatic adsorption of the albumin on the surface of the nanoparticles. The Alb-PLP/NO NPs showed enhanced intracellular NO delivery efficiency and cytotoxicity to B16F10 murine melanoma cells. In B16F10-tumor-bearing mice, the Alb-PLP/NO NPs showed improved extracellular matrix penetration and spatial distribution in the tumor tissue after intratumoral injection, resulting in enhanced antitumor activity. Taken together, the results suggest that Alb-PLP/NO NPs represent a promising new modality for the local treatment of melanoma.
Collapse
Affiliation(s)
- Juho Lee
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Shwe Phyu Hlaing
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jiafu Cao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
12
|
Song L, Bai H, Liu C, Gong W, Wang A, Wang L, Zhao Y, Zhao X, Wang H. Synthesis, Biomacromolecular Interactions, Photodynamic NO Releasing and Cellular Imaging of Two [RuCl(qn)(Lbpy)(NO)]X Complexes. Molecules 2021; 26:molecules26092545. [PMID: 33925453 PMCID: PMC8123785 DOI: 10.3390/molecules26092545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Two light-activated NO donors [RuCl(qn)(Lbpy)(NO)]X with 8-hydroxyquinoline (qn) and 2,2′-bipyridine derivatives (Lbpy) as co-ligands were synthesized (Lbpy1 = 4,4′-dicarboxyl-2,2′-dipyridine, X = Cl− and Lbpy2 = 4,4′-dimethoxycarbonyl-2,2′-dipyridine, X = NO3−), and characterized using ultraviolet–visible (UV-vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (1H NMR), elemental analysis and electrospray ionization mass spectrometry (ESI-MS) spectra. The [RuCl(qn)(Lbpy2)(NO)]NO3 complex was crystallized and exhibited distorted octahedral geometry, in which the Ru–N(O) bond length was 1.752(6) Å and the Ru–N–O angle was 177.6(6)°. Time-resolved FT-IR and electron paramagnetic resonance (EPR) spectra were used to confirm the photoactivated NO release of the complexes. The binding constant (Kb) of two complexes with human serum albumin (HSA) and DNA were quantitatively evaluated using fluorescence spectroscopy, Ru-Lbpy1 (Kb~106 with HSA and ~104 with DNA) had higher affinity than Ru-Lbpy2. The interactions between the complexes and HSA were investigated using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) and EPR spectra. HSA can be used as a carrier to facilitate the release of NO from the complexes upon photoirradiation. The confocal imaging of photo-induced NO release in living cells was successfully observed with a fluorescent NO probe. Moreover, the photocleavage of pBR322 DNA for the complexes and the effect of different Lbpy substituted groups in the complexes on their reactivity were analyzed.
Collapse
Affiliation(s)
- Luna Song
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Hehe Bai
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Chenyang Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Wenjun Gong
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Ai Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
| | - Li Wang
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Yi Zhao
- Shanxi Key Laboratory of Pharmaceutical Biotechnology, Taiyuan 030006, China;
| | - Xuan Zhao
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA;
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China; (L.S.); (H.B.); (C.L.); (W.G.); (A.W.)
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
- Correspondence: ; Tel./Fax: +86-351-7010699
| |
Collapse
|
13
|
Ji XW, Lyu HJ, Zhou GH, Wu B, Zhu YY, Wu TH, Zhang F, Jin SN, Cho KW, Wen JF. Physcion, a tetra-substituted 9,10-anthraquinone, prevents homocysteine-induced endothelial dysfunction by activating Ca 2+- and Akt-eNOS-NO signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153410. [PMID: 33285470 DOI: 10.1016/j.phymed.2020.153410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Homocysteine (Hcy) induced vascular endothelial dysfunction is known to be closely associated with oxidative stress and impaired NO system. 1,8-Dihydroxy-3-methoxy-6-methylanthracene-9,10-dione (physcion) has been known to has antioxidative and anti-inflammatory properties. PURPOSE The purpose of the present study was to define the protective effect of physcion on Hcy-induced endothelial dysfunction and its mechanisms involved. STUDY DESIGN AND METHODS Hyperhomocysteinemia (HHcy) rat model was induced by feeding 3% methionine. A rat thoracic aortic ring model was used to investigate the effects of physcion on Hcy-induced impairment of endothelium-dependent relaxation. Two doses, low (L, 30 mg/kg/day) and high (H, 50 mg/kg/day) of physcion were used in the present study. To construct Hcy-injured human umbilical vein endothelial cells (HUVECs) model, the cells treated with 3 mM Hcy. The effects of physcion on Hcy-induced HUVECs cytotoxicity and apoptosis were studied using MTT and flow cytometry. Confocal analysis was used to determine the levels of intracellular Ca2+. The levels of protein expression of the apoptosis-related markers Bcl-2, Bax, caspase-9/3, and Akt and endothelial nitric oxide synthase (eNOS) were evaluated by western blot. RESULTS In the HHcy rat model, plasma levels of Hcy and malondialdehyde (MDA) were elevated (20.45 ± 2.42 vs. 4.67 ± 1.94 μM, 9.42 ± 0.48 vs. 3.47 ± 0.59 nM, p < 0.001 for both), whereas superoxide dismutase (SOD) and nitric oxide (NO) levels were decreased (77.11 ± 4.78 vs. 115.02 ± 5.63 U/ml, 44.51 ± 4.45 vs. 64.18 ± 5.34 μM, p < 0.001 and p < 0.01, respectively). However, treatment with physcion significantly reversed these changes (11.82 ± 2.02 vs. 20.45 ± 2.42 μM, 5.97 ± 0.72 vs. 9.42 ± 0.48 nM, 108.75 ± 5.65 vs. 77.11 ± 4.78 U/ml, 58.14 ± 6.02 vs. 44.51 ± 4.45 μM, p < 0.01 for all). Physcion also prevented Hcy-induced impairment of endothelium-dependent relaxation in HHcy rats (1.56 ± 0.06 vs. 15.44 ± 2.53 nM EC50 for ACh vasorelaxation, p < 0.05 vs. HHcy). In Hcy-injured HUVECs, physcion inhibited the impaired viability, apoptosis and reactive oxygen species. Hcy treatment significantly increased the protein phosphorylation levels of p38 (2.26 ± 0.20 vs. 1.00 ± 0.12, p <0.01), ERK (2.11 ± 0.21 vs. 1.00 ± 0.11, p <0.01) and JNK. Moreover, physcion reversed the Hcy-induced apoptosis related parameter changes such as decreased mitochondrial membrane potential (MMP) and Bcl-2/Bax protein ratio, and increased protein expression of caspase-9/3 in HUVECs. Furthermore, the downregulation of Ca2+, Akt, eNOS and NO caused by Hcy were recovered with physcion treatment in HUVECs. CONCLUSION Physcion prevents Hcy-induced endothelial dysfunction by activating Ca2+- and Akt-eNOS-NO signaling pathways. This study provides the first evidence that physcion might be a candidate agent for the prevention of cardiovascular disease induced by Hcy.
