1
|
Breuer R, Gomes-Filho JV, Yuan J, Randau L. Transcriptome profiling of Nudix hydrolase gene deletions in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Front Microbiol 2023; 14:1197877. [PMID: 37396357 PMCID: PMC10311068 DOI: 10.3389/fmicb.2023.1197877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Nudix hydrolases comprise a large and ubiquitous protein superfamily that catalyzes the hydrolysis of a nucleoside diphosphate linked to another moiety X (Nudix). Sulfolobus acidocaldarius possesses four Nudix domain-containing proteins (SACI_RS00730/Saci_0153, SACI_RS02625/Saci_0550, SACI_RS00060/Saci_0013/Saci_NudT5, and SACI_RS00575/Saci_0121). Deletion strains were generated for the four individual Nudix genes and for both Nudix genes annotated to encode ADP-ribose pyrophosphatases (SACI_RS00730, SACI_RS00060) and did not reveal a distinct phenotype compared to the wild-type strain under standard growth conditions, nutrient stress or heat stress conditions. We employed RNA-seq to establish the transcriptome profiles of the Nudix deletion strains, revealing a large number of differentially regulated genes, most notably in the ΔSACI_RS00730/SACI_RS00060 double knock-out strain and the ΔSACI_RS00575 single deletion strain. The absence of Nudix hydrolases is suggested to impact transcription via differentially regulated transcriptional regulators. We observed downregulation of the lysine biosynthesis and the archaellum formation iModulons in stationary phase cells, as well as upregulation of two genes involved in the de novo NAD+ biosynthesis pathway. Furthermore, the deletion strains exhibited upregulation of two thermosome subunits (α, β) and the toxin-antitoxin system VapBC, which are implicated in the archaeal heat shock response. These results uncover a defined set of pathways that involve archaeal Nudix protein activities and assist in their functional characterization.
Collapse
Affiliation(s)
- Ruth Breuer
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | | | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| | - Lennart Randau
- Prokaryotic RNA Biology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
2
|
Sheridan PO, Meng Y, Williams TA, Gubry-Rangin C. Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota. Nat Commun 2022; 13:4110. [PMID: 35840579 PMCID: PMC9287336 DOI: 10.1038/s41467-022-31847-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
The Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) "Lutacidiplasmatales" due to their occurrence in various acidic environments and placement within the phylum Thermoplasmatota. Phylum-level analysis reveals that Thermoplasmatota evolution had been punctuated by several periods of high levels of novel gene family acquisition. Several essential metabolisms, such as aerobic respiration and acid tolerance, were likely acquired independently by divergent lineages through convergent evolution rather than inherited from a common ancestor. Ultimately, this study describes the terrestrially prevalent Lutacidiciplasmatales and highlights convergent evolution as an important driving force in the evolution of archaeal lineages.
Collapse
Affiliation(s)
- Paul O Sheridan
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Yiyu Meng
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
3
|
The Redox Active [2Fe-2S] Clusters: Key-Components of a Plethora of Enzymatic Reactions—Part I: Archaea. INORGANICS 2022. [DOI: 10.3390/inorganics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The earliest forms of life (i.e., Archaea, Bacteria, and Eukarya) appeared on our planet about ten billion years after its formation. Although Archaea do not seem to possess the multiprotein machinery constituted by the NIF (Nitrogen Fixation), ISC (Iron Sulfur Cluster), SUF (sulfur mobilization) enzymes, typical of Bacteria and Eukarya, some of them are able to encode Fe-S proteins. Here we discussed the multiple enzymatic reactions triggered by the up-to-date structurally characterized members of the archaeal family that require the crucial presence of structurally characterized [2Fe-2S] assemblies, focusing on their biological functions and, when available, on their electrochemical behavior.
Collapse
|
4
|
Chauhan SM, Poudel S, Rychel K, Lamoureux C, Yoo R, Al Bulushi T, Yuan Y, Palsson BO, Sastry AV. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius. Front Microbiol 2021; 12:753521. [PMID: 34777307 PMCID: PMC8578740 DOI: 10.3389/fmicb.2021.753521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile's responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea.
Collapse
Affiliation(s)
- Siddharth M. Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Reo Yoo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Tahani Al Bulushi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Yuan Yuan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
5
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
6
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Wolf J, Koblitz J, Albersmeier A, Kalinowski J, Siebers B, Schomburg D, Neumann-Schaal M. Utilization of Phenol as Carbon Source by the Thermoacidophilic Archaeon Saccharolobus solfataricus P2 Is Limited by Oxygen Supply and the Cellular Stress Response. Front Microbiol 2021; 11:587032. [PMID: 33488537 PMCID: PMC7820114 DOI: 10.3389/fmicb.2020.587032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Present in many industrial effluents and as common degradation product of organic matter, phenol is a widespread compound which may cause serious environmental problems, due to its toxicity to animals and humans. Degradation of phenol from the environment by mesophilic bacteria has been studied extensively over the past decades, but only little is known about phenol biodegradation at high temperatures or low pH. In this work we studied phenol degradation in the thermoacidophilic archaeon Saccharolobus solfataricus P2 (basonym: Sulfolobus solfataricus) under extreme conditions (80°C, pH 3.5). We combined metabolomics and transcriptomics together with metabolic modeling to elucidate the organism’s response to growth with phenol as sole carbon source. Although S. solfataricus is able to utilize phenol for biomass production, the carbon source induces profound stress reactions, including genome rearrangement as well as a strong intracellular accumulation of polyamines. Furthermore, computational modeling revealed a 40% higher oxygen demand for substrate oxidation, compared to growth on glucose. However, only 16.5% of oxygen is used for oxidation of phenol to catechol, resulting in a less efficient integration of carbon into the biomass. Finally, our data underlines the importance of the phenol meta-degradation pathway in S. solfataricus and enables us to predict enzyme candidates involved in the degradation processes downstream of 2-hydroxymucconic acid.
