1
|
Rappol T, Waldl M, Chugunova A, Hofacker I, Pauli A, Vilardo E. tRNA expression and modification landscapes, and their dynamics during zebrafish embryo development. Nucleic Acids Res 2024; 52:10575-10594. [PMID: 38989621 PMCID: PMC11417395 DOI: 10.1093/nar/gkae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
tRNA genes exist in multiple copies in the genome of all organisms across the three domains of life. Besides the sequence differences across tRNA copies, extensive post-transcriptional modification adds a further layer to tRNA diversification. Whilst the crucial role of tRNAs as adapter molecules in protein translation is well established, whether all tRNAs are actually expressed, and whether the differences across isodecoders play any regulatory role is only recently being uncovered. Here we built upon recent developments in the use of NGS-based methods for RNA modification detection and developed tRAM-seq, an experimental protocol and in silico analysis pipeline to investigate tRNA expression and modification. Using tRAM-seq, we analysed the full ensemble of nucleo-cytoplasmic and mitochondrial tRNAs during embryonic development of the model vertebrate zebrafish. We show that the repertoire of tRNAs changes during development, with an apparent major switch in tRNA isodecoder expression and modification profile taking place around the start of gastrulation. Taken together, our findings suggest the existence of a general reprogramming of the expressed tRNA pool, possibly gearing the translational machinery for distinct stages of the delicate and crucial process of embryo development.
Collapse
Affiliation(s)
- Tom Rappol
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Waldl
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
- Institute of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, D-04107 Leipzig, Germany
| | - Anastasia Chugunova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ivo L Hofacker
- Department of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, 1090 Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Elisa Vilardo
- Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Palos K, Nelson Dittrich AC, Lyons EH, Gregory BD, Nelson ADL. Comparative analyses suggest a link between mRNA splicing, stability, and RNA covalent modifications in flowering plants. BMC PLANT BIOLOGY 2024; 24:768. [PMID: 39134938 PMCID: PMC11318313 DOI: 10.1186/s12870-024-05486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In recent years, covalent modifications on RNA nucleotides have emerged as pivotal moieties influencing the structure, function, and regulatory processes of RNA Polymerase II transcripts such as mRNAs and lncRNAs. However, our understanding of their biological roles and whether these roles are conserved across eukaryotes remains limited. RESULTS In this study, we leveraged standard polyadenylation-enriched RNA-sequencing data to identify and characterize RNA modifications that introduce base-pairing errors into cDNA reads. Our investigation incorporated data from three Poaceae (Zea mays, Sorghum bicolor, and Setaria italica), as well as publicly available data from a range of stress and genetic contexts in Sorghum and Arabidopsis thaliana. We uncovered a strong enrichment of RNA covalent modifications (RCMs) deposited on a conserved core set of nuclear mRNAs involved in photosynthesis and translation across these species. However, the cohort of modified transcripts changed based on environmental context and developmental program, a pattern that was also conserved across flowering plants. We determined that RCMs can partly explain accession-level differences in drought tolerance in Sorghum, with stress-associated genes receiving a higher level of RCMs in a drought tolerant accession. To address function, we determined that RCMs are significantly enriched near exon junctions within coding regions, suggesting an association with splicing. Intriguingly, we found that these base-pair disrupting RCMs are associated with stable mRNAs, are highly correlated with protein abundance, and thus likely associated with facilitating translation. CONCLUSIONS Our data point to a conserved role for RCMs in mRNA stability and translation across the flowering plant lineage.
Collapse
Affiliation(s)
- Kyle Palos
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Eric H Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D L Nelson
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Motorin Y, Helm M. General Principles and Limitations for Detection of RNA Modifications by Sequencing. Acc Chem Res 2024; 57:275-288. [PMID: 38065564 PMCID: PMC10851944 DOI: 10.1021/acs.accounts.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 02/07/2024]
Abstract
Among the many analytical methods applied to RNA modifications, a particularly pronounced surge has occurred in the past decade in the field of modification mapping. The occurrence of modifications such as m6A in mRNA, albeit known since the 1980s, became amenable to transcriptome-wide analyses through the advent of next-generation sequencing techniques in a rather sudden manner. The term "mapping" here refers to detection of RNA modifications in a sequence context, which has a dramatic impact on the interpretation of biological functions. As a consequence, an impressive number of mapping techniques were published, most in the perspective of what now has become known as "epitranscriptomics". While more and more different modifications were reported to occur in mRNA, conflicting reports and controversial results pointed to a number of technical and theoretical problems rooted in analytics, statistics, and reagents. Rather than finding the proverbial needle in a haystack, the tasks were to determine how many needles of what color in what size of a haystack one was looking at.As the authors of this Account, we think it important to outline the limitations of different mapping methods since many life scientists freshly entering the field confuse the accuracy and precision of modification mapping with that of normal sequencing, which already features numerous caveats by itself. Indeed, we propose here to qualify a specific mapping method by the size of the transcriptome that can be meaningfully analyzed with it.We here focus on high throughput sequencing by Illumina technology, referred to as RNA-Seq. We noted with interest the development of methods for modification detection by other high throughput sequencing platforms that act directly on RNA, e.g., PacBio SMRT and nanopore sequencing, but those are not considered here.In contrast to approaches relying on direct RNA sequencing, current Illumina RNA-Seq protocols require prior conversion of RNA into DNA. This conversion relies on reverse transcription (RT) to create cDNA; thereafter, the cDNA undergoes a sequencing-by-synthesis type of analysis. Thus, a particular behavior of RNA modified nucleotides during the RT-step is a prerequisite for their detection (and quantification) by deep sequencing, and RT properties have great influence on the detection efficiency and reliability. Moreover, the RT-step requires annealing of a synthetic primer, a prerequisite with a crucial impact on library preparation. Thus, all RNA-Seq protocols must feature steps for the introduction of primers, primer landing sites, or adapters on both the RNA 3'- and 5'-ends.
Collapse
Affiliation(s)
- Yuri Motorin
- Université
de Lorraine, UMR7365 IMoPA CNRS-UL
and UAR2008/US40 IBSLor CNRS-Inserm, Biopole UL, Nancy F54000, France
| | - Mark Helm
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
4
|
Spangenberg J, Zu Siederdissen CH, Žarković M, Triebel S, Rose R, Christophersen CM, Paltzow L, Hegab MM, Wansorra A, Srivastava A, Krumbholz A, Marz M. Magnipore: Prediction of differential single nucleotide changes in the Oxford Nanopore Technologies sequencing signal of SARS-CoV-2 samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533105. [PMID: 36993667 PMCID: PMC10055291 DOI: 10.1101/2023.03.17.533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Oxford Nanopore Technologies (ONT) allows direct sequencing of ribonucleic acids (RNA) and, in addition, detection of possible RNA modifications due to deviations from the expected ONT signal. The software available so far for this purpose can only detect a small number of modifications. Alternatively, two samples can be compared for different RNA modifications. We present Magnipore, a novel tool to search for significant signal shifts between samples of Oxford Nanopore data from similar or related species. Magnipore classifies them into mutations and potential modifications. We use Magnipore to compare SARS-CoV-2 samples. Included were representatives of the early 2020s Pango lineages (n=6), samples from Pango lineages B.1.1.7 (n=2, Alpha), B.1.617.2 (n=1, Delta), and B.1.529 (n=7, Omicron). Magnipore utilizes position-wise Gaussian distribution models and a comprehensible significance threshold to find differential signals. In the case of Alpha and Delta, Magnipore identifies 55 detected mutations and 15 sites that hint at differential modifications. We predicted potential virus-variant and variant-group-specific differential modifications. Magnipore contributes to advancing RNA modification analysis in the context of viruses and virus variants.