Collapse
Affiliation(s)
- Xiao Wei Ji
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Hang Ji Lyu
- Graduate department, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Guang Hai Zhou
- Institute of Cardiovascular Endocrinology, Key Laboratory of Atherosclerosis in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Bo Wu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Yuan Yuan Zhu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Tian Hua Wu
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Feng Zhang
- Institute of Cardiovascular Endocrinology, Key Laboratory of Atherosclerosis in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Song Nan Jin
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Kyung Woo Cho
- Institute of Cardiovascular Endocrinology, Key Laboratory of Atherosclerosis in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China
| | - Jin Fu Wen
- Institute of Cardiovascular Endocrinology, Key Laboratory of Atherosclerosis in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China.
| |
Collapse
|
14
|
Yahaya T, Salisu T. Genes predisposing to type 1 diabetes mellitus and pathophysiology: a narrative review. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.rev.203732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The possibility of targeting the causal genes along with the mechanisms of pathogenically complex diseases has led to numerous studies on the genetic etiology of some diseases. In particular, studies have added more genes to the list of type 1 diabetes mellitus (T1DM) suspect genes, necessitating an update for the interest of all stakeholders. Therefore this review articulates T1DM suspect genes and their pathophysiology. Notable electronic databases, including Medline, Scopus, PubMed, and Google-Scholar were searched for relevant information. The search identified over 73 genes suspected in the pathogenesis of T1DM, with human leukocyte antigen, insulin gene, and cytotoxic T lymphocyte-associated antigen 4 accounting for most of the cases. Mutations in these genes, along with environmental factors, may produce a defective immune response in the pancreas, resulting in β-cell autoimmunity, insulin deficiency, and hyperglycemia. The mechanisms leading to these cellular reactions are gene-specific and, if targeted in diabetic individuals, may lead to improved treatment. Medical practitioners are advised to formulate treatment procedures that target these genes in patients with T1DM.
Collapse
|
15
|
Wu B, Yue H, Zhou GH, Zhu YY, Wu TH, Wen JF, Cho KW, Jin SN. Protective effects of oxymatrine on homocysteine-induced endothelial injury: Involvement of mitochondria-dependent apoptosis and Akt-eNOS-NO signaling pathways. Eur J Pharmacol 2019; 864:172717. [DOI: 10.1016/j.ejphar.2019.172717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/26/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022]
|
16
|
|
17
|
Lian SH, Song JD, Huang Y. PBF, a Proto-oncogene in Esophageal Carcinoma. Open Med (Wars) 2019; 14:748-756. [PMID: 31637306 PMCID: PMC6795029 DOI: 10.1515/med-2019-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 07/26/2019] [Indexed: 11/15/2022] Open
Abstract
Emerging evidence shows that the pituitary tumour-transforming gene (PTTG)-binding factor (PBF) functions as a proto-oncogene in some tumors. However, the precise functions of PBF in tumorigenesis and its action mechanisms remain largely unknown. Here for the first time we demonstrated that PBF was associated with a tumor-related cell phenotype in esophageal carcinoma (ESCA) and identified the involved signaling pathways. PBF was up-regulated in ESCA tissues (Data from GEPIA) and cells. Then we down-regulated PBF in ESCA cell lines, Eca-109 and TE-1, by using RNAi technology. Cell function analysis suggested that down-regulation of PBF could inhibit tumor-related cell phenotypes, including proliferation, motility, apoptosis and cell cycle, in Eca-109 and TE-1 cells. Mechanism investigation suggested that apoptosis induced by PBF knockdown may be mediated by the activation of the mitochondrial apoptosis pathway and cell cycle arrest. AKT/mTOR and Wnt3a/β-catenin, key pathways in regulating tumor proliferation and metastasis, were found to be inactivated by the down-regulation of PBF in ESCA cells. In conclusion, our study demonstrates that PBF functions as a proto-oncogene in ESCA in vitro, which may be mediated through AKT/mTOR and Wnt3a/β-catenin pathways.
Collapse
Affiliation(s)
- Shi-hai Lian
- Department of Cardiothoracic surgery, Zaozhuang Municipal Hospital, Zaozhuang 277000, Shandong Province, China
| | - Jun-ding Song
- Department of Cardiothoracic surgery, Zaozhuang Municipal Hospital, Zaozhuang 277000, Shandong Province, China
| | - Yi Huang
- Department of Cardiothoracic surgery, Zaozhuang Municipal Hospital, 41# Longtou Rd, Zaozhuang 277100, Shandong Province, China
| |
Collapse
|
18
|
Parsa Khankandi H, Behzad S, Mojab F, Ahmadian-Attari MM, Sahranavard S. Effects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:826-835. [PMID: 31531065 PMCID: PMC6706754 DOI: 10.22037/ijpr.2019.1100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO production and cell injury during oxidative stress in PC12 cells. In this study, cell death determined by MTT assay and NO levels were evaluated using Griess assay. PC12 cells were exposed to total metanolic extracts of three Scutellaria and one Nepeta species. The results revealed that Nepeta laxiflora (N. laxiflora) could protect PC12 cells from hydrogen proxide-induced oxidative stress and all of the plants inhibited NO production in that condition except Scutellaria tournefortii (Sc. tournefortii). In addition, Scutellaria multicaulis (Sc. multicaulis) was meanwhile subjected to fractionation using different organic solvents. The dichloromethan and ethyl acetate fractions of Sc. multicaulis could protect PC12 cells from oxidative stress injury. However, NO production was restrained by the hexane and dichloromethane fractions. Considering the results, N. laxiflora, Scutellaria nepetifolia (Sc. nepetifolia), and Sc. multicaulis are good candidates for further investigations in neuroprotection and anti-inflammation studies.
Collapse
Affiliation(s)
- Hamed Parsa Khankandi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Behzad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Faraz Mojab
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Ahmadian-Attari
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shamim Sahranavard
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Li Y, Yang Q, Shi ZH, Zhou M, Yan L, Li H, Xie YH, Wang SW. The Anti-Inflammatory Effect of Feiyangchangweiyan Capsule and Its Main Components on Pelvic Inflammatory Disease in Rats via the Regulation of the NF- κB and BAX/BCL-2 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9585727. [PMID: 31312226 PMCID: PMC6595388 DOI: 10.1155/2019/9585727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/23/2019] [Indexed: 11/18/2022]
Abstract
Although gastroenteritis and pelvic inflammatory disease (PID) occur in the gastrointestinal tract and pelvis, respectively, they display similar pathogeneses. The incidence of inflammation in these conditions is usually associated with dysbacteriosis, and, at times, they are caused by the same pathogenic bacteria, Escherichia coli and Streptococcus aureus. Feiyangchangweiyan capsule (FYC) is a traditional Chinese patent medicine that is widely used to treat bacterial dysentery and acute and chronic gastroenteritis. However, whether it has an effect on PID is unclear. The aim of this study was to investigate the anti-inflammatory effect of FYC and its main components, gallic acid (GA), ellagic acid (EA), and syringin (SY), on a pathogen-induced PID model and illustrate their potential mechanism of action. Female specific pathogen-free SD rats (n = 1110) were randomly divided into control, PID, FYC, GA, EA, SY, GA + EA, GA + SY, EA + SY, GA + EA + SY, and Fuke Qianjin capsule (FKC) positive groups. Histological examination and enzyme-linked immunosorbent assay (ELISA) were carried out as well as western blot analysis to detect the expression of NF-κB, BAX, BCL-2, and JNK. In this study, FYC and its main components dramatically suppressed the infiltration of inflammatory cells, reduced the production of IL-1β, TNF-α, and MCP-1, and elevated the IL-10 level to varying degrees. We also found that FYC and its main components inhibited the expression of BAX induced by infection and increased the expression of Bcl-2. FYC, GA, EA, and SY could also block the activation of the NF-κB pathway. Finally, we found that the phosphorylation of JNK could be decreased by FYC, GA, and SY. FYC and its main components exhibit anti-inflammatory effect on a pathogen-induced PID model by regulating the NF-κB and apoptosis signaling pathways.