Collapse
Affiliation(s)
- Jacqueline Wolf
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Julia Koblitz
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology-CeBiTec, Universität Bielefeld, Bielefeld, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany.,Junior Research Group Bacterial Metabolomics, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
8
|
Extremely Thermoacidophilic Metallosphaera Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides. Appl Environ Microbiol 2019; 85:AEM.02805-18. [PMID: 30578261 DOI: 10.1128/aem.02805-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/04/2018] [Indexed: 11/20/2022] Open
Abstract
Certain species from the extremely thermoacidophilic genus Metallosphaera directly oxidize Fe(II) to Fe(III), which in turn catalyzes abiotic solubilization of copper from chalcopyrite to facilitate recovery of this valuable metal. In this process, the redox status of copper does not change as it is mobilized. Metallosphaera species can also catalyze the release of metals from ores with a change in the metal's redox state. For example, Metallosphae ra sedula catalyzes the mobilization of uranium from the solid oxide U3O8, concomitant with the generation of soluble U(VI). Here, the mobilization of metals from solid oxides (V2O3, Cu2O, FeO, MnO, CoO, SnO, MoO2, Cr2O3, Ti2O3, and Rh2O3) was examined for M. sedula and M. prunae at 70°C and pH 2.0. Of these oxides, only V and Mo were solubilized, a process accelerated in the presence of FeCl3 However, it was not clear whether the solubilization and oxidation of these metals could be attributed entirely to an Fe-mediated indirect mechanism. Transcriptomic analysis for growth on molybdenum and vanadium oxides revealed transcriptional patterns not previously observed for growth on other energetic substrates (i.e., iron, chalcopyrite, organic compounds, reduced sulfur compounds, and molecular hydrogen). Of particular interest was the upregulation of Msed_1191, which encodes a Rieske cytochrome b 6 fusion protein (Rcbf, referred to here as V/MoxA) that was not transcriptomically responsive during iron biooxidation. These results suggest that direct oxidation of V and Mo occurs, in addition to Fe-mediated oxidation, such that both direct and indirect mechanisms are involved in the mobilization of redox-active metals by Metallosphaera species.IMPORTANCE In order to effectively leverage extremely thermoacidophilic archaea for the microbially based solubilization of solid-phase metal substrates (e.g., sulfides and oxides), understanding the mechanisms by which these archaea solubilize metals is important. Physiological analysis of Metallosphaera species growth in the presence of molybdenum and vanadium oxides revealed an indirect mode of metal mobilization, catalyzed by iron cycling. However, since the mobilized metals exist in more than one oxidation state, they could potentially serve directly as energetic substrates. Transcriptomic response to molybdenum and vanadium oxides provided evidence for new biomolecules participating in direct metal biooxidation. The findings expand the knowledge on the physiological versatility of these extremely thermoacidophilic archaea.
Collapse
|
9
|
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV. Early Response of Sulfolobus acidocaldarius to Nutrient Limitation. Front Microbiol 2019; 9:3201. [PMID: 30687244 PMCID: PMC6335949 DOI: 10.3389/fmicb.2018.03201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
In natural environments microorganisms encounter extreme changes in temperature, pH, osmolarities and nutrient availability. The stress response of many bacterial species has been described in detail, however, knowledge in Archaea is limited. Here, we describe the cellular response triggered by nutrient limitation in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. We measured changes in gene transcription and protein abundance upon nutrient depletion up to 4 h after initiation of nutrient depletion. Transcript levels of 1118 of 2223 protein coding genes and abundance of approximately 500 proteins with functions in almost all cellular processes were affected by nutrient depletion. Our study reveals a significant rerouting of the metabolism with respect to degradation of internal as well as extracellular-bound organic carbon and degradation of proteins. Moreover, changes in membrane lipid composition were observed in order to access alternative sources of energy and to maintain pH homeostasis. At transcript level, the cellular response to nutrient depletion in S. acidocaldarius seems to be controlled by the general transcription factors TFB2 and TFEβ. In addition, ribosome biogenesis is reduced, while an increased protein degradation is accompanied with a loss of protein quality control. This study provides first insights into the early cellular response of Sulfolobus to organic carbon and organic nitrogen depletion.
Collapse
Affiliation(s)
- Lisa F Bischof
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Florencia Haurat
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jacqueline Wolf
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Astrid Neu
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Trong Khoa Pham
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Jakobi
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, Den Burg, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Phillip C Wright
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Refojo PN, Sena FV, Calisto F, Sousa FM, Pereira MM. The plethora of membrane respiratory chains in the phyla of life. Adv Microb Physiol 2019; 74:331-414. [PMID: 31126533 DOI: 10.1016/bs.ampbs.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The diversity of microbial cells is reflected in differences in cell size and shape, motility, mechanisms of cell division, pathogenicity or adaptation to different environmental niches. All these variations are achieved by the distinct metabolic strategies adopted by the organisms. The respiratory chains are integral parts of those strategies especially because they perform the most or, at least, most efficient energy conservation in the cell. Respiratory chains are composed of several membrane proteins, which perform a stepwise oxidation of metabolites toward the reduction of terminal electron acceptors. Many of these membrane proteins use the energy released from the oxidoreduction reaction they catalyze to translocate charges across the membrane and thus contribute to the establishment of the membrane potential, i.e. they conserve energy. In this work we illustrate and discuss the composition of the respiratory chains of different taxonomic clades, based on bioinformatic analyses and on biochemical data available in the literature. We explore the diversity of the respiratory chains of Animals, Plants, Fungi and Protists kingdoms as well as of Prokaryotes, including Bacteria and Archaea. The prokaryotic phyla studied in this work are Gammaproteobacteria, Betaproteobacteria, Epsilonproteobacteria, Deltaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Chlamydiae, Verrucomicrobia, Acidobacteria, Planctomycetes, Cyanobacteria, Bacteroidetes, Chloroflexi, Deinococcus-Thermus, Aquificae, Thermotogae, Deferribacteres, Nitrospirae, Euryarchaeota, Crenarchaeota and Thaumarchaeota.
Collapse
Affiliation(s)
- Patrícia N Refojo
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipa Calisto
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157, Oeiras, Portugal; University of Lisboa, Faculty of Sciences, BIOISI- Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| |
Collapse
|
11
|
Park J, Lee A, Lee HH, Park I, Seo YS, Cha J. Profiling of glucose-induced transcription in Sulfolobus acidocaldarius DSM 639. Genes Genomics 2018; 40:1157-1167. [PMID: 30315522 DOI: 10.1007/s13258-018-0675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
Sulfolobus species can grow on a variety of organic compounds as carbon and energy sources. These species degrade glucose to pyruvate by the modified branched Entner-Doudoroff pathway. We attempted to determine the differentially expressed genes (DEGs) under sugar-limited and sugar-rich conditions. RNA sequencing (RNA-seq) was used to quantify the expression of the genes and identify those DEGs between the S. acidocaldarius cells grown under sugar-rich (YT with glucose) and sugar-limited (YT only) conditions. The functions and pathways of the DEGs were examined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time PCR (qRT-PCR) was performed to validate the DEGs. Transcriptome analysis of the DSM 639 strain grown on sugar-limited and sugar-rich media revealed that 853 genes were differentially expressed, among which 481 were upregulated and 372 were downregulated under the glucose-supplemented condition. In particular, 70 genes showed significant changes in expression levels of ≥ twofold. GO and KEGG enrichment analyses revealed that the genes encoding components of central carbon metabolism, the respiratory chain, and protein and amino acid biosynthetic machinery were upregulated under the glucose condition. RNA-seq and qRT-PCR analyses indicated that the sulfur assimilation genes (Saci_2197-2204) including phosphoadenosine phosphosulfate reductase and sulfite reductase were significantly upregulated in the presence of glucose. The present study revealed metabolic networks in S. acidocaldarius that are induced in a glucose-dependent manner, improving our understanding of biomass production under sugar-rich conditions.