Collapse
Affiliation(s)
- Jannes Spangenberg
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | | | - Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Sandra Triebel
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Ruben Rose
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
| | | | - Lea Paltzow
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Mohsen M Hegab
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Anna Wansorra
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Akash Srivastava
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, Brunswiker Straße 4, 24105 Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Steenbeker Weg 23, 24106 Kiel, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany
- European Virus Bioinformatics Center 2, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
5
|
Hoffmann A, Erber L, Betat H, Stadler PF, Mörl M, Fallmann J. Changes of the tRNA Modification Pattern during the Development of Dictyostelium discoideum. Noncoding RNA 2021; 7:32. [PMID: 34071416 PMCID: PMC8163159 DOI: 10.3390/ncrna7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Dictyostelium discoideum is a social amoeba, which on starvation develops from a single-cell state to a multicellular fruiting body. This developmental process is accompanied by massive changes in gene expression, which also affect non-coding RNAs. Here, we investigate how tRNAs as key regulators of the translation process are affected by this transition. To this end, we used LOTTE-seq to sequence the tRNA pool of D. discoideum at different developmental time points and analyzed both tRNA composition and tRNA modification patterns. We developed a workflow for the specific detection of modifications from reverse transcriptase signatures in chemically untreated RNA-seq data at single-nucleotide resolution. It avoids the comparison of treated and untreated RNA-seq data using reverse transcription arrest patterns at nucleotides in the neighborhood of a putative modification site as internal control. We find that nucleotide modification sites in D. discoideum tRNAs largely conform to the modification patterns observed throughout the eukaroytes. However, there are also previously undescribed modification sites. We observe substantial dynamic changes of both expression levels and modification patterns of certain tRNA types during fruiting body development. Beyond the specific application to D. discoideum our results demonstrate that the developmental variability of tRNA expression and modification can be traced efficiently with LOTTE-seq.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at Leipzig University and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, D-04103 Leipzig, Germany
| | - Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04103 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstraße 34, D-04103 Leipzig, Germany; (L.E.); (H.B.); (M.M.)
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany; (A.H.); (P.F.S.)
| |
Collapse
|
6
|
Jonkhout N, Cruciani S, Santos Vieira HG, Tran J, Liu H, Liu G, Pickford R, Kaczorowski D, Franco GR, Vauti F, Camacho N, Abedini SS, Najmabadi H, Ribas de Pouplana L, Christ D, Schonrock N, Mattick JS, Novoa EM. Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation. RNA Biol 2021; 18:1905-1919. [PMID: 33499731 DOI: 10.1080/15476286.2021.1881291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
RNA modifications are dynamic chemical entities that expand the RNA lexicon and regulate RNA fate. The most abundant modification present in mRNAs, N6-methyladenosine (m6A), has been implicated in neurogenesis and memory formation. However, whether additional RNA modifications may be playing a role in neuronal functions and in response to environmental queues is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m2,2G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNAAla(AGC) isodecoders at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes may play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.
Collapse
Affiliation(s)
- Nicky Jonkhout
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain
| | - Helaine Graziele Santos Vieira
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Julia Tran
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Huanle Liu
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain
| | - Ganqiang Liu
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Current Address: School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | | | - Gloria R Franco
- Departamento De Bioquímica E Imunologia, Universidade Federal De Minas Gerais,Belo Horizonte,Minas Gerais, Brazil
| | - Franz Vauti
- Division of Cellular & Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Noelia Camacho
- Institute for Research in Biomedicine, Barcelona, Catalonia, Spain
| | - Seyedeh Sedigheh Abedini
- Department of Genetics, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Department of Genetics, Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, Spain
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Schonrock
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Eva Maria Novoa
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, Spain.,University Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
7
|
A tRNA-Derived Small RNA Regulates Ribosomal Protein S28 Protein Levels after Translation Initiation in Humans and Mice. Cell Rep 2020; 29:3816-3824.e4. [PMID: 31851915 DOI: 10.1016/j.celrep.2019.11.062] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
tRNA-derived small RNAs (tsRNAs) have been implicated in many cellular processes, yet the detailed mechanisms are not well defined. We previously found that the 3' end of Leu-CAG tRNA-derived small RNA (LeuCAG3'tsRNA) regulates ribosome biogenesis in humans by maintaining ribosomal protein S28 (RPS28) levels. The tsRNA binds to coding (CDS) and non-coding 3' UTR sequence in the RPS28 mRNA, altering its secondary structure and enhancing its translation. Here we report that the functional 3' UTR target site is present in primates while the CDS target site is present in many vertebrates. We establish that this tsRNA also regulates mouse Rps28 translation by interacting with the CDS target site. We further establish that the change in mRNA translation occurred at a post-initiation step in both species. Overall, our results suggest that LeuCAG3'tsRNA might maintain ribosome biogenesis through a conserved gene regulatory mechanism in vertebrates.
Collapse
|
8
|
Erber L, Hoffmann A, Fallmann J, Betat H, Stadler PF, Mörl M. LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing. RNA Biol 2020; 17:23-32. [PMID: 31486704 PMCID: PMC6948972 DOI: 10.1080/15476286.2019.1664250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs belong to the most abundant type of ribonucleic acid in the cell, and detailed investigations revealed correlations between alterations in the tRNA pool composition and certain diseases like breast cancer. However, currently available methods do not sample the entire tRNA pool or lack specificity for tRNAs. A specific disadvantage of such methods is that only full-length tRNAs are analysed, while tRNA fragments or incomplete cDNAs due to RT stops at modified nucleosides are lost. Another drawback in certain approaches is that the tRNA fraction has to be isolated and separated from high molecular weight RNA, resulting in considerable labour costs and loss of material. Based on a hairpin-shaped adapter oligonucleotide selective for tRNA transcripts, we developed a highly specific protocol for efficient and comprehensive high-throughput analysis of tRNAs that combines the benefits of existing methods and eliminates their disadvantages. Due to a 3'-TGG overhang, the adapter is specifically ligated to the tRNA 3'-CCA end. Reverse transcription prior to the ligation of a second adapter allows to include prematurely terminated cDNA products, increasing the number of tRNA reads. This strategy renders this approach a powerful and universal tool to analyse the tRNA pool of cells and organisms under different conditions in health and disease.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Hoffmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Botoga, Colombia
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry of the University of Vienna, Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
9
|
Schmidt L, Werner S, Kemmer T, Niebler S, Kristen M, Ayadi L, Johe P, Marchand V, Schirmeister T, Motorin Y, Hildebrandt A, Schmidt B, Helm M. Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures. Front Genet 2019; 10:876. [PMID: 31608115 PMCID: PMC6774277 DOI: 10.3389/fgene.2019.00876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/21/2019] [Indexed: 01/28/2023] Open
Abstract
Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide resolution across the mapped transcriptome. Further downstream modules include tools for visualization, machine learning, and modification calling. From the machine-learning module, quality assessment parameters are provided to gauge the suitability of the initial dataset for effective machine learning and modification calling. This output is useful to improve the experimental parameters for library preparation and sequencing. In summary, the automation of the bioinformatics workflow allows a faster turnaround of the optimization cycles in modification calling.
Collapse
Affiliation(s)
- Lukas Schmidt
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Stephan Werner
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Thomas Kemmer
- Institute of Computer Science, Scientific Computing and Bioinformatics, Johannes Gutenberg-University, Mainz, Germany
| | - Stefan Niebler
- Institute of Computer Science, High Performance Computing, Johannes Gutenberg-University, Mainz, Germany
| | - Marco Kristen
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Lilia Ayadi
- Next-Generation Sequencing Core Facility UMS2008 IBSLor CNRS-UL-INSERM, Biopôle, University of Lorraine, Vandœuvre-lès-Nancy, France.,IMoPA UMR7365 CNRS-UL, Biopôle, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Patrick Johe
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility UMS2008 IBSLor CNRS-UL-INSERM, Biopôle, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| | - Yuri Motorin
- Next-Generation Sequencing Core Facility UMS2008 IBSLor CNRS-UL-INSERM, Biopôle, University of Lorraine, Vandœuvre-lès-Nancy, France.,IMoPA UMR7365 CNRS-UL, Biopôle, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Andreas Hildebrandt
- Institute of Computer Science, Scientific Computing and Bioinformatics, Johannes Gutenberg-University, Mainz, Germany
| | - Bertil Schmidt
- Institute of Computer Science, High Performance Computing, Johannes Gutenberg-University, Mainz, Germany
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
10
|
Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. mBio 2019; 10:mBio.01950-18. [PMID: 31213566 PMCID: PMC6581868 DOI: 10.1128/mbio.01950-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5′ and 3′ ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities. Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, “Candidatus Hodgkinia cicadicola” (Alphaproteobacteria) and “Ca. Sulcia muelleri” (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original “Ca. Hodgkinia cicadicola” genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5′ and 3′ ends and seem to undergo nucleotide modification. Surprisingly, we found that most “Ca. Hodgkinia cicadicola” and “Ca. Sulcia muelleri” tRNAs exist as tRNA halves. We hypothesize that “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” tRNAs function in bacterial translation but require host-encoded enzymes to do so.