Collapse
Affiliation(s)
- Yao Li
- The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Qian Yang
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-hui Shi
- Shaanxi Junbisha Pharmaceutical Limited Company, Xianyang, 712000, China
| | - Min Zhou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Li Yan
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hua Li
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan-hua Xie
- The College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Si-wang Wang
- The College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Natural Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
20
|
Rao M, Chen D, Zhan P, Jiang J. MDA19, a novel CB2 agonist, inhibits hepatocellular carcinoma partly through inactivation of AKT signaling pathway. Biol Direct 2019; 14:9. [PMID: 31053086 PMCID: PMC6500002 DOI: 10.1186/s13062-019-0241-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CB2 (cannabinoid receptor 2) agonists have been shown to exert anti-tumor activities in different tumor types. However, there is no study exploring the role of MDA19 (a novel CB2 agonist) in tumors. In this study we aimed to investigate the effects of MDA19 treatment on HCC cell lines, Hep3B and HepG2 and determine the relevant mechanisms. RESULTS Cell proliferation analysis, including CCK8 and colony formation assays, indicated that MDA19 treatment inhibited HCC cell proliferation in a dose- and time-dependent manner. Flow cytometry suggested that MDA19 induced cell apoptosis and activation of mitochondrial apoptosis pathway. Transwell assay indicated that HCC cell migration and invasion were significantly inhibited by MDA19 treatment. Mechanism investigation suggested that MDA19 induced inactivation of AKT signaling pathway in HCC cells. In addition, we investigated the function of CB2receptor in HCC and its role in the anti-tumor activity of MDA19. By searching on Kaplan-Meier plotter ( http://kmplot.com/analysis/ ), we found that HCC patients with high CB2 expression had a better survival and CB2 expression was significantly associated with gender, clinical stages and race of HCC patients (P < 0.05). CB2 inhibited the progression of HCC cells and its knockdown could rescue the growth inhibition induced by MDA19 in HCC. Moreover, the inhibitory effect of MDA19 on AKT signaling pathway was also reversed by CB2 knockdown. CONCLUSION Our data suggest that MDA-19 exerts an anti-tumor activity at least partly through inactivation of AKT signaling pathway in HCC. CB2 functions as a tumor suppressor gene in HCC, and MDA19-induced growth inhibition of HCC cells depends on its binding to CB2 to activate it. MDA-19 treatment may be a promising strategy for HCC therapy. REVIEWER This article was reviewed by Tito Cali, Mohamed Naguib and Bo Chen.
Collapse
Affiliation(s)
- Mei Rao
- Department of Pharmacy, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, Fujian, 364000, People's Republic of China
| | - Dongfeng Chen
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Peng Zhan
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China
| | - Jianqing Jiang
- Department of Osteology, Longyan First Hospital Affiliated to Fujian Medical University, 105 Jiuyi North Road, Longyan, 364000, Fujian, People's Republic of China.
| |
Collapse
|
21
|
Ren H, Yang H, Xie M, Wen Y, Liu Q, Li X, Liu J, Xu H, Tang W, Wang M. Chondrocyte apoptosis in rat mandibular condyles induced by dental occlusion due to mitochondrial damage caused by nitric oxide. Arch Oral Biol 2019; 101:108-121. [DOI: 10.1016/j.archoralbio.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 01/21/2023]
|
22
|
Shi Y, Zhang B, Feng X, Qu F, Wang S, Wu L, Wang X, Liu Q, Wang P, Zhang K. Apoptosis and autophagy induced by DVDMs-PDT on human esophageal cancer Eca-109 cells. Photodiagnosis Photodyn Ther 2018; 24:198-205. [PMID: 30268863 DOI: 10.1016/j.pdpdt.2018.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Esophageal cancer is a common gastrointestinal cancer. About 300,000 people die from esophageal cancer every year in the world. Photodynamic therapy (PDT) has attracted attention as a feasible cancer therap for this diagnosis. Sinoporphyrin sodium (DVDMs) is a novel sensitizer isolated from photofrin. In this study, we aimed to investigate the effects of DVDMs mediated photodynamic therapy and the possible mechanism on human esophageal cancer Eca-109 cells. METHODS Cell viability was measured by MTT assay and cell apoptosis was determined by Annexin V-PE/7-AAD and western blot. MDC staining and western blot were used to evaluate cell autophagy. The production of intracellular reactive oxygen species (ROS) was detected by flow cytometry. The expression of MAPK and HO-1 were detected by western blot. RESULTS DVDMs-PDT decreased cell viability and induced cell apoptosis and autophagy. Autophagy inhibition reduced cell apoptosis triggered by DVDMs-PDT in Eca-109 cells. Generation of ROS was detected in DVDMs-PDT group. p38MAPK, JNK and HO-1 were activated after PDT treatment and the activation were reversed by adding ROS scavenger NAC. CONCLUSIONS Our studies demonstrated that DVDMs-PDT induced apoptosis and autophagy in Eca-109 cells. DVDMs-PDT induced ROS generation in Eca-109 cells, and the generation of ROS activated p38MAPK and JNK. Activation of p38MAPK and JNK may be involved in PDT-induced apoptosis.
Collapse
Affiliation(s)
- Yin Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Boli Zhang
- Department of Nephrology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Xiaolan Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Qu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Shuang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lijie Wu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Quanhong Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Kun Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
23
|
Leonidou A, Lepetsos P, Mintzas M, Kenanidis E, Macheras G, Tzetis M, Potoupnis M, Tsiridis E. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin Ther Targets 2018; 22:299-318. [PMID: 29504411 DOI: 10.1080/14728222.2018.1448062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of nitric oxide (NO), a major proinflammatory and destructive mediator in osteoarthritis (OA). Areas covered: This is a comprehensive review of the recent literature on the involvement of iNOS in osteoarthritis and its potential to be used as a target for OA treatment. Evidence from in vitro, in vivo and human studies was systematically collected using medical search engines. Preclinical studies have focused on the effect of direct and indirect iNOS inhibitors in both animal and human tissues. Apart from direct inhibitors, common pharmacological agents, herbal and dietary medicines as well as hyperbaric oxygen, low level laser and low intensity pulsed ultrasound have been shown to exhibit a chondroprotective effect by inhibiting the expression of iNOS. Expert opinion: Data support the further investigation of iNOS inhibitors for the treatment of OA in human studies and clinical trials. Indirect iNOS inhibitors such as interleukin 1 inhibitors also need to be studied in greater detail. Finally, human studies need to be conducted on the herbal and dietary medicines and on the non-invasive, non-pharmacological treatments.
Collapse
Affiliation(s)
- Andreas Leonidou
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Panagiotis Lepetsos
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Michalis Mintzas
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - Eustathios Kenanidis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - George Macheras
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Maria Tzetis
- b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Michael Potoupnis
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Eleftherios Tsiridis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,d Department of Surgery and Cancer, Division of Surgery , Imperial College London , London , UK
| |
Collapse
|
24
|
Li T, Bai B, Tian C, Wang H, Jiang D, Ma F, Shan M. High sucrose/fat diet and isosorbide mononitrate increase insulin resistance, nitric oxide production and myocardial apoptosis in a hypertensive rat model. Mol Med Rep 2018; 17:6789-6795. [PMID: 29488615 DOI: 10.3892/mmr.2018.8651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 12/07/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the association between insulin resistance (IR), nitric oxide (NO) production and myocardial apoptosis in a background of coexisting hypertension in a rodent animal model. A hypertensive rat model was established by feeding Wistar and spontaneously hypertensive rats (SHR) with a high sucrose/fat (HSF) diet for 12 weeks, in conjunction with isosorbide mononitrate (ISMN). Increased IR, NO content, apoptotic gene and protein expression, and morphological alterations within rat myocardium were evaluated. Following a total of 12 weeks of feeding with HSF and ISMN resulted in increased IR and NO content within the myocardial tissue of Wistar and SHR rats. HSF and ISMN activated myocardial apoptosis by downregulating the gene transcription and protein expression levels of the anti‑apoptotic B‑cell lymphoma 2 (Bcl‑2), and increasing the pro‑apoptotic Bcl‑2 associated X protein. Apoptosis was demonstrated by DNA fragmentation in terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labelling assay. In all experiments, the combination of HSF and ISMN was associated with more pronounced effects, indicating the possible synergistic effects. In addition, the correlation analysis in the Wistar rats fed with HSF only, revealed a positive association between NO production and IR. The results of the present study indicated that HSF and ISMN simultaneously increased IR, NO production and myocardial apoptosis in the hypertensive rat model, and may therefore contribute to investigations into the long‑term clinical use of ISMN in hypertensive patients.