Collapse
Affiliation(s)
- Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Areum Lee
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Inmyoung Park
- Department of Oriental Culinary, Youngsan University, Busan, 48015, Republic of Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| | - Jaeho Cha
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Ranawat P, Rawat S. Metal-tolerant thermophiles: metals as electron donors and acceptors, toxicity, tolerance and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4105-4133. [PMID: 29238927 DOI: 10.1007/s11356-017-0869-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Metal-tolerant thermophiles are inhabitants of a wide range of extreme habitats like solfatara fields, hot springs, mud holes, hydrothermal vents oozing out from metal-rich ores, hypersaline pools and soil crusts enriched with metals and other elements. The ability to withstand adverse environmental conditions, like high temperature, high metal concentration and sometimes high pH in their niche, makes them an interesting subject for understanding mechanisms behind their ability to deal with multiple duress simultaneously. Metals are essential for biological systems, as they participate in biochemistries that cannot be achieved only by organic molecules. However, the excess concentration of metals can disrupt natural biogeochemical processes and can impose toxicity. Thermophiles counteract metal toxicity via their unique cell wall, metabolic factors and enzymes that carry out metal-based redox transformations, metal sequestration by metallothioneins and metallochaperones as well as metal efflux. Thermophilic metal resistance is heterogeneous at both genetic and physiology levels and may be chromosomally, plasmid or transposon encoded with one or more genes being involved. These effective response mechanisms either individually or synergistically make proliferation of thermophiles in metal-rich habitats possibly. This article presents the state of the art and future perspectives of responses of thermophiles to metals at genetic as well as physiological levels.
Collapse
Affiliation(s)
- Preeti Ranawat
- Department of Botany and Microbiology, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal), Uttarakhand, India
| | - Seema Rawat
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
13
|
Urbieta MS, Rascovan N, Vázquez MP, Donati E. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities. BMC Genomics 2017; 18:445. [PMID: 28587624 PMCID: PMC5461723 DOI: 10.1186/s12864-017-3828-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/30/2017] [Indexed: 11/21/2022] Open
Abstract
Background Several archaeal species from the order Sulfolobales are interesting from the biotechnological point of view due to their biomining capacities. Within this group, the genus Acidianus contains four biomining species (from ten known Acidianus species), but none of these have their genome sequenced. To get insights into the genetic potential and metabolic pathways involved in the biomining activity of this group, we sequenced the genome of Acidianus copahuensis ALE1 strain, a novel thermoacidophilic crenarchaeon (optimum growth: 75 °C, pH 3) isolated from the volcanic geothermal area of Copahue at Neuquén province in Argentina. Previous experimental characterization of A. copahuensis revealed a high biomining potential, exhibited as high oxidation activity of sulfur and sulfur compounds, ferrous iron and sulfide minerals (e.g.: pyrite). This strain is also autotrophic and tolerant to heavy metals, thus, it can grow under adverse conditions for most forms of life with a low nutrient demand, conditions that are commonly found in mining environments. Results In this work we analyzed the genome of Acidianus copahuensis and describe the genetic pathways involved in biomining processes. We identified the enzymes that are most likely involved in growth on sulfur and ferrous iron oxidation as well as those involved in autotrophic carbon fixation. We also found that A. copahuensis genome gathers different features that are only present in particular lineages or species from the order Sulfolobales, some of which are involved in biomining. We found that although most of its genes (81%) were found in at least one other Sulfolobales species, it is not specifically closer to any particular species (60–70% of proteins shared with each of them). Although almost one fifth of A. copahuensis proteins are not found in any other Sulfolobales species, most of them corresponded to hypothetical proteins from uncharacterized metabolisms. Conclusion In this work we identified the genes responsible for the biomining metabolisms that we have previously observed experimentally. We provide a landscape of the metabolic potentials of this strain in the context of Sulfolobales and propose various pathways and cellular processes not yet fully understood that can use A. copahuensis as an experimental model to further understand the fascinating biology of thermoacidophilic biomining archaea. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3828-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- María Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina. .,, Calle 50, entre 115 y 116, N° 227, La Plata, Buenos Aires, Argentina.
| | - Nicolás Rascovan
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Martín P Vázquez
- Instituto de Agrobiotecnología de Rosario (INDEAR), CONICET, Predio CCT, Rosario, Argentina
| | - Edgardo Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900, La Plata, Argentina
| |
Collapse
|
14
|
Buetti-Dinh A, Dethlefsen O, Friedman R, Dopson M. Transcriptomic analysis reveals how a lack of potassium ions increases Sulfolobus acidocaldarius sensitivity to pH changes. MICROBIOLOGY-SGM 2016; 162:1422-1434. [PMID: 27230583 DOI: 10.1099/mic.0.000314] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extremely acidophilic microorganisms (optimum growth pH of ≤3) maintain a near neutral cytoplasmic pH via several homeostatic mechanisms, including an inside positive membrane potential created by potassium ions. Transcriptomic responses to pH stress in the thermoacidophilic archaeon, Sulfolobus acidocaldarius were investigated by growing cells without added sodium and/or potassium ions at both optimal and sub-optimal pH. Culturing the cells in the absence of added sodium or potassium ions resulted in a reduced growth rate compared to full-salt conditions as well as 43 and 75 significantly different RNA transcript ratios, respectively. Differentially expressed RNA transcripts during growth in the absence of added sodium ions included genes coding for permeases, a sodium/proline transporter and electron transport proteins. In contrast, culturing without added potassium ions resulted in higher RNA transcripts for similar genes as a lack of sodium ions plus genes related to spermidine that has a general role in response to stress and a decarboxylase that potentially consumes protons. The greatest RNA transcript response occurred when S. acidocaldarius cells were grown in the absence of potassium and/or sodium at a sub-optimal pH. These adaptations included those listed above plus osmoregulated glucans and mechanosensitive channels that have previously been shown to respond to osmotic stress. In addition, data analyses revealed two co-expressed IclR family transcriptional regulator genes with a previously unknown role in the S. acidocaldarius pH stress response. Our study provides additional evidence towards the importance of potassium in acidophile growth at acidic pH.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden.,Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Ran Friedman
- Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
15
|
Melo AMP, Teixeira M. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:190-7. [PMID: 26546715 DOI: 10.1016/j.bbabio.2015.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
16
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Castelle CJ, Roger M, Bauzan M, Brugna M, Lignon S, Nimtz M, Golyshina OV, Giudici-Orticoni MT, Guiral M. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:717-28. [PMID: 25896560 DOI: 10.1016/j.bbabio.2015.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 10/23/2022]
Abstract
The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma.