Collapse
|
11
|
Hoffmann A, Fallmann J, Vilardo E, Mörl M, Stadler PF, Amman F. Accurate mapping of tRNA reads. Bioinformatics 2019; 34:1116-1124. [PMID: 29228294 DOI: 10.1093/bioinformatics/btx756] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/07/2017] [Indexed: 11/12/2022] Open
Abstract
Motivation Many repetitive DNA elements are transcribed at appreciable expression levels. Mapping the corresponding RNA sequencing reads back to a reference genome is notoriously difficult and error-prone task, however. This is in particular true if chemical modifications introduce systematic mismatches, while at the same time the genomic loci are only approximately identical, as in the case of tRNAs. Results We therefore developed a dedicated mapping strategy to handle RNA-seq reads that map to tRNAs relying on a modified target genome in which known tRNA loci are masked and instead intronless tRNA precursor sequences are appended as artificial 'chromosomes'. In a first pass, reads that overlap the boundaries of mature tRNAs are extracted. In the second pass, the remaining reads are mapped to a tRNA-masked target that is augmented by representative mature tRNA sequences. Using both simulated and real life data we show that our best-practice workflow removes most of the mapping artefacts introduced by simpler mapping schemes and makes it possible to reliably identify many of chemical tRNA modifications in generic small RNA-seq data. Using simulated data the FDR is only 2%. We find compelling evidence for tissue specific differences of tRNA modification patterns. Availability and implementation The workflow is available both as a bash script and as a Galaxy workflow from https://github.com/AnneHoffmann/tRNA-read-mapping. Contact fabian@tbi.univie.ac.at. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anne Hoffmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany
| | - Elisa Vilardo
- Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, D-04107 Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, D-04107 Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany.,Fraunhofer Institute for Cell Therapy and Immunology, D-04103 Leipzig, Germany.,Center for RNA in Technology and Health, University of Copenhagen, Frederiksberg C, Denmark.,Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria
| | - Fabian Amman
- Department of Theoretical Chemistry of the University of Vienna, A-1090 Vienna, Austria.,Department of Chromosome Biology of the University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
12
|
Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M, Marx A. Engineering of a DNA Polymerase for Direct m 6 A Sequencing. Angew Chem Int Ed Engl 2018; 57:417-421. [PMID: 29115744 PMCID: PMC5768020 DOI: 10.1002/anie.201710209] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 12/16/2022]
Abstract
Methods for the detection of RNA modifications are of fundamental importance for advancing epitranscriptomics. N6 -methyladenosine (m6 A) is the most abundant RNA modification in mammalian mRNA and is involved in the regulation of gene expression. Current detection techniques are laborious and rely on antibody-based enrichment of m6 A-containing RNA prior to sequencing, since m6 A modifications are generally "erased" during reverse transcription (RT). To overcome the drawbacks associated with indirect detection, we aimed to generate novel DNA polymerase variants for direct m6 A sequencing. Therefore, we developed a screen to evolve an RT-active KlenTaq DNA polymerase variant that sets a mark for N6 -methylation. We identified a mutant that exhibits increased misincorporation opposite m6 A compared to unmodified A. Application of the generated DNA polymerase in next-generation sequencing allowed the identification of m6 A sites directly from the sequencing data of untreated RNA samples.
Collapse
Affiliation(s)
- Joos Aschenbrenner
- Department of Chemistry, Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Stephan Werner
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| | - Virginie Marchand
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, IMoPA, UMR7365 CNRS-ULBiopôle de L'Université de Lorraine9, Avenue de la Forêt de Haye54505Vandoeuvre-les-NancyFrance
| | - Martina Adam
- Department of Chemistry, Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, IMoPA, UMR7365 CNRS-ULBiopôle de L'Université de Lorraine9, Avenue de la Forêt de Haye54505Vandoeuvre-les-NancyFrance
| | - Mark Helm
- Institute of Pharmacy and BiochemistryJohannes Gutenberg University MainzStaudingerweg 555128MainzGermany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical BiologyUniversity of KonstanzUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
13
|
Aschenbrenner J, Werner S, Marchand V, Adam M, Motorin Y, Helm M, Marx A. Entwicklung einer DNA-Polymerase für die direkte m6A-Sequenzierung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joos Aschenbrenner
- Fachbereich Chemie, Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Stephan Werner
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Deutschland
| | - Virginie Marchand
- Laboratoire Ingénierie Moléculaire et Physiopathologie, Articulaire, IMoPA, UMR7365 CNRS-UL; Biopôle de L'Université de Lorraine; 9, Avenue de la Forêt de Haye 54505 Vandoeuvre-les-Nancy Frankreich
| | - Martina Adam
- Fachbereich Chemie, Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Yuri Motorin
- Laboratoire Ingénierie Moléculaire et Physiopathologie, Articulaire, IMoPA, UMR7365 CNRS-UL; Biopôle de L'Université de Lorraine; 9, Avenue de la Forêt de Haye 54505 Vandoeuvre-les-Nancy Frankreich
| | - Mark Helm
- Institut für Pharmazie und Biochemie; Johannes Gutenberg-Universität Mainz; Staudingerweg 5 55128 Mainz Deutschland
| | - Andreas Marx
- Fachbereich Chemie, Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
14
|
Marín M, Fernández-Calero T, Ehrlich R. Protein folding and tRNA biology. Biophys Rev 2017; 9:573-588. [PMID: 28944442 PMCID: PMC5662057 DOI: 10.1007/s12551-017-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Polypeptides can fold into tertiary structures while they are synthesized by the ribosome. In addition to the amino acid sequence, protein folding is determined by several factors within the cell. Among others, the folding pathway of a nascent polypeptide can be affected by transient interactions with other proteins, ligands, or the ribosome, as well as by the translocation through membrane pores. Particularly, the translation machinery and the population of tRNA under different physiological or adaptive responses can dramatically affect protein folding. This review summarizes the scientific evidence describing the role of translation kinetics and tRNA populations on protein folding and addresses current efforts to better understand tRNA biology. It is organized into three main parts, which are focused on: (i) protein folding in the cellular context; (ii) tRNA biology and the complexity of the tRNA population; and (iii) available methods and technical challenges in the characterization of tRNA pools. In this manner, this work illustrates the ways by which functional properties of proteins may be modulated by cellular tRNA populations.
Collapse
Affiliation(s)
- Mónica Marín
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Tamara Fernández-Calero
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Ricardo Ehrlich
- Biochemistry-Molecular Biology Section, Cellular and Molecular Biology Department, Faculty of Sciences, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
- Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| |
Collapse
|
15
|
Wulff TF, Argüello RJ, Molina Jordàn M, Roura Frigolé H, Hauquier G, Filonava L, Camacho N, Gatti E, Pierre P, Ribas de Pouplana L, Torres AG. Detection of a Subset of Posttranscriptional Transfer RNA Modifications in Vivo with a Restriction Fragment Length Polymorphism-Based Method. Biochemistry 2017; 56:4029-4038. [PMID: 28703578 DOI: 10.1021/acs.biochem.7b00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.
Collapse
Affiliation(s)
- Thomas F Wulff
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université U2M, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Marc Molina Jordàn
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Helena Roura Frigolé
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Glenn Hauquier
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Liudmila Filonava
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université U2M, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université U2M, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.,Institute for Research in Biomedicine (iBiMED) and Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA) , P/Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Adrian G Torres
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Parc Científic de Barcelona, C/Baldiri Reixac 10, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
|
17
|
Limbach PA, June Paulines M. Going global: the new era of mapping modifications in RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1367. [PMID: 27251302 PMCID: PMC5133204 DOI: 10.1002/wrna.1367] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/30/2022]
Abstract
The post-transcriptional modification of RNA by the addition of one or more chemical groups has been known for over 50 years. These chemical modifications, once thought to be static, are now being discovered to play key regulatory roles in gene expression. The advent of massive parallel sequencing of RNA (RNA-seq) now allows us to probe the complexity of cellular RNA and how chemically altering RNA structure expands the RNA vocabulary. Here we present an overview of the various strategies and technologies that are available to profile RNA chemical modifications at the cellular level. These strategies can be characterized as targeted and untargeted approaches: targeted strategies are developed for one single chemical modification while untargeted strategies are more broadly applicable to a range of such chemical changes. Key for all of these approaches is the ability to locate modifications within the RNA sequence. While most of these methods are built upon an RNA-Seq pipeline, alternative approaches based on mass spectrometry or conventional DNA sequencing retain value in the overall analysis process. We also look forward toward future opportunities and technologies that may expand the types of modifications that can be globally profiled. Given the ever increasing recognition that these RNA chemical modifications play important biological roles, a variety of methods, preferably orthogonal approaches, will be required to globally identify, validate and quantify RNA chemical modifications found in the transcriptome. WIREs RNA 2017, 8:e1367. doi: 10.1002/wrna.1367 For further resources related to this article, please visit the WIREs website.