Collapse
Affiliation(s)
- Ting Li
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Bing Bai
- Department of Endocrinology and Metabolic Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenguang Tian
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Huihui Wang
- Department of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Deyue Jiang
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Fangfei Ma
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| | - Mengting Shan
- Department of Endocrinology and Metabolic Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
| |
Collapse
|
25
|
Ciccone V, Monti M, Monzani E, Casella L, Morbidelli L. The metal-nonoate Ni(SalPipNONO) inhibits in vitro tumor growth, invasiveness and angiogenesis. Oncotarget 2018; 9:13353-13365. [PMID: 29568362 PMCID: PMC5862583 DOI: 10.18632/oncotarget.24350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) exerts conflicting effect on tumor growth and progression, depending on its concentration. We aimed to characterize the anti-cancer activity of a new NO donor, Ni(SalPipNONO) belonging to the class of metal-nonoates, in epithelial derived tumor cells, finally exploring its antiangiogenic properties. Tumor epithelial cells were screened to evaluate the cytotoxic effect of Ni(SalPipNONO), which was able to inhibit cell proliferation in a dose dependent manner, being more effective than the commercial DETA/NO. The human lung carcinoma cells A549 were chosen as model to study the anti-cancer mechanisms exerted by the compound. In these cells, Ni(SalPipNONO) inhibited clonogenicity and cell invasion, while promoting apoptosis. The antitumor activity was partly due to NO-cGMP dependent pathway, contributing to reduced cell number and apoptosis, and partly to the salicylaldehyde moiety and reactive oxygen species (ROS) activated ERK1/2 signaling converging on p53 dependent caspase-3 cleavage. An additional contribution by downstream cycloxygenase-2 (COX-2) derived cyclopentenones may explain the tumor inhibitory activities. As NO has been described to affect tumor angiogenesis, we checked this activity both on tumor and endothelial cell co-cultures and in Matrigel in vivo assay. Our data document that Ni(SalPipNONO) was able to both reduce angiogenic factor expression by tumor cells acting on hypoxia inducible factor-1α (HIF-1 α) level, and endothelial cell functions related to angiogenesis. Collectively, these data confirm the potential use of NO donors and in particular Ni(SalPipNONO) acting through multiple mechanisms, as an agent to be further developed to be used alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Valerio Ciccone
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Martina Monti
- Department of Molecular Medicine and Development, University of Siena, Siena, Italy.,Noxamet Ltd, Milan, Italy
| | - Enrico Monzani
- Noxamet Ltd, Milan, Italy.,Department of Chemistry, University of Pavia, Pavia, Italy
| | - Luigi Casella
- Noxamet Ltd, Milan, Italy.,Department of Chemistry, University of Pavia, Pavia, Italy
| | - Lucia Morbidelli
- Department of Life Sciences, University of Siena, Siena, Italy.,Noxamet Ltd, Milan, Italy
| |
Collapse
|
26
|
Ferraz LS, Watashi CM, Colturato-Kido C, Pelegrino MT, Paredes-Gamero EJ, Weller RB, Seabra AB, Rodrigues T. Antitumor Potential of S-Nitrosothiol-Containing Polymeric Nanoparticles against Melanoma. Mol Pharm 2018; 15:1160-1168. [DOI: 10.1021/acs.molpharmaceut.7b01001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Letícia S. Ferraz
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Carolina M. Watashi
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Carina Colturato-Kido
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Milena T. Pelegrino
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
| | - Edgar J. Paredes-Gamero
- Interdisciplinary Center for Biochemistry Investigation (CIIB), University of Mogi das Cruzes (UMC), 08780-911 Mogi das Cruzes, São Paulo, Brazil
| | - Richard B. Weller
- Medical Research Council Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, U.K
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), 09210-580 Santo André, São Paulo, Brazil
- Nanomedicine Research Unit (NANOMED), Federal University of ABC (UFABC), Santo André, São Paulo, Brazil
| |
Collapse
|
27
|
Asweto CO, Wu J, Alzain MA, Hu H, Andrea S, Feng L, Yang X, Duan J, Sun Z. Cellular pathways involved in silica nanoparticles induced apoptosis: A systematic review of in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:191-197. [PMID: 28957724 DOI: 10.1016/j.etap.2017.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/18/2017] [Indexed: 05/14/2023]
Abstract
Silica nanoparticles (SiNPs) have been found to pass through biological barriers and get distributed in the human body. They induce cell apoptosis via various mechanisms in body organs. To understand these mechanisms, we carried out systematic review of in vitro studies on SiNPs-induced cell apoptosis. Office of Health Assessment and Translation approach for Systematic Review and Evidence Integration was used to identify 14 studies dating from the year 2000 to current. Four studies showed an increase in DNA damage, cell cycle arrest, proapoptotic factors and decrease in antiapoptotic factors resulting to apoptosis. Eight studies showed induction of mitochondrial dysfunction, Bax upregulation, Bcl-2 downregulation, and caspase-3, -7, -9 activities increase. Increase in FADD, TNFR1 and Bid proteins was observed in one study, while the other NO production and caspase-3 activity was increased. These studies found the potency of SiNPs to induce cell apoptosis through DNA damage, mitochondrial, tumor necrosis factor, and nitric oxide related pathways.
Collapse
Affiliation(s)
- Collins Otieno Asweto
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Jing Wu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mohamed Ali Alzain
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Hejing Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Sebastian Andrea
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
28
|
Bombicino SS, Iglesias DE, Rukavina-Mikusic IA, Buchholz B, Gelpi RJ, Boveris A, Valdez LB. Hydrogen peroxide, nitric oxide and ATP are molecules involved in cardiac mitochondrial biogenesis in Diabetes. Free Radic Biol Med 2017; 112:267-276. [PMID: 28756312 DOI: 10.1016/j.freeradbiomed.2017.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 01/21/2023]
Abstract
This study, in an experimental model of type I Diabetes Mellitus in rats, deals with the mitochondrial production rates and steady-state concentrations of H2O2 and NO, and ATP levels as part of a network of signaling molecules involved in heart mitochondrial biogenesis. Sustained hyperglycemia leads to a cardiac compromise against a work overload, in the absence of changes in resting cardiac performance and of heart hypertrophy. Diabetes was induced in male Wistar rats by a single dose of Streptozotocin (STZ, 60mg × kg-1, ip.). After 28 days of STZ-injection, rats were sacrificed and hearts were isolated. The mitochondrial mass (mg mitochondrial protein × g heart-1), determined through cytochrome oxidase activity ratio, was 47% higher in heart from diabetic than from control animals. Stereological analysis of cardiac tissue microphotographs showed an increase in the cytosolic volume occupied by mitochondria (30%) and in the number of mitochondria per unit area (52%), and a decrease in the mean area of each mitochondrion (23%) in diabetic respect to control rats. Additionally, an enhancement (76%) in PGC-1α expression was observed in cardiac tissue of diabetic animals. Moreover, heart mitochondrial H2O2 (127%) and NO (23%) productions and mtNOS expression (132%) were higher, while mitochondrial ATP production rate was lower (~ 40%), concomitantly with a partial-mitochondrial depolarization, in diabetic than in control rats. Changes in mitochondrial H2O2 and NO steady-state concentrations and an imbalance between cellular energy demand and mitochondrial energy transduction could be involved in the signaling pathways that lead to the novo synthesis of mitochondria. However, this compensatory mechanism triggered to restore the mitochondrial and tissue normal activities, did not lead to competent mitochondria capable of supplying the energetic demands in diabetic pathological conditions.