Collapse
Affiliation(s)
- Cindy J Castelle
- CNRS, Aix Marseille Université, BIP UMR 7281, FR 3479, 13402 Marseille, France
| | - Magali Roger
- CNRS, Aix Marseille Université, BIP UMR 7281, FR 3479, 13402 Marseille, France
| | - Marielle Bauzan
- CNRS, Aix Marseille Université, Unité de Fermentation, FR 3479, 13402 Marseille, France
| | - Myriam Brugna
- CNRS, Aix Marseille Université, BIP UMR 7281, FR 3479, 13402 Marseille, France
| | - Sabrina Lignon
- CNRS, Aix Marseille Université, Plate-forme Protéomique MaP IBiSA, FR 3479, 13402 Marseille, France
| | - Manfred Nimtz
- Helmholtz Centre for Infection Research, 7 Inhoffen Strasse, 38124 Braunschweig, Germany
| | - Olga V Golyshina
- Helmholtz Centre for Infection Research, 7 Inhoffen Strasse, 38124 Braunschweig, Germany; School of Biological Sciences, Deiniol Road, LL57 2UW, Bangor, UK
| | | | - Marianne Guiral
- CNRS, Aix Marseille Université, BIP UMR 7281, FR 3479, 13402 Marseille, France.
| |
Collapse
|
18
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
19
|
General Characteristics and Important Model Organisms. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014. [DOI: 10.1128/9781555815516.ch2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Brink FT, Baymann F. Rieske/Cytochrome b Complexes: The Turbo Chargers of Chemiosmosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-94-017-8742-0_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
21
|
Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction: impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Mol Cell Proteomics 2013; 12:3908-23. [PMID: 24078887 PMCID: PMC3861733 DOI: 10.1074/mcp.m113.027375] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, the in vitro and in vivo functions of the only two identified protein phosphatases, Saci-PTP and Saci-PP2A, in the crenarchaeal model organism Sulfolobus acidocaldarius were investigated. Biochemical characterization revealed that Saci-PTP is a dual-specific phosphatase (against pSer/pThr and pTyr), whereas Saci-PP2A exhibited specific pSer/pThr activity and inhibition by okadaic acid. Deletion of saci_pp2a resulted in pronounced alterations in growth, cell shape and cell size, which could be partially complemented. Transcriptome analysis of the three strains (Δsaci_ptp, Δsaci_pp2a and the MW001 parental strain) revealed 155 genes that were differentially expressed in the deletion mutants, and showed significant changes in expression of genes encoding the archaella (archaeal motility structure), components of the respiratory chain and transcriptional regulators. Phosphoproteome studies revealed 801 unique phosphoproteins in total, with an increase in identified phosphopeptides in the deletion mutants. Proteins from most functional categories were affected by phosphorylation, including components of the motility system, the respiratory chain, and regulatory proteins. In the saci_pp2a deletion mutant the up-regulation at the transcript level, as well as the observed phosphorylation pattern, resembled starvation stress responses. Hypermotility was also observed in the saci_pp2a deletion mutant. The results highlight the importance of protein phosphorylation in regulating essential cellular processes in the crenarchaeon S. acidocaldarius.
Collapse
Affiliation(s)
- Julia Reimann
- Molecular Biology of Archaea, Max Planck Institute for terrestrial Microbiology, Karl-von-Frisch Straβe 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 2013; 14:485. [PMID: 23865623 PMCID: PMC3750248 DOI: 10.1186/1471-2164-14-485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.
Collapse
Affiliation(s)
- Alexis P Yelton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F. Multiple Rieske/cytb complexes in a single organism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1392-406. [PMID: 23507620 DOI: 10.1016/j.bbabio.2013.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 03/01/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Abstract
Most organisms contain a single Rieske/cytb complex. This enzyme can be integrated in any respiratory or photosynthetic electron transfer chain that is quinone-based and sufficiently energy rich to allow for the turnover of three enzymes - a quinol reductase, a Rieske/cytb complex and a terminal oxidase. Despite this universal usability of the enzyme a variety of phylogenetically distant organisms have multiple copies thereof and no reason for this redundancy is obvious. In this review we present an overview of the distribution of multiple copies among species and describe their properties from the scarce experimental results, analysis of their amino acid sequences and genomic context. We discuss the predicted redox properties of the Rieske cluster in relation to the nature of the pool quinone. It appears that acidophilic iron-oxidizing bacteria specialized one of their two copies for reverse electron transfer, archaeal Thermoprotei adapted their three copies to the interaction with different oxidases and several, phylogenetically unrelated species imported a second complex with a putative heme ci that may confer some yet to be determined properties to the complex. These hypothesis and all the more the so far completely unexplained cases call for further studies and we put forward a number of suggestions for future research that we hope to be stimulating for the field. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- F ten Brink
- BIP/UMR7281, FR3479, CNRS/AMU, 13 chemin Joseph Aiguier, 13009 Marseille, France
| | | | | | | | | |
Collapse
|
24
|
Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Baymann F, Schoepp-Cothenet B, Lebrun E, van Lis R, Nitschke W. Phylogeny of Rieske/cytb complexes with a special focus on the Haloarchaeal enzymes. Genome Biol Evol 2012; 4:720-9. [PMID: 22798450 PMCID: PMC3509893 DOI: 10.1093/gbe/evs056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Rieske/cytochrome b (Rieske/cytb) complexes are proton pumping quinol oxidases that are present in most bacteria and Archaea. The phylogeny of their subunits follows closely the 16S-rRNA phylogeny, indicating that chemiosmotic coupling was already present in the last universal common ancestor of Archaea and bacteria. Haloarchaea are the only organisms found so far that acquired Rieske/cytb complexes via interdomain lateral gene transfer. They encode two Rieske/cytb complexes in their genomes; one of them is found in genetic context with nitrate reductase genes and has its closest relatives among Actinobacteria and the Thermus/Deinococcus group. It is likely to function in nitrate respiration. The second Rieske/cytb complex of Haloarchaea features a split cytochrome b sequence as do Cyanobacteria, chloroplasts, Heliobacteria, and Bacilli. It seems that Haloarchaea acquired this complex from an ancestor of the above-mentioned phyla. Its involvement in the bioenergetic reaction chains of Haloarchaea is unknown. We present arguments in favor of the hypothesis that the ancestor of Haloarchaea, which relied on a highly specialized bioenergetic metabolism, that is, methanogenesis, and was devoid of quinones and most enzymes of anaerobic or aerobic bioenergetic reaction chains, integrated laterally transferred genes into its genome to respond to a change in environmental conditions that made methanogenesis unfavorable.
Collapse
|
26
|
Völlmecke C, Drees SL, Reimann J, Albers SV, Lübben M. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus. MICROBIOLOGY-SGM 2012; 158:1622-1633. [PMID: 22361944 DOI: 10.1099/mic.0.055905-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Certain heavy metal ions such as copper and zinc serve as essential cofactors of many enzymes, but are toxic at high concentrations. Thus, intracellular levels have to be subtly balanced. P-type ATPases of the P(IB)-subclass play a major role in metal homeostasis. The thermoacidophile Sulfolobus solfataricus possesses two P(IB)-ATPases named CopA and CopB. Both enzymes are present in cells grown in copper-depleted medium and are accumulated upon an increase in the external copper concentration. We studied the physiological roles of both ATPases by disrupting genes copA and copB. Neither of them affected the sensitivity of S. solfataricus to reactive oxygen species, nor were they a strict prerequisite to the biosynthesis of the copper protein cytochrome oxidase. Deletion mutant analysis demonstrated that CopA is an effective copper pump at low and high copper concentrations. CopB appeared to be a low-affinity copper export ATPase, which was only relevant if the media copper concentration was exceedingly high. CopA and CopB thus act as resistance factors to copper ions at overlapping concentrations. Moreover, growth tests on solid media indicated that both ATPases are involved in resistance to silver.