Collapse
|
18
|
CoverageAnalyzer (CAn): A Tool for Inspection of Modification Signatures in RNA Sequencing Profiles. Biomolecules 2016; 6:biom6040042. [PMID: 27834909 PMCID: PMC5197952 DOI: 10.3390/biom6040042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 12/23/2022] Open
Abstract
Combination of reverse transcription (RT) and deep sequencing has emerged as a powerful instrument for the detection of RNA modifications, a field that has seen a recent surge in activity because of its importance in gene regulation. Recent studies yielded high-resolution RT signatures of modified ribonucleotides relying on both sequence-dependent mismatch patterns and reverse transcription arrests. Common alignment viewers lack specialized functionality, such as filtering, tailored visualization, image export and differential analysis. Consequently, the community will profit from a platform seamlessly connecting detailed visual inspection of RT signatures and automated screening for modification candidates. CoverageAnalyzer (CAn) was developed in response to the demand for a powerful inspection tool. It is freely available for all three main operating systems. With SAM file format as standard input, CAn is an intuitive and user-friendly tool that is generally applicable to the large community of biomedical users, starting from simple visualization of RNA sequencing (RNA-Seq) data, up to sophisticated modification analysis with significance-based modification candidate calling.
Collapse
|
19
|
Bar-Yaacov D, Frumkin I, Yashiro Y, Chujo T, Ishigami Y, Chemla Y, Blumberg A, Schlesinger O, Bieri P, Greber B, Ban N, Zarivach R, Alfonta L, Pilpel Y, Suzuki T, Mishmar D. Mitochondrial 16S rRNA Is Methylated by tRNA Methyltransferase TRMT61B in All Vertebrates. PLoS Biol 2016; 14:e1002557. [PMID: 27631568 PMCID: PMC5025228 DOI: 10.1371/journal.pbio.1002557] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 08/19/2016] [Indexed: 11/19/2022] Open
Abstract
The mitochondrial ribosome, which translates all mitochondrial DNA (mtDNA)-encoded proteins, should be tightly regulated pre- and post-transcriptionally. Recently, we found RNA-DNA differences (RDDs) at human mitochondrial 16S (large) rRNA position 947 that were indicative of post-transcriptional modification. Here, we show that these 16S rRNA RDDs result from a 1-methyladenosine (m1A) modification introduced by TRMT61B, thus being the first vertebrate methyltransferase that modifies both tRNA and rRNAs. m1A947 is conserved in humans and all vertebrates having adenine at the corresponding mtDNA position (90% of vertebrates). However, this mtDNA base is a thymine in 10% of the vertebrates and a guanine in the 23S rRNA of 95% of bacteria, suggesting alternative evolutionary solutions. m1A, uridine, or guanine may stabilize the local structure of mitochondrial and bacterial ribosomes. Experimental assessment of genome-edited Escherichia coli showed that unmodified adenine caused impaired protein synthesis and growth. Our findings revealed a conserved mechanism of rRNA modification that has been selected instead of DNA mutations to enable proper mitochondrial ribosome function. Two solutions were selected during evolution to allow proper function of the vertebrate mitochondrial 16S ribosomal RNAeither RNA methylation by a tRNA methyltransferase or ancient evolutionary mutation. RNA modifications constitute an important layer of information, with functional implications that are not written in the underlying DNA sequence. Recently, we observed an apparent RNA-DNA difference (RDD) at position 947 of the human mitochondrial 16S ribosomal RNA (rRNA), but its nature and mechanism were unclear. Here we show that this disparity reflects an m1A modification (methylation at position 1 of the adenine moiety), and demonstrated by a combination of knock-down experiments in cells and in vitro methylation assays that the tRNA methyltransferase TRMT61B is the best candidate enzyme to introduce this modification. We also show that this modification is present in most of the 16S rRNA molecules in isolated mitochondrial ribosomes, and that it occurs in all vertebrates with an adenine (90% of the vertebrates), but not in those with a thymidine at this 16S rRNA position. Finally, as the first step towards understanding the functional importance of this rRNA modification, we used a genome-edited bacterial system to demonstrate that an unmodified adenine reduced the growth and translation rates of the bacteria as compared to both wild-type bacteria and mutant bacteria with a thymidine in the relevant position. Hence, three solutions were selected during evolution to allow proper function of the mitochondrial 16S rRNA—either RNA modification or two alternative ancient evolutionary DNA mutations.
Collapse
Affiliation(s)
- Dan Bar-Yaacov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Idan Frumkin
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| | - Yuka Yashiro
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
| | - Takeshi Chujo
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
| | - Yonatan Chemla
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Beer Sheva, Israel
| | - Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orr Schlesinger
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Beer Sheva, Israel
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Basil Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lital Alfonta
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Beer Sheva, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, the Weizmann Institute of Science, Rehovot, Israel
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, University of Tokyo, Tokyo, Japan
- * E-mail: (DM); (TS)
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail: (DM); (TS)
| |
Collapse
|
20
|
Selitsky SR, Sethupathy P. tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC Bioinformatics 2015; 16:354. [PMID: 26530785 PMCID: PMC4632369 DOI: 10.1186/s12859-015-0800-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/23/2015] [Indexed: 11/29/2022] Open
Abstract
Background Small RNA-sequencing has revealed the diversity and high abundance of small RNAs derived from tRNAs, referred to as tRNA-derived RNAs. However, at present, there is no standardized nomenclature and there are no methods for accurate annotation and quantification of these small RNAs. tRNA-derived RNAs have unique features that limit the utility of conventional alignment tools and quantification methods. Results We describe here the challenges of mapping, naming, and quantifying tRNA-derived RNAs and present a novel method that addresses them, called tDRmapper. We then use tDRmapper to perform a comparative analysis of tRNA-derived RNA profiles across different human cell types and diseases. We found that (1) tRNA-derived RNA profiles can differ dramatically across different cell types and disease states, (2) that positions and types of chemical modifications of tRNA-derived RNAs vary by cell type and disease, and (3) that entirely different tRNA-derived RNA species can be produced from the same parental tRNA depending on the cell type. Conclusion tDRmappernot only provides a standardized nomenclature and quantification scheme, but also includes graphical visualization that facilitates the discovery of novel tRNA and tRNA-derived RNA biology.
Collapse
Affiliation(s)
- Sara R Selitsky
- Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Departments of Genetics, University of North Carolina, Chapel Hill, NC, USA. .,Microbiology & Immunology, University of North Carolina, Chapel Hill, NC, USA.
| | - Praveen Sethupathy
- Bioinformatics and Computational Biology Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Departments of Genetics, University of North Carolina, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
21
|
Hauenschild R, Tserovski L, Schmid K, Thüring K, Winz ML, Sharma S, Entian KD, Wacheul L, Lafontaine DLJ, Anderson J, Alfonzo J, Hildebrandt A, Jäschke A, Motorin Y, Helm M. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res 2015; 43:9950-64. [PMID: 26365242 PMCID: PMC4787781 DOI: 10.1093/nar/gkv895] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/27/2015] [Indexed: 12/26/2022] Open
Abstract
The combination of Reverse Transcription (RT) and high-throughput sequencing has emerged as a powerful combination to detect modified nucleotides in RNA via analysis of either abortive RT-products or of the incorporation of mismatched dNTPs into cDNA. Here we simultaneously analyze both parameters in detail with respect to the occurrence of N-1-methyladenosine (m1A) in the template RNA. This naturally occurring modification is associated with structural effects, but it is also known as a mediator of antibiotic resistance in ribosomal RNA. In structural probing experiments with dimethylsulfate, m1A is routinely detected by RT-arrest. A specifically developed RNA-Seq protocol was tailored to the simultaneous analysis of RT-arrest and misincorporation patterns. By application to a variety of native and synthetic RNA preparations, we found a characteristic signature of m1A, which, in addition to an arrest rate, features misincorporation as a significant component. Detailed analysis suggests that the signature depends on RNA structure and on the nature of the nucleotide 3′ of m1A in the template RNA, meaning it is sequence dependent. The RT-signature of m1A was used for inspection and confirmation of suspected modification sites and resulted in the identification of hitherto unknown m1A residues in trypanosomal tRNA.