Collapse
Affiliation(s)
- Silvina S Bombicino
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Darío E Iglesias
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ivana A Rukavina-Mikusic
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Bruno Buchholz
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Ricardo J Gelpi
- University of Buenos Aires, Faculty of Medicine, Pathology Department, Cardiovascular Physiopathology Institute (INFICA), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Alberto Boveris
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina
| | - Laura B Valdez
- University of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL), Buenos Aires, Argentina.
| |
Collapse
|
29
|
Abstract
The increasing understanding of the role of nitric oxide (NO) in cancer biology has generated significant progress in the use of NO donor-based therapy to fight cancer. These advances strongly suggest the potential adoption of NO donor-based therapy in clinical practice, and this has been supported by several clinical studies in the past decade. In this review, we first highlight several types of important NO donors, including recently developed NO donors bearing a dinitroazetidine skeleton, represented by RRx-001, with potential utility in cancer therapy. Special emphasis is then given to the combination of NO donor(s) with other therapies to achieve synergy and to the hybridization of NO donor(s) with an anticancer drug/agent/fragment to enhance the activity or specificity or to reduce toxicity. In addition, we briefly describe inducible NO synthase gene therapy and nanotechnology, which have recently entered the field of NO donor therapy.
Collapse
Affiliation(s)
- Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| | - Junjie Fu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University , Nanjing 211166, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University , Nanjing 210009, P. R. China
| |
Collapse
|
30
|
Roshan MHK, Tambo A, Pace NP. Potential Role of Caffeine in the Treatment of Parkinson's Disease. Open Neurol J 2016; 10:42-58. [PMID: 27563362 PMCID: PMC4962431 DOI: 10.2174/1874205x01610010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease [PD] is the second most common neurodegenerative disorder after Alzheimer’s disease, affecting 1% of the population over the age of 55. The underlying neuropathology seen in PD is characterised by progressive loss of dopaminergic neurons in the substantia nigra pars compacta with the presence of Lewy bodies. The Lewy bodies are composed of aggregates of α-synuclein. The motor manifestations of PD include a resting tremor, bradykinesia, and muscle rigidity. Currently there is no cure for PD and motor symptoms are treated with a number of drugs including levodopa [L-dopa]. These drugs do not delay progression of the disease and often provide only temporary relief. Their use is often accompanied by severe adverse effects. Emerging evidence from both in vivo and in vitro studies suggests that caffeine may reduce parkinsonian motor symptoms by antagonising the adenosine A2A receptor, which is predominately expressed in the basal ganglia. It is hypothesised that caffeine may increase the excitatory activity in local areas by inhibiting the astrocytic inflammatory processes but evidence remains inconclusive. In addition, the co-administration of caffeine with currently available PD drugs helps to reduce drug tolerance, suggesting that caffeine may be used as an adjuvant in treating PD. In conclusion, caffeine may have a wide range of therapeutic effects which are yet to be explored, and therefore warrants further investigation in randomized clinical trials.
Collapse
Affiliation(s)
- Mohsin H K Roshan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta- Msida, Malta
| | - Amos Tambo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta- Msida, Malta
| | - Nikolai P Pace
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta- Msida, Malta
| |
Collapse
|
31
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 516] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
32
|
Bonavida B, Garban H. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics. Redox Biol 2015; 6:486-494. [PMID: 26432660 PMCID: PMC4596920 DOI: 10.1016/j.redox.2015.08.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022] Open
Abstract
The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN-γ, IL-1, TNF-α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial-mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo-immuno drugs. This combination acts on multiple facets including reversal of chemo-immune resistance, and inhibition of both EMT and metastasis.
Collapse
Affiliation(s)
- Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA.
| | - Hermes Garban
- NantBioScience, Inc., NantWorks, LLC., California NanoSystems Institute (CnSI) at the University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Hutcheson R, Terry R, Hutcheson B, Jadhav R, Chaplin J, Smith E, Barrington R, Proctor SD, Rocic P. miR-21-mediated decreased neutrophil apoptosis is a determinant of impaired coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 2015; 308:H1323-35. [PMID: 25840830 DOI: 10.1152/ajpheart.00654.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/21/2015] [Indexed: 11/22/2022]
Abstract
Coronary collateral growth (CCG) is impaired in metabolic syndrome. microRNA-21 (miR-21) is a proproliferative and antiapoptotic miR, which we showed to be elevated in metabolic syndrome. Here we investigate whether impaired CCG in metabolic syndrome involved miR-21-mediated aberrant apoptosis. Normal Sprague-Dawley (SD) and metabolic syndrome [J. C. Russel (JCR)] rats underwent transient, repetitive coronary artery occlusion [repetitive ischemia (RI)]. Antiapoptotic Bcl-2, phospho-Bad, and Bcl-2/Bax dimers were increased on days 6 and 9 RI, and proapoptotic Bax and Bax/Bax dimers and cytochrome-c release concurrently decreased in JCR versus SD rats. Active caspases were decreased in JCR versus SD rats (~50%). Neutrophils increased transiently on day 3 RI in the collateral-dependent zone of SD rats but remained elevated in JCR rats, paralleling miR-21 expression. miR-21 downregulation by anti-miR-21 induced neutrophil apoptosis and decreased Bcl-2 and Bcl-2/Bax dimers (~75%) while increasing Bax/Bax dimers, cytochrome-c release, and caspase activation (~70, 400, and 400%). Anti-miR-21 also improved CCG in JCR rats (~60%). Preventing neutrophil infiltration with blocking antibodies resulted in equivalent CCG recovery, confirming a major role for deregulated neutrophil apoptosis in CCG impairment. Neutrophil and miR-21-dependent CCG inhibition was in significant part mediated by increased oxidative stress. We conclude that neutrophil apoptosis is integral to normal CCG and that inappropriate prolonged miR-21-mediated survival of neutrophils plays a major role in impaired CCG, in part via oxidative stress generation.
Collapse
Affiliation(s)
- Rebecca Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Russell Terry
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Rashmi Jadhav
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Jennifer Chaplin
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Erika Smith
- Department of Biochemistry and Molecular Biology, University of South Alabama College of Medicine, Mobile, Alabama
| | - Robert Barrington
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama; and
| | - Spencer D Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
34
|
Nitric oxide compounds have different effects profiles on human articular chondrocyte metabolism. Arthritis Res Ther 2014; 15:R115. [PMID: 24025112 PMCID: PMC3978712 DOI: 10.1186/ar4295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 06/09/2013] [Accepted: 09/11/2013] [Indexed: 01/27/2023] Open
Abstract
Introduction The pathogenesis of osteoarthritis (OA) is characterized by the production of high amounts of nitric oxide (NO), as a consequence of up-regulation of chondrocyte-inducible nitric oxide synthase (iNOS) induced by inflammatory cytokines. NO donors represent a powerful tool for studying the role of NO in the cartilage in vitro. There is no consensus about NO effects on articular cartilage in part because the differences between the NO donors available. The aim of this work is to compare the metabolic profile of traditional and new generation NO donors to see which one points out the osteoarthritic process in the best way. Methods Human healthy and OA chondrocytes were isolated from patients undergoing joint replacement surgery, and primary cultured. Cells were stimulated with NO donors (NOC-12 or SNP). NO production was evaluated by the Griess method, and apoptosis was quantified by flow cytometry. Mitochondrial function was evaluated by analysing respiratory chain enzyme complexes, citrate synthase (CS) activities by enzymatic assay, mitochondrial membrane potential (Δψm) by JC-1 using flow cytometry, and ATP levels were measured by luminescence assays. Glucose transport was measured as the uptake of 2-deoxy-[3H]glucose (2-[3H]DG). Statistical analysis was performed using the Mann-Whitney U test. Results NOC-12 liberates approximately ten times more NO2- than SNP, but the level of cell death induced was not as profound as that produced by SNP. Normal articular chondrocytes stimulated with NOC-12 had reduced activity from complexes I, III y IV, and the mitochondrial mass was increased in these cells. Deleterious effects on ΔΨm and ATP levels were more profound with SNP, and this NO donor was able to reduce 2-[3H]DG levels. Both NO donors had opposite effects on lactate release, SNP diminished the levels and NOC-12 lead to lactate accumulation. OA chondrocytes incorporate significantly more 2-[3H]DG than healthy cells. Conclusions These findings suggest that the new generation donors, specifically NOC-12, mimic the OA metabolic process much better than SNP. Previous results using SNP have to be considered prudently since most of the effects observed can be induced by the interactions of secondary products of NO.