Collapse
Affiliation(s)
- Christian Völlmecke
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Steffen L Drees
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Julia Reimann
- Molecular Biology of Archaea, MPI für Terrestrische Mikrobiologie, Marburg, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, MPI für Terrestrische Mikrobiologie, Marburg, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Mathias Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|
27
|
Wilson TD, Savelieff MG, Nilges MJ, Marshall NM, Lu Y. Kinetics of Copper Incorporation into a Biosynthetic Purple CuA Azurin: Characterization of Red, Blue, and a New Intermediate Species. J Am Chem Soc 2011; 133:20778-92. [DOI: 10.1021/ja205281t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tiffany D. Wilson
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Masha G. Savelieff
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Mark J. Nilges
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas M. Marshall
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Koerdt A, Orell A, Pham TK, Mukherjee J, Wlodkowski A, Karunakaran E, Biggs CA, Wright PC, Albers SV. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 2011; 10:4105-19. [PMID: 21761944 PMCID: PMC3166137 DOI: 10.1021/pr2003006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. S. acidocaldarius, S. solfataricus, and S. tokodaii strains were grown independently as biofilms. Comparison between planktonic and biofilm cell popupations of all three strains was performed by spectroscopic analysis (FTIR and XPS), iTRAQ proteomics, and RNA microarrays. To highlight common features in biofilm formation among the Sulfolobus strains, the data is presented as a comparative analysis. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, suggesting their roles as key regulatory factor in biofilm development.
Collapse
Affiliation(s)
- Andrea Koerdt
- Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kabashima Y, Sakamoto J. Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix. BMC Microbiol 2011; 11:52. [PMID: 21396131 PMCID: PMC3062577 DOI: 10.1186/1471-2180-11-52] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The bioenergetics of Archaea with respect to the evolution of electron transfer systems is very interesting. In contrast to terminal oxidases, a canonical bc1 complex has not yet been isolated from Archaea. In particular, c-type cytochromes have been reported only for a limited number of species. Results Here, we isolated a c-type cytochrome-containing enzyme complex from the membranes of the hyperthermophilic archaeon, Aeropyrum pernix, grown aerobically. The redox spectrum of the isolated c-type cytochrome showed a characteristic α-band peak at 553 nm corresponding to heme C. The pyridine hemochrome spectrum also revealed the presence of heme B. In non-denaturing polyacrylamide gel electrophoresis, the cytochrome migrated as a single band with an apparent molecular mass of 80 kDa, and successive SDS-PAGE separated the 80-kDa band into 3 polypeptides with apparent molecular masses of 40, 30, and 25 kDa. The results of mass spectrometry indicated that the 25-kDa band corresponded to the hypothetical cytochrome c subunit encoded by the ORF APE_1719.1. In addition, the c-type cytochrome-containing polypeptide complex exhibited menaquinone: yeast cytochrome c oxidoreductase activities. Conclusion In conclusion, we showed that A. pernix, a hyperthemophilic archaeon, has a "full" bc complex that includes a c-type cytochrome, and to the best of our knowledge, A. pernix is the first archaea from which such a bc complex has been identified. However, an electron donor candidates for cytochrome c oxidase, such as a blue copper protein, have not yet been identified in the whole genome data of this archaeon. We are currently trying to identify an authentic substrate between a bc complex and terminal oxidase.
Collapse
Affiliation(s)
- Yoshiki Kabashima
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka-ken 820-8502, Japan
| | | |
Collapse
|
30
|
Terminal oxidase diversity and function in "Metallosphaera yellowstonensis": gene expression and protein modeling suggest mechanisms of Fe(II) oxidation in the sulfolobales. Appl Environ Microbiol 2011; 77:1844-53. [PMID: 21239558 DOI: 10.1128/aem.01646-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Metallosphaera yellowstonensis" is a thermoacidophilic archaeon isolated from Yellowstone National Park that is capable of autotrophic growth using Fe(II), elemental S, or pyrite as electron donors. Analysis of the draft genome sequence from M. yellowstonensis strain MK1 revealed seven different copies of heme copper oxidases (subunit I) in a total of five different terminal oxidase complexes, including doxBCEF, foxABCDEFGHIJ, soxABC, and the soxM supercomplex, as well as a novel hypothetical two-protein doxB-like polyferredoxin complex. Other genes found in M. yellowstonensis with possible roles in S and or Fe cycling include a thiosulfate oxidase (tqoAB), a sulfite oxidase (som), a cbsA cytochrome b(558/566), several small blue copper proteins, and a novel gene sequence coding for a putative multicopper oxidase (Mco). Results from gene expression studies, including reverse transcriptase (RT) quantitative PCR (qPCR) of cultures grown autotrophically on either Fe(II), pyrite, or elemental S showed that the fox gene cluster and mco are highly expressed under conditions where Fe(II) is an electron donor. Metagenome sequence and gene expression studies of Fe-oxide mats confirmed the importance of fox genes (e.g., foxA and foxC) and mco under Fe(II)-oxidizing conditions. Protein modeling of FoxC suggests a novel lysine-lysine or lysine-arginine heme B binding domain, indicating that it is likely the cytochrome component of a heterodimer complex with foxG as a ferredoxin subunit. Analysis of mco shows that it encodes a novel multicopper blue protein with two plastocyanin type I copper domains that may play a role in the transfer of electrons within the Fox protein complex. An understanding of metabolic pathways involved in aerobic iron and sulfur oxidation in Sulfolobales has broad implications for understanding the evolution and niche diversification of these thermophiles as well as practical applications in fields such as bioleaching of trace metals from pyritic ores.
Collapse
|
31
|
Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings RD, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 2010; 5:e9773. [PMID: 20333304 PMCID: PMC2841643 DOI: 10.1371/journal.pone.0009773] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 02/25/2010] [Indexed: 01/07/2023] Open
Abstract
The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.
