1
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
2
|
Flaherty SE, Bezy O, Zheng W, Yan D, Li X, Jagarlapudi S, Albuquerque B, Esquejo RM, Peloquin M, Semache M, Mancini A, Kang L, Drujan D, Breitkopf SB, Griffin JD, Jean Beltran PM, Xue L, Stansfield J, Pashos E, Shakey Q, Pehmøller C, Monetti M, Birnbaum MJ, Fortin JP, Wu Z. Chronic UCN2 treatment desensitizes CRHR2 and improves insulin sensitivity. Nat Commun 2023; 14:3953. [PMID: 37402735 DOI: 10.1038/s41467-023-39597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Urocortin 2 (UCN2) acts as a ligand for the G protein-coupled receptor corticotropin-releasing hormone receptor 2 (CRHR2). UCN2 has been reported to improve or worsen insulin sensitivity and glucose tolerance in vivo. Here we show that acute dosing of UCN2 induces systemic insulin resistance in male mice and skeletal muscle. Inversely, chronic elevation of UCN2 by injection with adenovirus encoding UCN2 resolves metabolic complications, improving glucose tolerance. CRHR2 recruits Gs in response to low concentrations of UCN2, as well as Gi and β-Arrestin at high concentrations of UCN2. Pre-treating cells and skeletal muscle ex vivo with UCN2 leads to internalization of CRHR2, dampened ligand-dependent increases in cAMP, and blunted reductions in insulin signaling. These results provide mechanistic insights into how UCN2 regulates insulin sensitivity and glucose metabolism in skeletal muscle and in vivo. Importantly, a working model was derived from these results that unifies the contradictory metabolic effects of UCN2.
Collapse
Affiliation(s)
- Stephen E Flaherty
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Olivier Bezy
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Wei Zheng
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Dong Yan
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Xiangping Li
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Srinath Jagarlapudi
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Bina Albuquerque
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | | | | | - Liya Kang
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Doreen Drujan
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Susanne B Breitkopf
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - John D Griffin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Pierre M Jean Beltran
- Machine Learning and Computational Sciences, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Liang Xue
- Machine Learning and Computational Sciences, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - John Stansfield
- Biostatistics, Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Evanthia Pashos
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Quazi Shakey
- Biomedicine design, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Mara Monetti
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Jean-Philippe Fortin
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA, USA.
| |
Collapse
|
3
|
Wojciechowicz T, Billert M, Jasaszwili M, Strowski MZ, Nowak KW, Skrzypski M. The Role of Neuropeptide B and Its Receptors in Controlling Appetite, Metabolism, and Energy Homeostasis. Int J Mol Sci 2021; 22:ijms22126632. [PMID: 34205710 PMCID: PMC8234850 DOI: 10.3390/ijms22126632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropeptide B (NPB) is a peptide hormone that was initially described in 2002. In humans, the biological effects of NPB depend on the activation of two G protein-coupled receptors, NPBWR1 (GPR7) and NPBWR2 (GPR8), and, in rodents, NPBWR1. NPB and its receptors are expressed in the central nervous system (CNS) and in peripheral tissues. NPB is also present in the circulation. In the CNS, NPB modulates appetite, reproduction, pain, anxiety, and emotions. In the peripheral tissues, NPB controls secretion of adrenal hormones, pancreatic beta cells, and various functions of adipose tissue. Experimental downregulation of either NPB or NPBWR1 leads to adiposity. Here, we review the literature with regard to NPB-dependent control of metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Tatiana Wojciechowicz
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 35 Wołyńska St, 60-637 Poznań, Poland; (T.W.); (M.B.); (M.J.); (K.W.N.)
| | - Maria Billert
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 35 Wołyńska St, 60-637 Poznań, Poland; (T.W.); (M.B.); (M.J.); (K.W.N.)
| | - Mariami Jasaszwili
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 35 Wołyńska St, 60-637 Poznań, Poland; (T.W.); (M.B.); (M.J.); (K.W.N.)
| | - Mathias Z. Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, D-13353 Berlin, Germany;
- Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, D-13086 Berlin, Germany
| | - Krzysztof W. Nowak
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 35 Wołyńska St, 60-637 Poznań, Poland; (T.W.); (M.B.); (M.J.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 35 Wołyńska St, 60-637 Poznań, Poland; (T.W.); (M.B.); (M.J.); (K.W.N.)