Collapse
|
35
|
Yin F, Boveris A, Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 2014; 20:353-71. [PMID: 22793257 PMCID: PMC3887431 DOI: 10.1089/ars.2012.4774] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial energy-transducing capacity is essential for the maintenance of neuronal function, and the impairment of energy metabolism and redox homeostasis is a hallmark of brain aging, which is particularly accentuated in the early stages of neurodegenerative diseases. RECENT ADVANCES The communications between mitochondria and the rest of the cell by energy- and redox-sensitive signaling establish a master regulatory device that controls cellular energy levels and the redox environment. Impairment of this regulatory devise is critical for aging and the early stages of neurodegenerative diseases. CRITICAL ISSUES This review focuses on a coordinated metabolic network-cytosolic signaling, transcriptional regulation, and mitochondrial function-that controls the cellular energy levels and redox status as well as factors which impair this metabolic network during brain aging and neurodegeneration. FUTURE DIRECTIONS Characterization of mitochondrial function and mitochondria-cytosol communications will provide pivotal opportunities for identifying targets and developing new strategies aimed at restoring the mitochondrial energy-redox axis that is compromised in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Fei Yin
- 1 Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California , Los Angeles, California
| | | | | |
Collapse
|
36
|
Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol 2013; 45:2288-301. [PMID: 23845738 PMCID: PMC3759621 DOI: 10.1016/j.biocel.2013.06.024] [Citation(s) in RCA: 412] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022]
Abstract
Sarcopenia, the age-related loss of muscle mass and function, imposes a dramatic burden on individuals and society. The development of preventive and therapeutic strategies against sarcopenia is therefore perceived as an urgent need by health professionals and has instigated intensive research on the pathophysiology of this syndrome. The pathogenesis of sarcopenia is multifaceted and encompasses lifestyle habits, systemic factors (e.g., chronic inflammation and hormonal alterations), local environment perturbations (e.g., vascular dysfunction), and intramuscular specific processes. In this scenario, derangements in skeletal myocyte mitochondrial function are recognized as major factors contributing to the age-dependent muscle degeneration. In this review, we summarize prominent findings and controversial issues on the contribution of specific mitochondrial processes - including oxidative stress, quality control mechanisms and apoptotic signaling - on the development of sarcopenia. Extramuscular alterations accompanying the aging process with a potential impact on myocyte mitochondrial function are also discussed. We conclude with presenting methodological and safety considerations for the design of clinical trials targeting mitochondrial dysfunction to treat sarcopenia. Special emphasis is placed on the importance of monitoring the effects of an intervention on muscle mitochondrial function and identifying the optimal target population for the trial. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome 00168, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett 2013; 343:115-22. [PMID: 24080338 DOI: 10.1016/j.canlet.2013.09.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/13/2013] [Accepted: 09/20/2013] [Indexed: 01/27/2023]
Abstract
We discovered recently that human breast cancer cells subjected to photodynamic therapy (PDT)-like oxidative stress localized in mitochondria rapidly upregulated nitric oxide synthase-2 (NOS2) and nitric oxide (NO), which increased resistance to apoptotic photokilling. In this study, we asked whether human prostate cancer PC-3 cells would exploit NOS2/NO similarly and, if so, how proliferation of surviving cells might be affected. Irradiation of photosensitized PC-3 cells resulted in a rapid (<1 h), robust (~12-fold), and prolonged (∼20 h) post-irradiation upregulation of NOS2. Caspase-3/7 activation and apoptosis were stimulated by NOS2 inhibitors and a NO scavenger, implying that induced NO was acting cytoprotectively. Cyclic GMP involvement was ruled out, whereas suppression of pro-apoptotic JNK and p38 MAPK activation was clearly implicated. Cells surviving photostress grew back ~2-times faster than controls. NOS2 inhibition prevented this and the large increase in cell cycle S-phase occupancy observed after irradiation. Thus, photostress upregulation of NOS/NO elicited both a pro-survival and pro-growth response, both of which could compromise clinical PDT efficacy unless suppressed, e.g. by pharmacological intervention with a NOS2 inhibitor.
Collapse
|
38
|
Physicochemical characterization and an injection formulation study of water insoluble ZCVI4-2, a novel NO-donor anticancer compound. Arch Pharm Res 2012; 35:1177-86. [DOI: 10.1007/s12272-012-0708-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/16/2012] [Accepted: 01/27/2012] [Indexed: 10/28/2022]
|
39
|
Chen HP, He M, Mei ZJ, Huang QR, Huang M. Sasanquasaponin up-regulates anion exchanger 3 expression and elicits cardioprotection via NO/RAS/ERK1/2 pathway. Can J Physiol Pharmacol 2012; 90:873-80. [PMID: 22693949 DOI: 10.1139/y2012-072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown recently that sasanquasaponin (SQS) can inhibit ischemia/reperfusion-induced elevation of intracellular Cl(-) concentration ([Cl(-)](i)) and elicit cardioprotection by up-regulating anion exchanger 3 (AE(3)) expression. In the present study, we futher analysed the intracellular signal transduction pathways by which SQS up-regulates AE(3) expression and elicits cardioprotection. Cardiomyocytes were incubated for 24 h with or without 10 µmol/L SQS, followed by simulated ischemia/reperfusion (sI/R). NO formation, Ras activity, and extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation were measured appropriately. We showed that SQS pretreatment efficiently attenuated viability loss and lactate dehydrogenase leakage induced by sI/R in cardiomyocytes. Moreover, SQS induced NO production and promoted Ras activation, which futher promoted extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation. These effects were paralleled by an increase in AE(3) expression. However, when the cardiomyocytes were treated with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-l-oxyl-3-oxide (c-PTIO; an NO scavenger), S-trans-trans-farnesylthiosalicylic acid (FTS) (a Ras inhibitor), U0126 (an ERK1/2 inhibitor), respectively, the increase in AE(3) expression occurring during SQS pretreatment was almost completely abolished and, as a result, SQS-induced cardioprotection was prevented. Our findings indicate that SQS might up-regulate AE(3) expression through NO/Ras/ERK1/2 signal pathway to elicit cardioprotection in cultured cardiomyocytes.
Collapse
Affiliation(s)
- He-Ping Chen
- Department of Pharmacology & Molecular Therapeutics, School of Pharmaceutical Science, Nanchang University, PR China
| | | | | | | | | |
Collapse
|
40
|
Lv L, Jiang SS, Xu J, Gong JB, Cheng Y. Protective effect of ligustrazine against myocardial ischaemia reperfusion in rats: the role of endothelial nitric oxide synthase. Clin Exp Pharmacol Physiol 2012; 39:20-7. [PMID: 22004361 DOI: 10.1111/j.1440-1681.2011.05628.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. The aim of the present study was to determine whether ligustrazine (2,3,5,6-tetramethylpyrazine; TMP) exerts a cardioprotective effect during myocardial ischaemia reperfusion (IR), and to investigate the underlying mechanisms and the role of endothelial nitric oxide synthase (eNOS) in cardioprotection. 2. Sprague-Dawley rats were divided into a sham group and five IR groups: IR control, TMP pretreated, TMP + wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor), N(G) -nitro-L-arginine methyl ester (L-NAME; a NOS inhibitor) and TMP + L-NAME. IR was produced by 35 min of regional ischaemia followed by 120 min of reperfusion. Myocardial infarct size, oxidative stress, myocardial apoptosis, nitric oxide (NO) production, and expression of phosphorylated protein kinase B (Akt) and eNOS were measured. 3. TMP markedly decreased infarct size and attenuated myocardial apoptosis, as evidenced by a decrease in the apoptotic index and reduced caspase-3 activity. TMP treatment caused a marked increase in NO production. Cotreatment with wortmannin or L-NAME completely blocked the TMP-induced NO increase. TMP induced phosphorylation of Akt at Ser 473 (1.61 ± 0.18 vs 0.79 ± 0.10 in the IR control group) and phosphorylation of eNOS at Ser1177 (1.87 ± 0.33 vs 0.94 ± 0.22 in the IR control group). Wortmannin abrogated the phosphorylation of Akt and eNOS induced by TMP. 4. These data suggest that ligustrazine has anti-apoptotic and cardioprotective effects against myocardial IR injury and that it acts through the PI3K/Akt pathway. In addition, the phosphorylation of eNOS with subsequent NO production was found to be an important downstream effector that contributes significantly to the cardioprotective effect of TMP.