Collapse
Affiliation(s)
- William P. Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (DBR)
| | - Douglas B. Rusch
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (WPI); (DBR)
| | - Zackary J. Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Mark A. Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Richard E. Macur
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Ryan deM. Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Bruce W. Fouke
- University of Illinois, Urbana, Illinois, United States of America
| | | | - Frank Roberto
- Idaho National Laboratory, Idaho Falls, Idaho, United States of America
| | - Mark Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Ariel Schwartz
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Eric S. Boyd
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eric J. Mathur
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Alice C. Ortmann
- Department of Marine Science, University of South Alabama, Mobile, Alabama, United States of America
| | - Mary Bateson
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Gill Geesey
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Marvin Frazier
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
32
|
Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes. Appl Environ Microbiol 2008; 74:7723-32. [PMID: 18931292 DOI: 10.1128/aem.01545-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The crenarchaeal order Sulfolobales collectively contain at least five major terminal oxidase complexes. Based on genome sequence information, all five complexes are found only in Metallosphaera sedula and Sulfolobus tokodaii, the two sequenced Sulfolobales capable of iron oxidization. While specific respiratory complexes in certain Sulfolobales have been characterized previously as proton pumps for maintaining intracellular pH and generating proton motive force, their contribution to sulfur and iron biooxidation has not been considered. For M. sedula growing in the presence of ferrous iron and reduced inorganic sulfur compounds (RISCs), global transcriptional analysis was used to track the response of specific genes associated with these complexes, as well as other known and putative respiratory electron transport chain elements. Open reading frames from all five terminal oxidase or bc(1)-like complexes were stimulated on one or more conditions tested. Components of the fox (Msed0467 to Msed0489) and soxNL-cbsABA (Msed0500 to Msed0505) terminal/quinol oxidase clusters were triggered by ferrous iron, while the soxABCDD' terminal oxidase cluster (Msed0285 to Msed0291) were induced by tetrathionate and S(0). Chemolithotrophic electron transport elements, including a putative tetrathionate hydrolase (Msed0804), a novel polysulfide/sulfur/dimethyl sulfoxide reductase-like complex (Msed0812 to Msed0818), and a novel heterodisulfide reductase-like complex (Msed1542 to Msed1550), were also stimulated by RISCs. Furthermore, several hypothetical proteins were found to have strong responses to ferrous iron or RISCs, suggesting additional candidates in iron or sulfur oxidation-related pathways. From this analysis, a comprehensive model for electron transport in M. sedula could be proposed as the basis for examining specific details of iron and sulfur oxidation in this bioleaching archaeon.
Collapse
|
33
|
Pereira MM, Sousa FL, Veríssimo AF, Teixeira M. Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:929-34. [PMID: 18515066 DOI: 10.1016/j.bbabio.2008.05.441] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/15/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Haem-copper oxygen reductases are transmembrane protein complexes that reduce dioxygen to water and pump protons across the mitochondrial or periplasmatic membrane, contributing to the transmembrane difference of electrochemical potential. Seven years ago we proposed a classification of these enzymes into three different families (A, B and C), based on the amino acid residues of their proton channels and amino acid sequence comparison, later supported by the so far identified characteristics of the catalytic centre of members from each family. The three families have in common the same general structural fold of the catalytic subunit, which contains the same or analogous prosthetic groups, and proton channels. These observations raise the hypothesis that the mechanisms for dioxygen reduction, proton pumping and the coupling of the two processes may be the same for all these enzymes. Under this hypothesis, they should be performed and controlled by the same or equivalent elements/events, and the identification of retained elements in all families will reveal their importance and may prompt the definition of the enzyme operating mode. Thus, we believe that the search for a minimum common denominator has a crucial importance, and in this article we highlight what is already established for the haem-copper oxygen reductases and emphasize the main questions still unanswered in a comprehensive basis.
Collapse
Affiliation(s)
- Manuela M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República - EAN, 2780-157 Oeiras, Portugal.
| | | | | | | |
Collapse
|
34
|
Hemp J, Gennis RB. Diversity of the heme-copper superfamily in archaea: insights from genomics and structural modeling. Results Probl Cell Differ 2008; 45:1-31. [PMID: 18183358 DOI: 10.1007/400_2007_046] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Recent advances in DNA sequencing technologies have provided unprecedented access into the diversity of the microbial world. Herein we use the comparative genomic analysis of microbial genomes and environmental metagenomes coupled with structural modelling to explore the diversity of aerobic respiration in Archaea. We focus on the heme-copper oxidoreductase superfamily which is responsible for catalyzing the terminal reaction in aerobic respiration-the reduction of molecular oxygen to water. Sequence analyses demonstrate that there are at least eight heme-copper oxygen reductase families: A-, B-, C-, D-, E-, F-, G-, and H-families. Interestingly, five of these oxygen reductase families (D-, E-, F-, G-, and H-families) are currently found exclusively in Archaea. We review the structural properties of all eight families focusing on the members found within Archaea. Structural modelling coupled with sequence analysis suggests that many of the oxygen reductases identified from thermophilic Archaea have modified proton channel properties compared to the currently studied mesophilic bacterial oxygen reductases. These structural differences may be due to adaptation to the specific environments in which these enzymes function. We conclude with a brief analysis of the phylogenetic distribution and evolution of Archaeal heme-copper oxygen reductases.
Collapse
Affiliation(s)
- James Hemp
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
35
|
The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 2007; 74:682-92. [PMID: 18083856 DOI: 10.1128/aem.02019-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized.
Collapse
|
36
|
Bathe S, Norris PR. Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 2007; 73:2491-7. [PMID: 17322327 PMCID: PMC1855616 DOI: 10.1128/aem.02589-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genes of Sulfolobus metallicus that appeared to be upregulated in relation to growth on either ferrous iron or sulfur were identified using subtractive hybridization of cDNAs. The genes upregulated during growth on ferrous iron were found in a cluster, and most were predicted to encode membrane proteins. Quantitative reverse transcription-PCR of cDNA showed upregulation of most of these genes during growth on ferrous iron and pyrite compared to results during growth on sulfur. The highest expression levels observed included those for genes encoding proteins with similarities to cytochrome c oxidase subunits and a CbsA-like cytochrome. The genes identified here that may be involved in oxidation of ferrous iron by S. metallicus are termed fox genes. Of three available genomes of Sulfolobus species (S. tokodaii, S. acidocaldarius, and S. solfataricus), only that of S. tokodaii has a cluster of highly similar open reading frames, and only S. tokodaii of these three species was also able to oxidize ferrous iron. A gene encoding sulfur oxygenase-reductase was identified as the source of the dominant transcript in sulfur-grown cells of S. metallicus, with the predicted protein showing high identities to the previously described examples from S. tokodaii and species of Acidianus.
Collapse
Affiliation(s)
- Stephan Bathe
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
37
|
Dopson M, Baker-Austin C, Bond P. Towards determining details of anaerobic growth coupled to ferric iron reduction by the acidophilic archaeon 'Ferroplasma acidarmanus' Fer1. Extremophiles 2006; 11:159-68. [PMID: 17048042 DOI: 10.1007/s00792-006-0029-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 07/19/2006] [Indexed: 11/25/2022]
Abstract
Elucidation of the different growth states of Ferroplasma species is crucial in understanding the cycling of iron in acid leaching sites. Therefore, a proteomic and biochemical study of anaerobic growth in 'Ferroplasma acidarmanus' Fer1 has been carried out. Anaerobic growth in Ferroplasma spp. occurred by coupling oxidation of organic carbon with the reduction of Fe(3+); but sulfate, nitrate, sulfite, thiosulfate, and arsenate were not utilized as electron acceptors. Rates of Fe(3+) reduction were similar to other acidophilic chemoorganotrophs. Analysis of the 'F. acidarmanus' Fer1 proteome by 2-dimensional polyacrylamide gel electrophoresis revealed ten key proteins linked with central metabolic pathways > or =4 fold up-regulated during anaerobic growth. These included proteins putatively identified as associated with the reductive tricarboxylic acid pathway used for anaerobic energy production, and others including a putative flavoprotein involved in electron transport. Inhibition of anaerobic growth and Fe(3+) reduction by inhibitors suggests the involvement of electron transport in Fe(3+)reduction. This study has increased the knowledge of anaerobic growth in this biotechnologically and environmentally important acidophilic archaeon.