Collapse
Affiliation(s)
- Ralf Hauenschild
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Lyudmil Tserovski
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Katharina Schmid
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Kathrin Thüring
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Marie-Luise Winz
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Sunny Sharma
- Institute of Molecular Biosciences: Goethe University Frankfurt, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | - Karl-Dieter Entian
- Institute of Molecular Biosciences: Goethe University Frankfurt, Max-von-Laue Street 9, 60438 Frankfurt/M, Germany
| | - Ludivine Wacheul
- RNA Molecular Biology, Université Libre de Bruxelles, Rue Profs Jeener & Brachet, 12, B-6041 Charleroi-Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Université Libre de Bruxelles, Rue Profs Jeener & Brachet, 12, B-6041 Charleroi-Gosselies, Belgium
| | - James Anderson
- Department of Biological Sciences, Marquette University, 53201-1881, Milwaukee, WI, USA
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, 43210, Columbus, OH, USA
| | - Andreas Hildebrandt
- Institute for Computer Sciences, Johannes Gutenberg University Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole de l'Université de Lorraine, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
22
|
Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 2015; 12:879-84. [PMID: 26237225 PMCID: PMC4553111 DOI: 10.1038/nmeth.3508] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/09/2015] [Indexed: 01/02/2023]
Abstract
High throughput RNA sequencing has accelerated discovery of the complex regulatory roles of small RNAs, but RNAs containing modified nucleosides may escape detection when those modifications interfere with reverse transcription during RNA-seq library preparation. Here we describe AlkB-facilitated RNA Methylation sequencing (ARM-Seq) which uses pre-treatment with Escherichia coli AlkB to demethylate 1-methyladenosine, 3-methylcytidine, and 1-methylguanosine, all commonly found in transfer RNAs. Comparative methylation analysis using ARM-Seq provides the first detailed, transcriptome-scale map of these modifications, and reveals an abundance of previously undetected, methylated small RNAs derived from tRNAs. ARM-Seq demonstrates that tRNA-derived small RNAs accurately recapitulate the m1A modification state for well-characterized yeast tRNAs, and generates new predictions for a large number of human tRNAs, including tRNA precursors and mitochondrial tRNAs. Thus, ARM-Seq provides broad utility for identifying previously overlooked methyl-modified RNAs, can efficiently monitor methylation state, and may reveal new roles for tRNA-derived RNAs as biomarkers or signaling molecules.
Collapse
Affiliation(s)
- Aaron E Cozen
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Erin Quartley
- Department of Biochemistry &Biophysics, University of Rochester School of Medicine, Rochester, New York, USA
| | - Andrew D Holmes
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Eric M Phizicky
- Department of Biochemistry &Biophysics, University of Rochester School of Medicine, Rochester, New York, USA.,Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
23
|
Pundhir S, Gorodkin J. Differential and coherent processing patterns from small RNAs. Sci Rep 2015; 5:12062. [PMID: 26166713 PMCID: PMC4499813 DOI: 10.1038/srep12062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Post-transcriptional processing events related to short RNAs are often reflected in their read profile patterns emerging from high-throughput sequencing data. MicroRNA arm switching across different tissues is a well-known example of what we define as differential processing. Here, short RNAs from the nine cell lines of the ENCODE project, irrespective of their annotation status, were analyzed for genomic loci representing differential or coherent processing. We observed differential processing predominantly in RNAs annotated as miRNA, snoRNA or tRNA. Four out of five known cases of differentially processed miRNAs that were in the input dataset were recovered and several novel cases were discovered. In contrast to differential processing, coherent processing is observed widespread in both annotated and unannotated regions. While the annotated loci predominantly consist of ~24 nt short RNAs, the unannotated loci comparatively consist of ~17 nt short RNAs. Furthermore, these ~17 nt short RNAs are significantly enriched for overlap to transcription start sites and DNase I hypersensitive sites (p-value < 0.01) that are characteristic features of transcription initiation RNAs. We discuss how the computational pipeline developed in this study has the potential to be applied to other forms of RNA-seq data for further transcriptome-wide studies of differential and coherent processing.
Collapse
Affiliation(s)
- Sachin Pundhir
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, IKVH, University of Copenhagen, Grønnegårdsvej 3, 1870, Frederiksberg C, Denmark
| |
Collapse
|
24
|
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res 2015; 43:5617-29. [PMID: 25958396 PMCID: PMC4477674 DOI: 10.1093/nar/gkv471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
CCA-adding enzymes synthesize and maintain the C-C-A sequence at the tRNA 3'-end, generating the attachment site for amino acids. While tRNAs are the most prominent substrates for this polymerase, CCA additions on non-tRNA transcripts are described as well. To identify general features for substrate requirement, a pool of randomized transcripts was incubated with the human CCA-adding enzyme. Most of the RNAs accepted for CCA addition carry an acceptor stem-like terminal structure, consistent with tRNA as the main substrate group for this enzyme. While these RNAs show no sequence conservation, the position upstream of the CCA end was in most cases represented by an adenosine residue. In tRNA, this position is described as discriminator base, an important identity element for correct aminoacylation. Mutational analysis of the impact of the discriminator identity on CCA addition revealed that purine bases (with a preference for adenosine) are strongly favoured over pyrimidines. Furthermore, depending on the tRNA context, a cytosine discriminator can cause a dramatic number of misincorporations during CCA addition. The data correlate with a high frequency of adenosine residues at the discriminator position observed in vivo. Originally identified as a prominent identity element for aminoacylation, this position represents a likewise important element for efficient and accurate CCA addition.
Collapse
Affiliation(s)
- Sandra Wende
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sonja Bonin
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Oskar Götze
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Torres AG, Piñeyro D, Rodríguez-Escribà M, Camacho N, Reina O, Saint-Léger A, Filonava L, Batlle E, Ribas de Pouplana L. Inosine modifications in human tRNAs are incorporated at the precursor tRNA level. Nucleic Acids Res 2015; 43:5145-57. [PMID: 25916855 PMCID: PMC4446420 DOI: 10.1093/nar/gkv277] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 11/12/2022] Open
Abstract
Transfer RNAs (tRNAs) are key adaptor molecules of the genetic code that are heavily modified post-transcriptionally. Inosine at the first residue of the anticodon (position 34; I34) is an essential widespread tRNA modification that has been poorly studied thus far. The modification in eukaryotes results from a deamination reaction of adenine that is catalyzed by the heterodimeric enzyme adenosine deaminase acting on tRNA (hetADAT), composed of two subunits: ADAT2 and ADAT3. Using high-throughput small RNA sequencing (RNAseq), we show that this modification is incorporated to human tRNAs at the precursor tRNA level and during maturation. We also functionally validated the human genes encoding for hetADAT and show that the subunits of this enzyme co-localize in nucleus in an ADAT2-dependent manner. Finally, by knocking down HsADAT2, we demonstrate that variations in the cellular levels of hetADAT will result in changes in the levels of I34 modification in all its potential substrates. Altogether, we present RNAseq as a powerful tool to study post-transcriptional tRNA modifications at the precursor tRNA level and give the first insights on the biology of I34 tRNA modification in metazoans.
Collapse
Affiliation(s)
- Adrian Gabriel Torres
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - David Piñeyro
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Marta Rodríguez-Escribà
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Liudmila Filonava
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, Barcelona, 08010 Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, 08028 Catalonia, Spain Catalan Institution for Research and Advanced Studies (ICREA), P/Lluis Companys 23, Barcelona, 08010 Catalonia, Spain
| |
Collapse
|
26
|
Shepherd J, Ibba M. Bacterial transfer RNAs. FEMS Microbiol Rev 2015; 39:280-300. [PMID: 25796611 DOI: 10.1093/femsre/fuv004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/21/2015] [Indexed: 11/14/2022] Open
Abstract
Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells.
Collapse
Affiliation(s)
- Jennifer Shepherd
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology and the Center for RNA Biology, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
27
|
Analysis of the human mitochondrial transcriptome using directional deep sequencing and parallel analysis of RNA ends. Methods Mol Biol 2014. [PMID: 24590795 DOI: 10.1007/978-1-62703-971-0_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
RNA sequencing using next-generation technologies provides comprehensive coverage of transcriptomes at a much greater depth than conventional transcriptomic methods. The human mitochondrial genome is relatively small, and sequencing its transcriptome provides a valuable method to investigate changes in RNA metabolism in great detail. Here we describe two methods that use next-generation technologies to investigate mitochondrial RNAs. Directional RNA sequencing enables the analyses of RNA abundance from each strand of the mitochondrial DNA. Parallel analysis of RNA ends enables the analyses of processing of mitochondrial transcripts, their termini, and annotation of any new transcripts.