Collapse
Affiliation(s)
- Lei Lv
- Department of Cardiology, School of Medicine, Nanjing University, Jinling Hospital, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
41
|
Srinivasan K, Sharma SS. 3-Bromo-7-nitroindazole attenuates brain ischemic injury in diabetic stroke via inhibition of endoplasmic reticulum stress pathway involving CHOP. Life Sci 2011; 90:154-60. [PMID: 22075494 DOI: 10.1016/j.lfs.2011.10.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/12/2011] [Accepted: 10/24/2011] [Indexed: 12/19/2022]
Abstract
AIMS The role of nitric oxide (NO) and endoplasmic reticulum (ER) stress has been implicated in the pathogenesis of cerebral ischemic/reperfusion (I/R) injury and diabetes. The aim of the study was to investigate the neuroprotective potential of 3-bromo-7-nitroindazole (3-BNI), a potent and selective neuronal nitric oxide synthase (nNOS) inhibitor against ER stress and focal cerebral I/R injury associated with comorbid type 2 diabetes in-vivo. MAIN METHODS Type 2 diabetes was induced by feeding high-fat diet and streptozotocin (35 mg/kg) treatment in rats. Focal cerebral ischemia was induced by 2h middle cerebral artery occlusion (MCAO) followed by 22 h of reperfusion. Immunohistochemistry and western blotting methods were employed for the detection and expression of ER stress/apoptosis markers [78 kDa glucose regulated protein (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP)]. TUNEL assay for DNA fragmentation was also performed. KEY FINDINGS The diabetic rats subjected to cerebral I/R had prominent neurological damage and functional deficits compared with sham-operated rats. Massive DNA fragmentation was observed in ischemic penumbral region of diabetic brains. Concomitantly, the enhanced immunoreactivity and expression of ER stress/apoptosis markers were noticed. 3-BNI (30 mg/kg, i.p.) treatment significantly inhibited the cerebral infarct, edema volume and improved functional recovery of neurological deficits. The neuroprotection was further evident by lesser DNA fragmentation with a concomitant reduction of GRP78 and CHOP. SIGNIFICANCE The study demonstrates the neuroprotective potential of 3-BNI in diabetic stroke model which may be partly due to inhibition of ER stress pathway involving CHOP.
Collapse
Affiliation(s)
- Krishnamoorthy Srinivasan
- Molecular Neuropharmacology Laboratory, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, Punjab-160062, India
| | | |
Collapse
|
42
|
Aguilar-Melero P, Ferrín G, Muntané J. Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics 2011; 75:740-55. [PMID: 21968428 DOI: 10.1016/j.jprot.2011.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/01/2011] [Accepted: 09/17/2011] [Indexed: 12/01/2022]
Abstract
Hepatocarcinoma is the fifth most common neoplasm and the third cause of cancer-related death. The development of genetic- and/or molecular-based therapies is urgently required. The administration of high doses of nitric oxide (NO) promotes cell death in hepatocytes. NO contributes to cell signaling by inducing oxidative/nitrosative-dependent post-translational modifications. The aim of the present study was to investigate protein modifications and its relation with alteration of cell proliferation and death in hepatoma cells. Increased intracellular NO production was achieved by stable nitric oxide synthase-3 (NOS-3) overexpression in HepG2 cells. We assessed the pattern of nitration, nitrosylation and carbonylation of proteins by proteomic analysis. The results showed that NOS-3 cell overexpression increased oxidative stress, which affected proteins mainly involved in cell protein folding. Carbonylation also altered metabolism, as well as immune and antioxidant responses. The interaction of nitrosative and oxidative stress generated tyrosine nitration, which affected the tumor marker Serpin B3, ATP synthesis and cytoskeleton. All these effects were associated with a decrease in chaperone activity, a reduction in cell proliferation and an increased cell death. Our study showed that alteration of nitration, nitrosylation and carbonylation pattern of proteins by NO-dependent oxidative/nitrosative stress was related to a reduction of cell survival in a hepatoma cell line.
Collapse
Affiliation(s)
- P Aguilar-Melero
- Liver Research Unit, IMIBIC (Instituto Maimónides para la Investigación Biomédica de Córdoba), Reina Sofia University Hospital, Córdoba, Spain.
| | | | | |
Collapse
|
43
|
White PJ, Charbonneau A, Cooney GJ, Marette A. Nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. Am J Physiol Endocrinol Metab 2010; 299:E868-78. [PMID: 20876760 DOI: 10.1152/ajpendo.00510.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review is the last of four review articles addressing covalent modifications of proteins and lipids. Two of the reviews in this series were previously published (15, 28) and dealt with modifications of signaling proteins by GlcNAcylation and serine phosphorylation. In the current issue of the Journal, we complete this series with two reviews, one by Riahi et al. (102a) on the signaling and cellular functions of 4-hydroxyalkenals, key products of lipid peroxidation processes, and our present review on the effects of nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. The aim of this Perspectives review is to highlight the significant role that reactive nitrogen species may play in the regulation of cellular metabolism through this important class of posttranslational modification. The potential role of nitrosative modifications in the regulation of insulin signal transduction, mitochondrial energy metabolism, mRNA transcription, stress signaling, and endoplasmic reticulum function will each be discussed. Since nitrosative modifications are not restricted to proteins, the current understanding of a recently described genus of "nitro-fatty acids" will also be addressed.
Collapse
Affiliation(s)
- Phillip J White
- The Quebec Heart and Lung Institute, Hôpital Laval, Quebec, Canada G1V 4G5
| | | | | | | |
Collapse
|
44
|
Shen-Fu injection preconditioning inhibits myocardial ischemia-reperfusion injury in diabetic rats: activation of eNOS via the PI3K/Akt pathway. J Biomed Biotechnol 2010; 2011:384627. [PMID: 21151615 PMCID: PMC2997576 DOI: 10.1155/2011/384627] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/22/2010] [Indexed: 01/04/2023] Open
Abstract
The aim of this paper is to investigate whether Shen-fu injection (SFI), a traditional Chinese medicine, could attenuate myocardial ischemia-reperfusion (MI/R) injury in diabetes. Streptozotocin-induced diabetic rats were randomly assigned to the Sham, I/R, SFI preconditioning, and SFI plus wortmannin (a phosphatidylinositol 3-kinase inhibitor) groups. After the treatment, hearts were subjected to 30 min of coronary artery occlusion and 2 h reperfusion except the Sham group. Myocardial infarct size and cardiomyocytes apoptosis were increased significantly in MI/R group as compared with the Sham group. SFI preconditioning significantly decreased infarct size, apoptosis, caspase-3 protein expression, MDA level in myocardial tissues, and plasma level of CK and LDH but increased p-Akt, p-eNOS, bcl-2 protein expression, and SOD activity compared to I/R group. Moreover, SFI-induced cardioprotection was abolished by wortmannin. We conclude that SFI preconditioning protects diabetic hearts from I/R injury via PI3K/Akt-dependent pathway.