Collapse
Affiliation(s)
- Mark Dopson
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | | |
Collapse
|
38
|
Karavaiko GI, Dubinina GA, Kondrat’eva TF. Lithotrophic microorganisms of the oxidative cycles of sulfur and iron. Microbiology (Reading) 2006. [DOI: 10.1134/s002626170605002x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
39
|
Brouns SJJ, Walther J, Snijders APL, van de Werken HJG, Willemen HLDM, Worm P, de Vos MGJ, Andersson A, Lundgren M, Mazon HFM, van den Heuvel RHH, Nilsson P, Salmon L, de Vos WM, Wright PC, Bernander R, van der Oost J. Identification of the Missing Links in Prokaryotic Pentose Oxidation Pathways. J Biol Chem 2006; 281:27378-88. [PMID: 16849334 DOI: 10.1074/jbc.m605549200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pentose metabolism of Archaea is largely unknown. Here, we have employed an integrated genomics approach including DNA microarray and proteomics analyses to elucidate the catabolic pathway for D-arabinose in Sulfolobus solfataricus. During growth on this sugar, a small set of genes appeared to be differentially expressed compared with growth on D-glucose. These genes were heterologously overexpressed in Escherichia coli, and the recombinant proteins were purified and biochemically studied. This showed that D-arabinose is oxidized to 2-oxoglutarate by the consecutive action of a number of previously uncharacterized enzymes, including a D-arabinose dehydrogenase, a D-arabinonate dehydratase, a novel 2-keto-3-deoxy-D-arabinonate dehydratase, and a 2,5-dioxopentanoate dehydrogenase. Promoter analysis of these genes revealed a palindromic sequence upstream of the TATA box, which is likely to be involved in their concerted transcriptional control. Integration of the obtained biochemical data with genomic context analysis strongly suggests the occurrence of pentose oxidation pathways in both Archaea and Bacteria, and predicts the involvement of additional enzyme components. Moreover, it revealed striking genetic similarities between the catabolic pathways for pentoses, hexaric acids, and hydroxyproline degradation, which support the theory of metabolic pathway genesis by enzyme recruitment.
Collapse
Affiliation(s)
- Stan J J Brouns
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yoshimatsu K, Araya O, Fujiwara T. Haloarcula marismortui cytochrome b-561 is encoded by the narC gene in the dissimilatory nitrate reductase operon. Extremophiles 2006; 11:41-7. [PMID: 16900298 DOI: 10.1007/s00792-006-0016-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/03/2006] [Indexed: 10/24/2022]
Abstract
The composition of membrane-bound electron-transferring proteins from denitrifying cells of Haloarcula marismortui was compared with that from the aerobic cells. Accompanying nitrate reductase catalytic NarGH subcomplex, cytochrome b-561, cytochrome b-552, and halocyanin-like blue copper protein were induced under denitrifying conditions. Cytochrome b-561 was purified to homogeneity and was shown to be composed of a polypeptide with a molecular mass of 40 kDa. The cytochrome was autooxidizable and its redox potential was -27 mV. The N-terminal sequence of the cytochrome was identical to the deduced amino acid sequence of the narC gene product encoded in the third ORF of the nitrate reductase operon with a unique arrangement of ORFs. The sequence of the cytochrome was homologous with that of the cytochrome b subunit of respiratory cytochrome bc. A possibility that the cytochrome bc and the NarGH constructed a supercomplex was discussed.
Collapse
Affiliation(s)
- Katsuhiko Yoshimatsu
- Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | |
Collapse
|
41
|
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 2006; 4:e95. [PMID: 16533068 PMCID: PMC1403158 DOI: 10.1371/journal.pbio.0040095] [Citation(s) in RCA: 347] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/25/2006] [Indexed: 11/19/2022] Open
Abstract
Marine
Crenarchaeota represent an abundant component of oceanic microbiota with potential to significantly influence biogeochemical cycling in marine ecosystems. Prior studies using specific archaeal lipid biomarkers and isotopic analyses indicated that planktonic
Crenarchaeota have the capacity for autotrophic growth, and more recent cultivation studies support an ammonia-based chemolithoautotrophic energy metabolism. We report here analysis of fosmid sequences derived from the uncultivated marine crenarchaeote,
Cenarchaeum symbiosum, focused on the reconstruction of carbon and energy metabolism. Genes predicted to encode multiple components of a modified 3-hydroxypropionate cycle of autotrophic carbon assimilation were identified, consistent with utilization of carbon dioxide as a carbon source. Additionally, genes predicted to encode a near complete oxidative tricarboxylic acid cycle were also identified, consistent with the consumption of organic carbon and in the production of intermediates for amino acid and cofactor biosynthesis. Therefore,
C. symbiosum has the potential to function either as a strict autotroph, or as a mixotroph utilizing both carbon dioxide and organic material as carbon sources. From the standpoint of energy metabolism, genes predicted to encode ammonia monooxygenase subunits, ammonia permease, urease, and urea transporters were identified, consistent with the use of reduced nitrogen compounds as energy sources fueling autotrophic metabolism. Homologues of these genes, recovered from ocean waters worldwide, demonstrate the conservation and ubiquity of crenarchaeal pathways for carbon assimilation and ammonia oxidation. These findings further substantiate the likely global metabolic importance of
Crenarchaeota with respect to key steps in the biogeochemical transformation of carbon and nitrogen in marine ecosystems.
Sequence data reveal the presence of key genes from pathways for carbon assimilation and ammonia oxidation in marine microbiota, supporting their importance in regulating the biogeochemistry of marine ecosystems.
Collapse
Affiliation(s)
- Steven J Hallam
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tracy J Mincer
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Christina M Preston
- 3Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Katie Roberts
- 4Department of Geological & Environmental Sciences, Stanford University, Stanford, California, United States of America
| | - Paul M Richardson
- 5Joint Genome Institute, Walnut Creek, California, United States of America
| | - Edward F DeLong
- 1Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
42
|
Dopson M, Baker-Austin C, Bond PL. Analysis of differential protein expression during growth states of Ferroplasma strains and insights into electron transport for iron oxidation. Microbiology (Reading) 2005; 151:4127-4137. [PMID: 16339958 DOI: 10.1099/mic.0.28362-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To investigate the metabolic biochemistry of iron-oxidizing extreme acidophiles, a proteomic analysis of chemomixotrophic and chemo-organotrophic growth, as well as protein expression in the absence of organic carbon, was carried out in Ferroplasma species. Electron transport chain inhibitor studies, spectrophotometric analysis and proteomic results suggest that oxidation of ferrous iron may be mediated by the blue copper-haem protein sulfocyanin and the derived electron passes to a cbb
3 terminal electron acceptor. Despite previous suggestions of a putative carbon dioxide fixation pathway, no up-regulation of proteins typically associated with carbon dioxide fixation was evident during incubation in the absence of organic carbon. Although a lack of known carbon dioxide fixation proteins does not constitute proof, the results suggest that these strains are not autotrophic. Proteins putatively involved in central metabolic pathways, a probable sugar permease and flavoproteins were up-regulated during chemo-organotrophic growth in comparison to the protein complement during chemomixotrophic growth. These results reflect a higher energy demand to be derived from the organic carbon during chemo-organotrophic growth. Proteins with suggested function as central metabolic enzymes were expressed at higher levels during chemomixotrophic growth by Ferroplasma acidiphilum YT compared to ‘Ferroplasma acidarmanus’ Fer1. This study addresses some of the biochemical and bioenergetic questions fundamental for survival of these organisms in extreme acid-leaching environments.