Collapse
|
28
|
Videm P, Rose D, Costa F, Backofen R. BlockClust: efficient clustering and classification of non-coding RNAs from short read RNA-seq profiles. ACTA ACUST UNITED AC 2014; 30:i274-82. [PMID: 24931994 PMCID: PMC4058930 DOI: 10.1093/bioinformatics/btu270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Summary: Non-coding RNAs (ncRNAs) play a vital role in many cellular processes such as RNA splicing, translation, gene regulation. However the vast majority of ncRNAs still have no functional annotation. One prominent approach for putative function assignment is clustering of transcripts according to sequence and secondary structure. However sequence information is changed by post-transcriptional modifications, and secondary structure is only a proxy for the true 3D conformation of the RNA polymer. A different type of information that does not suffer from these issues and that can be used for the detection of RNA classes, is the pattern of processing and its traces in small RNA-seq reads data. Here we introduce BlockClust, an efficient approach to detect transcripts with similar processing patterns. We propose a novel way to encode expression profiles in compact discrete structures, which can then be processed using fast graph-kernel techniques. We perform both unsupervised clustering and develop family specific discriminative models; finally we show how the proposed approach is scalable, accurate and robust across different organisms, tissues and cell lines. Availability: The whole BlockClust galaxy workflow including all tool dependencies is available at http://toolshed.g2.bx.psu.edu/view/rnateam/blockclust_workflow. Contact:backofen@informatik.uni-freiburg.de; costa@informatik.uni-freiburg.de Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, Denmark
| | - Dominic Rose
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, DenmarkBioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, Denmark
| | - Fabrizio Costa
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, Denmark
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, DenmarkBioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, DenmarkBioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, DenmarkBioinformatics Group, Department of Computer Science, University of Freiburg, Munich Leukemia Laboratory (MLL), Munich, Centre for Biological Signalling Studies (BIOSS), Centre for Biological Systems Analysis (ZBSA), University of Freiburg, Germany and Centre for Non-coding RNA in Technology and Health, Bagsvaerd, Denmark
| |
Collapse
|
29
|
Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Popis M, Kellner S, Hölter SM, Garrett L, Wurst W, Becker L, Klopstock T, Fuchs H, Gailus-Durner V, Hrabĕ de Angelis M, Káradóttir RT, Helm M, Ule J, Gleeson JG, Odom DT, Frye M. Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders. EMBO J 2014; 33:2020-39. [PMID: 25063673 PMCID: PMC4195770 DOI: 10.15252/embj.201489282] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/23/2014] [Indexed: 12/16/2022] Open
Abstract
Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage.
Collapse
Affiliation(s)
- Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sabine Dietmann
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Joana V Flores
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Shobbir Hussain
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Claudia Kutter
- Li Ka Shing Centre, CR-UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Peter Humphreys
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Margus Lukk
- Li Ka Shing Centre, CR-UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Patrick Lombard
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Martyna Popis
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Stefanie Kellner
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Mainz, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany German Center for Vertigo and Balance Disorders, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute for Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Thomas Klopstock
- German Center for Vertigo and Balance Disorders, Munich, Germany Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute for Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute for Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany Institute for Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ragnhildur T Káradóttir
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mark Helm
- Johannes Gutenberg University Mainz, Institute for Pharmacy and Biochemistry, Mainz, Germany
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Joseph G Gleeson
- Laboratory of Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Duncan T Odom
- Li Ka Shing Centre, CR-UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
30
|
Backofen R, Vogel T. Biological and bioinformatical approaches to study crosstalk of long-non-coding RNAs and chromatin-modifying proteins. Cell Tissue Res 2014; 356:507-26. [PMID: 24820400 DOI: 10.1007/s00441-014-1885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/27/2014] [Indexed: 02/04/2023]
Abstract
Long-non-coding RNA (lncRNA) regulates gene expression through transcriptional and epigenetic regulation as well as alternative splicing in the nucleus. In addition, regulation is achieved at the levels of mRNA translation, storage and degradation in the cytoplasm. During recent years, several studies have described the interaction of lncRNAs with enzymes that confer so-called epigenetic modifications, such as DNA methylation, histone modifications and chromatin structure or remodelling. LncRNA interaction with chromatin-modifying enzymes (CME) is an emerging field that confers another layer of complexity in transcriptional regulation. Given that CME-lncRNA interactions have been identified in many biological processes, ranging from development to disease, comprehensive understanding of underlying mechanisms is important to inspire basic and translational research in the future. In this review, we highlight recent findings to extend our understanding about the functional interdependencies between lncRNAs and CMEs that activate or repress gene expression. We focus on recent highlights of molecular and functional roles for CME-lncRNAs and provide an interdisciplinary overview of recent technical and methodological developments that have improved biological and bioinformatical approaches for detection and functional studies of CME-lncRNA interaction.
Collapse
Affiliation(s)
- Rolf Backofen
- Institute of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | | |
Collapse
|
31
|
Hodgkinson A, Idaghdour Y, Gbeha E, Grenier JC, Hip-Ki E, Bruat V, Goulet JP, de Malliard T, Awadalla P. High-Resolution Genomic Analysis of Human Mitochondrial RNA Sequence Variation. Science 2014; 344:413-5. [DOI: 10.1126/science.1251110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Backofen R, Amman F, Costa F, Findeiß S, Richter AS, Stadler PF. Bioinformatics of prokaryotic RNAs. RNA Biol 2014; 11:470-83. [PMID: 24755880 PMCID: PMC4152356 DOI: 10.4161/rna.28647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 02/02/2023] Open
Abstract
The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group; Department of Computer Science; University of Freiburg; Georges-Köhler-Allee 106; D-79110 Freiburg, Germany
- Center for non-coding RNA in Technology and Health; University of Copenhagen; Grønnegårdsvej 3; DK-1870 Frederiksberg C, Denmark
| | - Fabian Amman
- Institute for Theoretical Chemistry; University of Vienna; Währingerstraße 17; A-1090 Wien, Austria
- Bioinformatics Group; Department of Computer Science, and Interdisciplinary Center for Bioinformatics; University of Leipzig; Härtelstraße 16-18; D-04107 Leipzig, Germany
| | - Fabrizio Costa
- Bioinformatics Group; Department of Computer Science; University of Freiburg; Georges-Köhler-Allee 106; D-79110 Freiburg, Germany
| | - Sven Findeiß
- Institute for Theoretical Chemistry; University of Vienna; Währingerstraße 17; A-1090 Wien, Austria
- Bioinformatics and Computational Biology Research Group; University of Vienna; Währingerstraße 29; A-1090 Wien, Austria
| | - Andreas S Richter
- Bioinformatics Group; Department of Computer Science; University of Freiburg; Georges-Köhler-Allee 106; D-79110 Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics; Stübeweg 51; D-79108 Freiburg, Germany
| | - Peter F Stadler
- Center for non-coding RNA in Technology and Health; University of Copenhagen; Grønnegårdsvej 3; DK-1870 Frederiksberg C, Denmark
- Institute for Theoretical Chemistry; University of Vienna; Währingerstraße 17; A-1090 Wien, Austria
- Bioinformatics Group; Department of Computer Science, and Interdisciplinary Center for Bioinformatics; University of Leipzig; Härtelstraße 16-18; D-04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences; Inselstraße 22; D-04103 Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology – IZI; Perlickstraße 1; D-04103 Leipzig, Germany
- Santa Fe Institute; Santa Fe, NM USA
| |
Collapse
|
33
|
Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiß S. TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics 2014; 15:89. [PMID: 24674136 PMCID: PMC4098767 DOI: 10.1186/1471-2105-15-89] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 03/24/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS) in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased. RESULTS Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution. This provides a statistical basis to identify significantly enriched primary transcripts.We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static cutoff-dependent approaches. CONCLUSIONS Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such, we provide TSSAR both as intuitive RESTful Web service ( http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
Collapse
Affiliation(s)
- Fabian Amman
- Bioinformatics Group, Department of Computer Science and the Interdisciplinary Center for Bioinformatic, University of Leipzig, Härtelstraße 16-18, 04107 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The computational identification of novel microRNA (miRNA) genes is a challenging task in bioinformatics. Massive amounts of data describing unknown functional RNA transcripts have to be analyzed for putative miRNA candidates with automated computational pipelines. Beyond those miRNAs that meet the classical definition, high-throughput sequencing techniques have revealed additional miRNA-like molecules that are derived by alternative biogenesis pathways. Exhaustive bioinformatics analyses on such data involve statistical issues as well as precise sequence and structure inspection not only of the functional mature part but also of the whole precursor sequence of the putative miRNA. Apart from a considerable amount of species-specific miRNAs, the majority of all those genes are conserved at least among closely related organisms. Some miRNAs, however, can be traced back to very early points in the evolution of eukaryotic species. Thus, the investigation of the conservation of newly found miRNA candidates comprises an important step in the computational annotation of miRNAs.Topics covered in this chapter include a review on the obvious problem of miRNA annotation and family definition, recommended pipelines of computational miRNA annotation or detection, and an overview of current computer tools for the prediction of miRNAs and their limitations. The chapter closes discussing how those bioinformatic approaches address the problem of faithful miRNA prediction and correct annotation.