- Correspondence:
| |
Collapse
|
4
|
Li H, Page AJ. Activation of CRF2 receptor increases gastric vagal afferent mechanosensitivity. J Neurophysiol 2019; 122:2636-2642. [DOI: 10.1152/jn.00619.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric vagal afferent (GVA) sensing of food-related mechanical stimuli is a crucial mechanism in the control of feeding behavior and gastric function. Stress is an important factor contributing to eating disorders and gastric diseases. Chronic stress has been shown to increase the mechanosensitivity of GVAs in mice and to reduce food intake and body weight. Whether the mechanosensitivity of GVAs is modulated by stress hormones is not known. This study aimed to determine the effect of stress hormones on GVA mechanosensitivity. The expression of stress hormone receptors in GVA cell bodies was determined in 8-wk-old male C57BL/6 mice using quantitative RT-PCR combined with laser capture microdissection. The mechanosensitivity of GVAs was determined in the absence and presence of stress hormones using an in vitro single-fiber recording preparation. NR3C1 and CRHR2 (mRNA isoforms of glucocorticoid receptor and CRF2 receptor, respectively) were expressed in GVA neurons. The glucocorticoid receptor agonist corticosterone had no effect on the mechanosensitivity of either tension or mucosal GVAs. Activation of CRF2 receptor by its specific analog, urocortin 3, significantly increased the mechanosensitivity of both tension and mucosal GVAs, an effect prevented by the CRF2 receptor antagonist astressin 2B. In conclusion, activation of CRF2 receptor increases the mechanosensitivity of GVAs. This may contribute to the stress- and CRF2 receptor-associated changes in feeding behavior and gastric function, possibly contributing to the hypersensitivity of GVAs in chronic stress conditions. NEW & NOTEWORTHY Gastric vagal afferents (GVAs) relay food-related signals to the central nervous system, where they are processed, eventually leading to modulation of food intake and gastric function. GVA signaling can be modulated by an array of hormones. Stress has been shown to induce GVA hypersensitivity. This study demonstrates that GVA neurons express subtypes of stress hormone receptors, specifically CRF2. Furthermore, activation of CRF2 receptor increases GVA mechanosensitivity, which could have implications for food intake and gastric function.
Collapse
Affiliation(s)
- Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Diabetes, Nutrition & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amanda J. Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Diabetes, Nutrition & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
5
|
Suzuki H, Ataka K, Asakawa A, Cheng KC, Ushikai M, Iwai H, Yagi T, Arai T, Yahiro K, Yamamoto K, Yokoyama Y, Kojima M, Yada T, Hirayama T, Nakamura N, Inui A. Helicobacter pylori Vacuolating Cytotoxin A Causes Anorexia and Anxiety via Hypothalamic Urocortin 1 in Mice. Sci Rep 2019; 9:6011. [PMID: 30979915 PMCID: PMC6461611 DOI: 10.1038/s41598-019-42163-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (Hp) infection is related to the pathogenesis of chronic gastric disorders and extragastric diseases. Here, we examined the anorexigenic and anxiogenic effects of Hp vacuolating cytotoxin A (VacA) through activation of hypothalamic urocortin1 (Ucn1). VacA was detected in the hypothalamus after peripheral administration and increased Ucn1 mRNA expression and c-Fos-positive cells in the hypothalamus but not in the nucleus tractus solitarius. c-Fos and Ucn1-double positive cells were detected. CRF1 and CRF2 receptor antagonists suppressed VacA-induced anxiety and anorexia, respectively. VacA activated single paraventricular nucleus neurons and A7r5 cells; this activation was inhibited by phospholipase C (PLC) and protein kinase C (PKC) inhibitors. VacA causes anorexia and anxiety through the intracellular PLC-PKC pathway, migrates across the blood-brain barrier, and activates the Ucn1-CRF receptor axis.
Collapse
Affiliation(s)
- Hajime Suzuki
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan. .,Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| | - Koji Ataka
- Department of Pharmacological Sciences of Herbal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kai-Chun Cheng
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miharu Ushikai
- Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takakazu Yagi
- Department of Orthodontics and Dentofacial Orthopedics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takeshi Arai
- Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Yamamoto
- Quality Control Department, Yoshitomi Plant, Mitsubishi Tanabe Pharma Factory Ltd., Fukuoka, Japan
| | - Yoshito Yokoyama
- Discovery Technology Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Masayasu Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Toshihiko Yada
- Department of Physiology, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Toshiya Hirayama
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Norifumi Nakamura
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
6
|
Stella J, Croney C, Buffington T. Environmental factors that affect the behavior and welfare of domestic cats (Felis silvestris catus) housed in cages. Appl Anim Behav Sci 2014. [DOI: 10.1016/j.applanim.2014.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Rossetti C, Halfon O, Boutrel B. Controversies about a common etiology for eating and mood disorders. Front Psychol 2014; 5:1205. [PMID: 25386150 PMCID: PMC4209809 DOI: 10.3389/fpsyg.2014.01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and depression represent a growing health concern worldwide. For many years, basic science and medicine have considered obesity as a metabolic illness, while depression was classified a psychiatric disorder. Despite accumulating evidence suggesting that obesity and depression may share commonalities, the causal link between eating and mood disorders remains to be fully understood. This etiology is highly complex, consisting of multiple environmental and genetic risk factors that interact with each other. In this review, we sought to summarize the preclinical and clinical evidence supporting a common etiology for eating and mood disorders, with a particular emphasis on signaling pathways involved in the maintenance of energy balance and mood stability, among which orexigenic and anorexigenic neuropeptides, metabolic factors, stress responsive hormones, cytokines, and neurotrophic factors.
Collapse
Affiliation(s)
- Clara Rossetti
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland
| | - Olivier Halfon
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Lausanne University Hospital Lausanne, Switzerland ; Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital Lausanne, Switzerland
| |
Collapse
|