Collapse
|
45
|
Abstract
AIM To examine whether iNOS contributes to endothelial dysfunction in aged rats. METHODS Male Sprague Dawley rats were divided into three groups: young rats, aged rats treated with vehicle and aged rats treated with N-[3-(Aminomethyl) benzyl] acetamidine (1400W, 1 mg/kg, ip). Vasorelaxation was measured in isolated thoracic aorta. iNOS expression of thoracic aortic arteries was detected using immunohistochemistry and Western blot. Nitrotyrosine (a marker for peroxynitrite formation) content and expression in thoracic aortic tissue were determined using enzyme linked immunosorbent assay and immunohistochemistry. RESULTS Maximal relaxation induced by acetylcholine (10⁻⁹ to 10⁻⁵ mol/L) in the aged rats treated with vehicle was significantly decreased (70%±15%, P<0.01), as compared with the young rats (95%±8%). However, the maximal relaxation induced by acidified NaNO2 (an endothelium-independent vasodilator) had no significant difference between the two groups. Moreover, iNOS and nitrotyrosine expression increased in the vessels of the aged rats. In the aged rats treated with 1400W (a highly selective iNOS inhibitor) nitrotyrosine expression was reduced and acetylcholine-induced vasorelaxation was markedly improved (maximal relaxation was increased to 87%±8%, P<0.05), but the acidified NaNO₂-induced vasorelaxation had no significant change. CONCLUSION Our study demonstrated that inhibition of iNOS by 1400W increased endothelium-dependent vasodilation in aged rats. The mechanism was related with attenuation of peroxynitrite formation.
Collapse
|
46
|
Stevens EV, Carpenter AW, Shin JH, Liu J, Der CJ, Schoenfisch MH. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm 2010; 7:775-85. [PMID: 20205473 DOI: 10.1021/mp9002865] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the potent antitumor activity of nitric oxide (NO) supports its promise as an antineoplastic agent, effective and selective delivery and action on tumor and not normal cells remains a limiting factor. Nanoparticle-based delivery of NO has been considered as one approach to overcome these limitations. Therefore, we determined the utility of NO delivery using silica nanoparticles and evaluated their antitumor efficacy against human ovarian tumor and nontumor cells. The NO-releasing nanoparticles exhibited enhanced growth inhibition of ovarian tumor cells when compared to both control nanoparticles and a previously reported small molecule NO donor, PYRRO/NO. In addition, the NO-releasing nanoparticles showed greater inhibition of the anchorage-independent growth of tumor-derived and Ras-transformed ovarian cells. Confocal microscopy analysis revealed that fluorescently labeled NO-releasing nanoparticles entered the cytosol of the cell and localized to late endosomes and lysosomes. Furthermore, we observed a nanoparticle size dependency on efficacy against normal versus transformed ovarian cells. Our study provides the first application of nanoparticle-derived NO as an antitumor therapy and merits future studies examining nanoparticle formulation for in vivo applications.
Collapse
Affiliation(s)
- Ellen V Stevens
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune syndrome marked by autoantibody production. Innate immunity is essential to transform humoral autoimmunity into the clinical lupus phenotype. Nitric oxide (NO) is a membrane- permeable signaling molecule involved in a broad array of biologic processes through its ability to modify proteins, lipids, and DNA and alter their function and immunogenicity. The literature regarding mechanisms through which NO regulates inflammation and cell survival is filled with contradictory findings. However, the effects of NO on cellular processes depend on its concentration and its interaction with reactive oxygen. Understanding this interaction will be essential to determine mechanisms through which reactive intermediates induce cellular autoimmunity and contribute to a sustained innate immune response and organ damage in SLE.
Collapse
Affiliation(s)
- Jim C Oates
- Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA.
| |
Collapse
|
48
|
Han D, Shinohara M, Ybanez MD, Saberi B, Kaplowitz N. Signal transduction pathways involved in drug-induced liver injury. Handb Exp Pharmacol 2010:267-310. [PMID: 20020266 DOI: 10.1007/978-3-642-00663-0_10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocyte death following drug intake is the critical event in the clinical manifestation of drug-induced liver injury (DILI). Traditionally, hepatocyte death caused by drugs had been attributed to overwhelming oxidative stress and mitochondria dysfunction caused by reactive metabolites formed during drug metabolism. However, recent studies have also shown that signal transduction pathways activated/inhibited during oxidative stress play a key role in DILI. In acetaminophen (APAP)-induced liver injury, hepatocyte death requires the sustained activation of c-Jun kinase (JNK), a kinase important in mediating apoptotic and necrotic death. Inhibition of JNK using chemical inhibitors or knocking down JNK can prevent hepatocyte death even in the presence of extensive glutathione (GSH) depletion, covalent binding, and oxidative stress. Once activated, JNK translocates to mitochondria, to induce mitochondria permeability transition and trigger hepatocyte death. Mitochondria are central targets where prodeath kinases such as JNK, prosurvival death proteins such as bcl-xl, and oxidative damage converge to determine hepatocyte survival. The importance of mitochondria in DILI is also observed in the Mn-SOD heterozygous (+/-) model, where mice with less mitochondrial Mn-SOD are sensitized to liver injury caused by certain drugs. An extensive body of research is accumulating suggesting a central role of mitochondria in DILI. Drugs can also cause redox changes that inhibit important prosurvival pathways such as NF-kappaB. The inhibition of NF-kappaB by subtoxic doses of APAP sensitizes hepatocyte to the cytotoxic actions of tumor necrosis factor (TNF). Many drugs will induce liver injury if simultaneously treated with LPS, which promotes inflammation and cytokine release. Drugs may be sensitizing hepatocytes to the cytotoxic effects of cytokines such as TNF, or vice versa. Overall many signaling pathways are important in regulating DILI, and represent potential therapeutic targets to reduce liver injury caused by drugs.
Collapse
Affiliation(s)
- Derick Han
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Ave, HMR 101, Los Angeles, CA 90089-9121, USA.
| | | | | | | | | |
Collapse
|
49
|
Pourova J, Kottova M, Voprsalova M, Pour M. Reactive oxygen and nitrogen species in normal physiological processes. Acta Physiol (Oxf) 2010; 198:15-35. [PMID: 19732041 DOI: 10.1111/j.1748-1716.2009.02039.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract Reactive oxygen species (ROS) and reactive nitrogen species have generally been considered as being highly reactive and cytotoxic molecules. Besides their noxious effects, ROS participate in physiological processes in a carefully regulated manner. By way of example, microbicidal ROS are produced in professional phagocytes, ROS function as short-lived messengers having a role in signal transduction and, among other processes, participate in the synthesis of the iodothyronine hormones, reproduction, apoptosis and necrosis. Because of their ability to mediate a crosstalk between key molecules, their role might be dual (at least in some cases). The levels of ROS increase from a certain age, being associated with various diseases typical of senescence. The aim of this review is to summarize the recent findings on the physiological role of ROS. Other issues addressed are an increase in ROS levels during ageing, and the possibility of the physiological nature of this process.
Collapse
Affiliation(s)
- J Pourova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Yap LP, Garcia JV, Han D, Cadenas E. The energy-redox axis in aging and age-related neurodegeneration. Adv Drug Deliv Rev 2009; 61:1283-98. [PMID: 19716388 PMCID: PMC2784280 DOI: 10.1016/j.addr.2009.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy-redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P)(+)/NAD(P)H) and (b) redox-mediated protein post-translational modifications involved in energy metabolism. The energy-redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Li-Peng Yap
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Jerome V. Garcia
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
- University of LaVerne, Natural Science Division, Department of Biology, 1950 3 Street, LaVerne, CA 91750, USA
| | - Derick Han
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Enrique Cadenas
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| |
Collapse
|