Collapse
Affiliation(s)
- Jana Hertel
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
35
|
Pundhir S, Gorodkin J. MicroRNA discovery by similarity search to a database of RNA-seq profiles. Front Genet 2013; 4:133. [PMID: 23874353 PMCID: PMC3708161 DOI: 10.3389/fgene.2013.00133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/21/2013] [Indexed: 01/01/2023] Open
Abstract
In silico generated search for microRNAs (miRNAs) has been driven by methods compiling structural features of the miRNA precursor hairpin, as well as to some degree combining this with the analysis of RNA-seq profiles for which the miRNA typically leave the drosha/dicer fingerprint of 1-2 ~22 nt blocks of reads corresponding to the mature and star miRNA. In complement to the previous methods, we present a study where we systematically exploit these patterns of read profiles. We created two datasets comprised of 2540 and 4795 read profiles obtained after preprocessing short RNA-seq data from miRBase and ENCODE, respectively. Out of 4795 ENCODE read profiles, 1361 are annotated as non-coding RNAs (ncRNAs) and of which 285 are further annotated as miRNAs. Using deepBlockAlign (dba), we align ncRNA read profiles from ENCODE against the miRBase read profiles (cleaned for "self-matches") and are able to separate ENCODE miRNAs from the other ncRNAs by a Matthews Correlation Coefficient (MCC) of 0.8 and obtain an area under the curve of 0.93. Based on the dba score cut-off of 0.7 at which we observed the maximum MCC of 0.8, we predict 523 novel miRNA candidates. An additional RNA secondary structure analysis reveal that 42 of the candidates overlap with predicted conserved secondary structure. Further analysis reveal that the 523 miRNA candidates are located in genomic regions with MAF block (UCSC) fragmentation and poor sequence conservation, which in part might explain why they have been overlooked in previous efforts. We further analyzed known human and mouse miRNA read profiles and found two distinct classes; the first containing two blocks and the second containing >2 blocks of reads. Also the latter class holds read profiles that have less well defined arrangement of reads in comparison to the former class. On comparison of miRNA read profiles from plants and animals, we observed kingdom specific read profiles that are distinct in terms of both length and distribution of reads within the read profiles to each other. All the data, as well as a server to search miRBase read profiles by uploading a BED file, is available at http://rth.dk/resources/mirdba.
Collapse
Affiliation(s)
- Sachin Pundhir
- Center for non-coding RNA in Technology and Health, Department of Veterinary Clinical and Animal Sciences (IKVH), University of Copenhagen Frederiksberg C, Denmark
| | | |
Collapse
|
36
|
Su AAH, Tripp V, Randau L. RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri. Nucleic Acids Res 2013; 41:6250-8. [PMID: 23620296 PMCID: PMC3695527 DOI: 10.1093/nar/gkt317] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 11/29/2022] Open
Abstract
The methanogenic archaeon Methanopyrus kandleri grows near the upper temperature limit for life. Genome analyses revealed strategies to adapt to these harsh conditions and elucidated a unique transfer RNA (tRNA) C-to-U editing mechanism at base 8 for 30 different tRNA species. Here, RNA-Seq deep sequencing methodology was combined with computational analyses to characterize the small RNome of this hyperthermophilic organism and to obtain insights into the RNA metabolism at extreme temperatures. A large number of 132 small RNAs were identified that guide RNA modifications, which are expected to stabilize structured RNA molecules. The C/D box guide RNAs were shown to exist as circular RNA molecules. In addition, clustered regularly interspaced short palindromic repeats RNA processing and potential regulatory RNAs were identified. Finally, the identification of tRNA precursors before and after the unique C8-to-U8 editing activity enabled the determination of the order of tRNA processing events with termini truncation preceding intron removal. This order of tRNA maturation follows the compartmentalized tRNA processing order found in Eukaryotes and suggests its conservation during evolution.
Collapse
MESH Headings
- Euryarchaeota/genetics
- Euryarchaeota/metabolism
- High-Throughput Nucleotide Sequencing
- Hot Temperature
- Inverted Repeat Sequences
- RNA Editing
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/classification
- RNA, Archaeal/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/classification
- RNA, Small Untranslated/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Sequence Analysis, RNA
Collapse
Affiliation(s)
- Andreas A. H. Su
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| | - Vanessa Tripp
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| | - Lennart Randau
- Max-Planck-Institute for Terrestrial Microbiology, Max Planck Research Group: Prokaryotic Small RNA Biology, Karl-von-Frisch Strasse 10, 35037 Marburg, Germany and LOEWE Center for Synthetic Microbiology (Synmikro), 35037 Marburg, Germany
| |
Collapse
|
37
|
Mazières J, Catherinne C, Delfour O, Gouin S, Rouquette I, Delisle MB, Prévot G, Escamilla R, Didier A, Persing DH, Bates M, Michot B. Alternative processing of the U2 small nuclear RNA produces a 19-22nt fragment with relevance for the detection of non-small cell lung cancer in human serum. PLoS One 2013; 8:e60134. [PMID: 23527303 PMCID: PMC3603938 DOI: 10.1371/journal.pone.0060134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022] Open
Abstract
RNU2 exists in two functional forms (RNU2-1 and RNU2-2) distinguishable by the presence of a unique 4-bases motif. Detailed investigation of datasets obtained from deep sequencing of five human lung primary tumors revealed that both forms express at a high rate a 19-22nt fragment (miR-U2-1 and -2) from its 3' region and contains the 4-bases motif. Deep sequencing of independent pools of serum samples from healthy donors and lung cancer patients revealed that miR-U2-1 and -2 are pervasively processed in lung tissue by means of endonucleolytic cleavages and stably exported to the blood. Then, microarrays hybridization experiments of matched normal/tumor samples revealed a significant over-expression of miR-U2-1 in 14 of 18 lung primary tumors. Subsequently, qRT-PCR of miR-U2-1 using serum from 62 lung cancer patients and 96 various controls demonstrated that its expression levels identify lung cancer patients with 79% sensitivity and 80% specificity. miR-U2-1 expression correlated with the presence or absence of lung cancer in patients with chronic obstructive pulmonary disease (COPD), other diseases of the lung - not cancer, and in healthy controls. These data suggest that RNU2-1 is a new bi-functional ncRNA that produces a 19-22nt fragment which may be useful in detecting lung cancer non-invasively in high risk patients.
Collapse
Affiliation(s)
- Julien Mazières
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | | | | | - Sandrine Gouin
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Isabelle Rouquette
- Service d'anatomie pathologique, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | | | - Grégoire Prévot
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Roger Escamilla
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | - Alain Didier
- Service de Pneumologie, Hôpital Larrey, CHU de Toulouse, Université de Toulouse III (Paul Sabatier), Toulouse, France
| | | | - Mike Bates
- Cepheid USA, Sunnyvale, California, United States of America
| | | |
Collapse
|
38
|
El Yacoubi B, Bailly M, de Crécy-Lagard V. Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs. Annu Rev Genet 2012; 46:69-95. [DOI: 10.1146/annurev-genet-110711-155641] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Basma El Yacoubi
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| | - Marc Bailly
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| |
Collapse
|
39
|
Langenberger D, Çakir MV, Hoffmann S, Stadler PF. Dicer-processed small RNAs: rules and exceptions. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 320:35-46. [PMID: 23165937 DOI: 10.1002/jez.b.22481] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/15/2012] [Accepted: 09/13/2012] [Indexed: 01/08/2023]
Abstract
Canonical microRNAs are excised from their hairpin-shaped precursors by Dicer. In order to find possible exceptions to this rule and to identify additional substrates for Dicer processing we re-evaluate the small RNA sequencing data of the Dicer knockdown experiment in MCF-7 cells orignally published by Friedländer et al. [Friedländer et al., 2012, Nucleic Acids Res 40:37-52]. While the well-known non-Dicer mir-451 is not sufficiently expressed in these experiments, there are several additional Dicer-independent microRNAs, among them the important tumor supressor mir-663a. We recover previously described examples of non-miRNA Dicer substrates such as tRNA-Gln and several snoRNAs. Interestingly, sdRNAs derived from box C/D snoRNAs are Dicer-independent, while those derived from box H/ACA snoRNAs are often Dicer dependent. Several pol-III transcripts, in particular the vault RNAs and the great ape specific snaRs are processed by Dicer, while the small RNAs originating from Y RNAs seem to be Dicer independent.