Collapse
Affiliation(s)
- Mark Dopson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Craig Baker-Austin
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Philip L Bond
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
43
|
Schneider D, Schmidt CL. Multiple Rieske proteins in prokaryotes: where and why? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1710:1-12. [PMID: 16271700 DOI: 10.1016/j.bbabio.2005.09.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/28/2022]
Abstract
Many microbial genomes have been sequenced in the recent years. Multiple genes encoding Rieske iron-sulfur proteins, which are subunits of cytochrome bc-type complexes or oxygenases, have been detected in many pro- and eukaryotic genomes. The diversity of substrates, co-substrates and reactions offers obvious explanations for the diversity of the low potential Rieske proteins associated with oxygenases, but the physiological significance of the multiple genes encoding high potential Rieske proteins associated with the cytochrome bc-type complexes remains elusive. For some organisms, investigations into the function of the later group of genes have been initiated. Here, we summarize recent finding on the characteristics and physiological functions of multiple high potential Rieske proteins in prokaryotes. We suggest that the existence of multiple high potential Rieske proteins in prokaryotes could be one way of allowing an organism to adapt their electron transfer chains to changing environmental conditions.
Collapse
Affiliation(s)
- Dirk Schneider
- Albert-Ludwigs-University Freiburg, Institut für Biochemie und Molekularbiologie, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany.
| | | |
Collapse
|
44
|
Golyshina OV, Timmis KN. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 2005; 7:1277-88. [PMID: 16104851 DOI: 10.1111/j.1462-2920.2005.00861.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions.
Collapse
Affiliation(s)
- Olga V Golyshina
- Division of Microbiology, GBF - German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | |
Collapse
|
45
|
Kappler U, Sly LI, McEwan AG. Respiratory gene clusters of Metallosphaera sedula - differential expression and transcriptional organization. MICROBIOLOGY-SGM 2005; 151:35-43. [PMID: 15632423 DOI: 10.1099/mic.0.27515-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metallosphaera sedula is a thermoacidophilic Crenarchaeon which is capable of leaching metals from sulfidic ores. The authors have investigated the presence and expression of genes encoding respiratory complexes in this organism when grown heterotrophically or chemolithotrophically on either sulfur or pyrite. The presence of three gene clusters, encoding two terminal oxidase complexes, the quinol oxidase SoxABCD and the SoxM oxidase supercomplex, and a gene cluster encoding a high-potential cytochrome b and components of a bc(1) complex analogue (cbsBA-soxL2N gene cluster) was established. Expression studies showed that the soxM gene was expressed to high levels during heterotrophic growth of M. sedula on yeast extract, while the soxABCD mRNA was most abundant in cells grown on sulfur. Reduced-minus-oxidized difference spectra of cell membranes showed cytochrome-related peaks that correspond to published spectra of Sulfolobus-type terminal oxidase complexes. In pyrite-grown cells, expression levels of the two monitored oxidase gene clusters were reduced by a factor of 10-12 relative to maximal expression levels, although spectra of membranes clearly contained oxidase-associated haems, suggesting the presence of additional gene clusters encoding terminal oxidases in M. sedula. Pyrite- and sulfur-grown cells contained high levels of the cbsA transcript, which encodes a membrane-bound cytochrome b with a possible role in iron oxidation or chemolithotrophy. The cbsA gene is not co-transcribed with the soxL2N genes, and therefore does not appear to be an integral part of this bc(1) complex analogue. The data show for the first time the differential expression of the Sulfolobus-type terminal oxidase gene clusters in a Crenarchaeon in response to changing growth modes.
Collapse
Affiliation(s)
- Ulrike Kappler
- Centre for Metals in Biology, The University of Queensland, St Lucia, Qld 4072, Australia
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Lindsay I Sly
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alastair G McEwan
- Centre for Metals in Biology, The University of Queensland, St Lucia, Qld 4072, Australia
- School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| |
Collapse
|
46
|
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428:37-43. [PMID: 14961025 DOI: 10.1038/nature02340] [Citation(s) in RCA: 1311] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/19/2004] [Indexed: 02/07/2023]
Abstract
Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
Collapse
Affiliation(s)
- Gene W Tyson
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stroh A, Anderka O, Pfeiffer K, Yagi T, Finel M, Ludwig B, Schägger H. Assembly of respiratory complexes I, III, and IV into NADH oxidase supercomplex stabilizes complex I in Paracoccus denitrificans. J Biol Chem 2003; 279:5000-7. [PMID: 14610094 DOI: 10.1074/jbc.m309505200] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.
Collapse
Affiliation(s)
- Anke Stroh
- Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, D-60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Hiller A, Henninger T, Schäfer G, Schmidt CL. New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioenerg Biomembr 2003; 35:121-31. [PMID: 12887010 DOI: 10.1023/a:1023742002493] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The soxL gene from Sulfolobus acidocaldarius (DSM 639) encodes a Rieske iron-sulfur protein. In this study we report the identification of two open reading frames in its downstream region. The first one, named soxN, codes for a membrane protein bearing a resemblance to the b-type cytochromes of the cytochrome bc1 and b6f complexes. The protein is predicted to contain at least 10 transmembrane helices and features the two conserved histidine pairs coordinating the heme groups of these cytochromes. The second open reading frame, named odsN, encodes a soluble protein of unknown function. The genomic region displays a complex transcription pattern. Northern blot and RT-PCR analyses revealed the presence of mono- and bi-cistronic transcripts as well as a tri-cistronic transcript of soxL and cbsAB, encoding the mono-heme cytochrome b558/566. Phylogenetic analyses of the genes of the soxLN pair and of other archaeal gene pairs encoding Rieske iron-sulfur proteins and b-type cytochromes revealed an identical branching patterns for both protein families, suggesting an evolutionary link of these genes provided by the functional interaction of the proteins. On the basis of the findings of this study and the previously studied properties of the soxL and cbsA proteins, we propose the occurrence of a novel cytochrome bc1-analogous complex in the membranes of Sulfolobus, consisting of the cytochrome b homolog soxN, the Rieske protein soxL, the high potential cytochrome cbsA, as well as the non-redox-active subunits cbsB and odsN.
Collapse
Affiliation(s)
- A Hiller
- Institut für Biochemie der Universität Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | |
Collapse
|