Collapse
Affiliation(s)
- David Langenberger
- LIFE, Leipzig Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
| | | | | | | |
Collapse
|
40
|
The expanding scope of DNA sequencing. Nat Biotechnol 2012; 30:1084-94. [PMID: 23138308 DOI: 10.1038/nbt.2421] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/15/2012] [Indexed: 01/04/2023]
Abstract
In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative 'recombination' of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized.
Collapse
|
41
|
|
42
|
Gaedcke J, Grade M, Camps J, Søkilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Møller S, Beissbarth T, Ried T, Litman T. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 2012; 18:4919-30. [PMID: 22850566 DOI: 10.1158/1078-0432.ccr-12-0016] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE miRNAs play a prominent role in a variety of physiologic and pathologic biologic processes, including cancer. For rectal cancers, only limited data are available on miRNA expression profiles, whereas the underlying genomic and transcriptomic aberrations have been firmly established. We therefore, aimed to comprehensively map the miRNA expression patterns of this disease. EXPERIMENTAL DESIGN Tumor biopsies and corresponding matched mucosa samples were prospectively collected from 57 patients with locally advanced rectal cancers. Total RNA was extracted, and tumor and mucosa miRNA expression profiles were subsequently established for all patients. The expression of selected miRNAs was validated using semi-quantitative real-time PCR. RESULTS Forty-nine miRNAs were significantly differentially expressed (log(2)-fold difference >0.5 and P < 0.001) between rectal cancer and normal rectal mucosa. The predicted targets for these miRNAs were enriched for the following pathways: Wnt, TGF-beta, mTOR, insulin, mitogen-activated protein kinase, and ErbB signaling. Thirteen of these 49 miRNAs seem to be rectal cancer-specific, and have not been previously reported for colon cancers: miR-492, miR-542-5p, miR-584, miR-483-5p, miR-144, miR-2110, miR-652, miR-375, miR-147b, miR-148a, miR-190, miR-26a/b, and miR-338-3p. Of clinical impact, miR-135b expression correlated significantly with disease-free and cancer-specific survival in an independent multicenter cohort of 116 patients. CONCLUSION This comprehensive analysis of the rectal cancer miRNAome uncovered novel miRNAs and pathways associated with rectal cancer. This information contributes to a detailed view of this disease. Moreover, the identification and validation of miR-135b may help to identify novel molecular targets and pathways for therapeutic exploitation.
Collapse
Affiliation(s)
- Jochen Gaedcke
- Department of General and Visceral Surgery, Medical Statistics, University Medical Center, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rackham O, Mercer TR, Filipovska A. The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:675-95. [DOI: 10.1002/wrna.1128] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Hansen AK, Moran NA. Altered tRNA characteristics and 3' maturation in bacterial symbionts with reduced genomes. Nucleic Acids Res 2012; 40:7870-84. [PMID: 22689638 PMCID: PMC3439896 DOI: 10.1093/nar/gks503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translational efficiency is controlled by tRNAs and other genome-encoded mechanisms. In organelles, translational processes are dramatically altered because of genome shrinkage and horizontal acquisition of gene products. The influence of genome reduction on translation in endosymbionts is largely unknown. Here, we investigate whether divergent lineages of Buchnera aphidicola, the reduced-genome bacterial endosymbiont of aphids, possess altered translational features compared with their free-living relative, Escherichia coli. Our RNAseq data support the hypothesis that translation is less optimal in Buchnera than in E. coli. We observed a specific, convergent, pattern of tRNA loss in Buchnera and other endosymbionts that have undergone genome shrinkage. Furthermore, many modified nucleoside pathways that are important for E. coli translation are lost in Buchnera. Additionally, Buchnera’s A + T compositional bias has resulted in reduced tRNA thermostability, and may have altered aminoacyl-tRNA synthetase recognition sites. Buchnera tRNA genes are shorter than those of E. coli, as the majority no longer has a genome-encoded 3' CCA; however, all the expressed, shortened tRNAs undergo 3′ CCA maturation. Moreover, expression of tRNA isoacceptors was not correlated with the usage of corresponding codons. Overall, our data suggest that endosymbiont genome evolution alters tRNA characteristics that are known to influence translational efficiency in their free-living relative.
Collapse
Affiliation(s)
- Allison K Hansen
- Department of Ecology and Evolutionary Biology, West Campus, Yale University, PO Box 27388 West Haven, CT 06516-7388, USA.
| | | |
Collapse
|
45
|
Langenberger D, Pundhir S, Ekstrøm CT, Stadler PF, Hoffmann S, Gorodkin J. deepBlockAlign: a tool for aligning RNA-seq profiles of read block patterns. ACTA ACUST UNITED AC 2011; 28:17-24. [PMID: 22053076 PMCID: PMC3244762 DOI: 10.1093/bioinformatics/btr598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION High-throughput sequencing methods allow whole transcriptomes to be sequenced fast and cost-effectively. Short RNA sequencing provides not only quantitative expression data but also an opportunity to identify novel coding and non-coding RNAs. Many long transcripts undergo post-transcriptional processing that generates short RNA sequence fragments. Mapped back to a reference genome, they form distinctive patterns that convey information on both the structure of the parent transcript and the modalities of its processing. The miR-miR* pattern from microRNA precursors is the best-known, but by no means singular, example. RESULTS deepBlockAlign introduces a two-step approach to align RNA-seq read patterns with the aim of quickly identifying RNAs that share similar processing footprints. Overlapping mapped reads are first merged to blocks and then closely spaced blocks are combined to block groups, each representing a locus of expression. In order to compare block groups, the constituent blocks are first compared using a modified sequence alignment algorithm to determine similarity scores for pairs of blocks. In the second stage, block patterns are compared by means of a modified Sankoff algorithm that takes both block similarities and similarities of pattern of distances within the block groups into account. Hierarchical clustering of block groups clearly separates most miRNA and tRNA, and also identifies about a dozen tRNAs clustering together with miRNA. Most of these putative Dicer-processed tRNAs, including eight cases reported to generate products with miRNA-like features in literature, exhibit read blocks distinguished by precise start position of reads. AVAILABILITY The program deepBlockAlign is available as source code from http://rth.dk/resources/dba/. CONTACT gorodkin@rth.dk; studla@bioinf.uni-leipzig.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- David Langenberger
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, Universität Leipzig, Philipp-Rosenthal-Strasse 27, D-04107 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Rackham O, Filipovska A. The role of mammalian PPR domain proteins in the regulation of mitochondrial gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1008-16. [PMID: 22051507 DOI: 10.1016/j.bbagrm.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 12/26/2022]
Abstract
Pentatricopeptide repeat (PPR) domain proteins are a large family of RNA-binding proteins that are involved in the maturation and translation of organelle transcripts in eukaryotes. They were first identified in plant organelles and their important role in mammalian mitochondrial gene regulation is now emerging. Mammalian PPR proteins, like their plant counterparts, have diverse roles in mitochondrial transcription, RNA metabolism and translation and consequently are important for mitochondrial function and cell health. Here we discuss the current knowledge about the seven mammalian PPR proteins identified to date and their roles in the regulation of mitochondrial gene expression. Furthermore we discuss the mitochondrial RNA targets of the mammalian PPR proteins and methods to investigate the RNA targets of these mitochondrial RNA-binding proteins. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, WA 6000, Australia
| | | |
Collapse
|
47
|
Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C. Structure of transfer RNAs: similarity and variability. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:37-61. [DOI: 10.1002/wrna.103] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Klostermeier D. Highlight: Mechanisms of RNA-mediated regulation. Biol Chem 2011; 392:275. [DOI: 10.1515/bc.2011.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
No abstract available
Collapse
|
49
|
Langenberger D, Bartschat S, Hertel J, Hoffmann S, Tafer H, Stadler PF. MicroRNA or Not MicroRNA? ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2011. [DOI: 10.1007/978-3-642-22825-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|